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Neural Machine Translation often suffers from an under-translation problem due to

its limited modeling of output sequence lengths. In this work, we propose a novel

approach to training a Transformer model using length constraints based on length-

aware positional encoding (PE). Since length constraints with exact target sentence

lengths degrade translation performance, we add random perturbation with the uni-

form distribution within a certain range to the length constraints in the PE during the

training. In the inference step, we predict the output lengths from input sequences

using a length prediction model based on a large-scale pre-trained language model. In

Japanese-to-English and English-to-Japanese translation, experimental results show

that the proposed perturbation injection improved robustness for length prediction

errors, especially within a certain range.
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1 Introduction

In autoregressive Neural Machine Translation (NMT), a decoder predicts one token at a

time, depending on the output tokens generated so far. The length of the output sentence is

usually determined by the prediction of the end-of-sentence token. This prediction is sometimes

made too early—before all of the input information is translated—causing a so-called under-

translation. Under-translation also happens with Transformer, a recent standard NMT method

(Vaswani, Shazeer, Parmar, Uszkoreit, Jones, Gomez, Kaiser, and Polosukhin 2017). It has

sinusoidal positional encoding to incorporate the token position information in the sequence into

its encoder and decoder.

Figure 1 shows scatter plot between reference and NMT output lengths in Japanese-to-

English and English-to-Japanese translation in ASPEC datasets (Nakazawa, Yaguchi, Uchimoto,

Utiyama, Sumita, Kurohashi, and Isahara 2016), using a standard Transfomer model. We can

see Transformer often generates outputs shorter than the reference, especially for long sentences.
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Fig. 1 Scatter plot between reference and Transformer output lengths using ASPEC dataset.

In order to solve this problem, there are studies focusing on self-attention mechanism (Beltagy,

Peters, and Cohan 2020) and research focusing on high-entropy (Zhao, Zhang, Zong, He, and

Wu 2019). Furthermore, Lakew, Di Gangi, and Federico (2019) applied length-aware positional

encoding to Transformer for controlling the output lengths. They used the true output lengths

in training and the input lengths instead in inference. However, due to the difference in sentence

lengths between languages, the use of lengths in different languages during training and inference

would not be appropriate to solve under-translation.

This work focuses on the problem of short outputs by NMT, which causes significant score

drops in BLEU and other surface-based automatic evaluation metrics. We prevent the generation

of short sentences by directly outputting long sentences while maintaining translation accuracy.

In this work, we propose a method for training an NMT model using perturbation into length-

aware positional encoding. The proposed method is also based on the length-aware positional

encoding as Lakew et al. (2019), but we use output length prediction in inference instead of the

input length. For the output length prediction, we use a large-scale pre-trained model. In our

pilot experiments, the simple use of the length-aware positional encoding and the output length

prediction did not work. We propose a method to induce perturbation into the length-aware

positional encoding in the training. The proposed method increases the robustness of the length-

constrained NMT decoding on errors in the output length prediction and improves the translation

accuracy. In the experiments using ASPEC Japanese-English dataset, the proposed method

outperformed a baseline standard Transformer by 0.38 points in BLEU in English-to-Japanese,

0.29 points in Japanese-to-English. It showed significant improvements on short sentences within

2



Oka et al. Perturbation into Length-aware Positional Encoding in NMT

ten subwords in English-to-Japanese, by 3.22 BLEU points over the baseline. However, in the

experiments using WMT14 German-English dataset (Bojar, Buck, Federmann, Haddow, Koehn,

Leveling, Monz, Pecina, Post, Saint-Amand, Soricut, Specia, and Tamchyna 2014), it did not

outperform the baseline due to large errors in the output length prediction.

2 Related Work

2.1 Length-constraints

We introduce other length-constraints methods.

There are some previous studies on constraining an output length in neural sequence-to-

sequence models. Niehues (2020) used the input and output embeddings to constrain the output

length. The input-based variant gave input and output lengths into the encoder in training time.

The output-based variant incorporated the number of remaining output words into the decoder.

Kikuchi, Neubig, Sasano, Takamura, and Okumura (2016) also proposed an approach to giving

the remaining length to the model during this decoding process on summarization task. Takase

and Okazaki (2019) proposed two variants of length-aware positional encodings to control the

output length for the application of Transformer to the problem of automatic summarization;

length-difference positional encoding (LDPE) and length-ratio positional encoding (LRPE).

On the other hand, there is another method to impose length constraints outside the NMT

model. Yang, Huang, and Ma (2018) proposed a rescoring method of applying length constraints

in beam search during inference; so-called BP-norm. They put an additional term Sbp to the

output score function defined as follows.

Sbp(x, y) = logbp+ S(x, y)/|y| (1)

bp = min{e1−1/lr, 1} (2)

lr = |y|/|y∗| (3)

x and y are the input sentences and the hypothesis. |y| is the given length constraint. bp is brevity

penalty to penalize short translation in calculating translation quality metric BLEU (Papineni,

Roukos, Ward, and Zhu 2002). S(x, y) is the standard length normalization score (Wu, Schuster,

Chen, Le, Norouzi, Macherey, Krikun, Cao, Gao, Macherey, et al. 2016) in inference.

2.2 Prediction Target Length in NMT

The translation with length-constraints needs the prediction of target sentence lengths.

Yang, Gao, Wang, and Ney (2020) proposed a model that concatnates the information of the
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encoder output and source length and predicts the target sentence length as a classification task.

The translation accuracy was improved by multi-task learning this length prediction model and

the original translation model, or by concatnating the length prediction model output to the

output of the original decoder. Another recent NMT methodology called non-autoregressive

NMT uses fertility (Gu, Bradbury, Xiong, Li, and Socher 2018) and iterative edits (Gu, Wang,

and Zhao 2019) in non-autoregressive models.

3 Output Length Control using Positional Encoding

3.1 Positional Encoding with Absolute Position

Transformer uses a positional encoding (PE) on both the encoder and decoder to embed

positional information into input and output tokens as real-valued vectors without recurrent

connections like previous NMT methods based on recurrent neural networks. In the original

Transformer implementation (Vaswani et al. 2017), the following sinusoidal PE is used:

PE(pos,2i) = sin

(
pos

10000
2i
d

)
, PE(pos,2i+1) = cos

(
pos

10000
2i
d

)
(4)

where pos is the absolute position in the sequence, 2i and 2i+ 1 respectively represent even and

odd dimensions in the PE vector, and d is the dimension of the embedding.

3.2 Length Difference Positional Encoding

One of the variants called length-difference positional encoding (LDPE) considers the differ-

ence of the remaining length to the final position as follows:

LDPE(pos,len,2i) = sin

(
len− pos

10000
2i
d

)
, LDPE(pos,len,2i+1) = cos

(
len− pos

10000
2i
d

)
(5)

where len is the given output sequence length. It is applied to only the decoder to generate

a sequence in the given length. Takase and Okazaki (2019) used character-based lengths for

summarization constraints and revealed LDPE can control the output length effectively1 .

1 This paper focuses only on LDPE because it worked beter than the other variant, length-ratio PE (LRPE),

in the literature (Takase and Okazaki 2019) and our prior study (Oka, Chousa, Sudoh, and Nakamura 2020).
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3.3 LDPE-based Output Length Control in NMT

Lakew et al. (2019) applied LDPE and LRPE to Transformer-based NMT for controlling the

output sequence lengths. They trained an NMT model using output length constraints based

on LDPE and LRPE, along with special tokens representing length ratio classes (short, normal,

and long) between input and output sentences. In inference, they used the length of an input

sentence as the length constraints on LDPE and LRPE. The purpose of their work is to control

the output length to be short, normal, and long regarding the input length using a length ratio

token and is not to mitigate the under-translation problem. For our purpose, the input length

is not a reliable estimator of the output length because the actual output length varies with the

input content and target languages.

4 Proposed Method

We tackle the shorter sentence generation problem by using an appropriate output length

in inference with a length-constrained NMT model. However, the simple application of LDPE

resulted in significant drop in BLEU even with the reference lengths as shown later in the ex-

perimental results. Motivated by this finding, we propose a novel approach to training a NMT

model with length-aware PE that incorporates perturbation into length-aware PE. The length

constraints in inference are given by the output length prediction using pre-trained models.

4.1 Perturbation into Length-aware Positional Encoding

The Transformer-based model with LDPE and LRPE generates a sequence that almost

matches the given length constraints (Takase and Okazaki 2019). This characteristic is not always

appropriate for machine translation because some translation variants have different lengths. In

this paper, we incorporate random perturbation into the length constraints for LDPE during

training to improve the robustness for such length variants and possible length prediction errors

in inference. The perturbation is given as a random integer from a uniform distribution within a

certain range. In case of the perturbation range of [−2, 2], we randomly choose an integer from

[−2,−1, 0, 1, 2] for a sentence and add it to all the length constraints in the sentence. The per-

turbations were given randomly during the training, which means perturbations were determined

randomly and independently for a sentence in different training epochs.

Although the different positional encoding vectors might appear in a same position when

a negative value is applied as perturbation, we do not care about such cases in this work for

simplicity. The length constraints in the training time were given by the reference lengths. The
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Sentences Diff VAR Corr Average length

ASPEC En ↔ Ja En Ja

Train 1,000,000 7.51 99.43 0.86 31.97 25.46

Dev 1,790 7.05 96.94 0.84 30.48 24.73

Test 1,812 6.54 72.45 0.90 30.02 24.47

WMT14 De ↔ En De En

Train 4,468,840 7.88 185.33 0.76 33.23 32.75

Dev 3,000 4.44 38.97 0.94 29.77 28.65

Test 2,737 5.15 54.83 0.90 31.35 31.19

Table 1 Statistics of parallel corpora we used, in average length difference (Diff), variance (VAR),

and the Pearson correration (Corr) between source target sentences, and their average lengths. All the

lengths are based on subwords using SentencePiece.

perturbations were used only during training. The proposed perturbation into length-aware

positional encoding is given as follows, with the length perturbation:

LDPEpropose(pos,len,2i) = sin

(
len+ perturbation− pos

10000
2i
d

)
, (6)

LDPEpropose(pos,len,2i+1) = cos

(
len+ perturbation− pos

10000
2i
d

)
(7)

4.2 Output Length Prediction using Pre-trained models

As mentioned earlier, Lakew et al. (2019) used the input length as the length constraint in

inference. However, the input length is not a good proxy of the output length from our observation

on parallel corpora. Table 1 shows the statistics of parallel corpora we used for our experiments

(details are described later in 4.1). It includes mean length difference and variance when we use

the length of a source language sentence as a proxy of the length of the corresponding target

language sentence, and the Pearson correlation between these lengths. All the lengths are based

on subwords using SentencePiece (Kudo and Richardson 2018) trained using the training portion

of the parallel corpora with the joint subword vocabulary in two languages. As we can see from

the table 1, there are large differences in the lengths of the sentence pairs. 2 We can also identify

some differences among the training, development, and test sets. Thus, we use output length

prediction in inference.

For the output length prediction, we use a pre-trained language model like BERT (Devlin,

2 We will show the dataset detail histograms in appendix.
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Chang, Lee, and Toutanova 2018). The length prediction model uses the [CLS] vector in the last

layer of the encoder of the pre-trained model to predict the output length through an output

layer as a regression problem. The predicted output length is used as the length constraint in

the LDPE-based NMT decoder in inference; note that the perturbation is not applied.

5 Experiments

To investigate the performance of the proposed method, we conducted several translation

experiments using baseline Transformer and length-constrained variants including the proposed

method. All models were implemented using OpenNMT (Klein, Kim, Deng, Senellart, and Rush

2017).

5.1 Dataset

For the experiments, we used ASPEC English-Japanese (Nakazawa et al. 2016) and WMT14

English-German (Bojar et al. 2014) shown in Table 1. We investigated the translation in both

directions, i.e., En-Ja, Ja-En, En-De, De-En. From the ASPEC dataset, we used the first 1

million sentence pairs of the training set together with 1,784 and 1,812 sentence pairs for the

development and test sets, respectively. For the WMT14 dataset, we used pre-processed one

distributed by Stanford NLP group3. It consists of 4.4 million sentence pairs for training, whose

lengths are within 50 words. We chose newstest2013 (3,000 sentence pairs) and newstest 2014

(2,737 sentences) for the development and test sets, respectively. All the sentences were tok-

enized into subwords using a SentencePiece model (Kudo and Richardson 2018) with a shared

subword vocabulary of 16,000 entries in ASPEC and 30,000 entries in WMT14. Throughout the

experiments, we used subword-based lengths in training and inference.

5.2 Setup

5.2.1 Translation

For the ASPEC En-Ja and Ja-En experiments, we used the hyperparameter settings in

OpenNMT-py FAQ4 for all the compared methods. For the WMT14 En-De and De-En ex-

periments, the hyperparameter settings were the same as the literature (Vaswani et al. 2017).

In experiments using the standard Transformer, we conducted five independent training runs

with different random seeds and chose the best runs and training epochs in the development set

3 https://nlp.stanford.edu/projects/nmt/
4 https://opennmt.net/OpenNMT-py/FAQ.html#how-do-i-use-the-transformer-model
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Translation set Model

ASPEC En → Ja bert-base-cased (Devlin et al. 2018)

Ja → En bert-base-japanese-whole-word-masking

WMT14 En → De roberta-base

(Liu, Ott, Goyal, Du, Joshi, Chen, Levy, Lewis, Zettlemoyer, and Stoyanov 2019)

De → En bert-base-german-cased

Table 2 Pre-trained model used for length prediction in translation experiments

to determine the final evaluation models.

5.2.2 Length Prediction

We implemented length prediction models using BERT variants included in HuggingFace

Transformers (Wolf, Debut, Sanh, Chaumond, Delangue, Moi, Cistac, Rault, Louf, Funtowicz,

Davison, Shleifer, von Platen, Ma, Jernite, Plu, Xu, Scao, Gugger, Drame, Lhoest, and Rush

2019) shown in Table 2.

Each length prediction model was trained using the source language sentences in the cor-

responding training set for three epochs, with the mini-batch size of 16 sentences, and Adam

optimizer (learning rate = 1e-5).

5.3 Evaluation Metrics

We used BLEU (Papineni, Roukos, Ward, and Zhu 2002) as our main quality evaluation

metric. We also investigated the length ratio (LR) of the output and reference sentences (LR =

tgt len/ref len). In English-to-Japanese translation, BLEU was calculated by multi-bleu.perl

on translation results re-tokenized by MeCab (Kudo 2005) after subword detokenization. In the

other translation directions, BLEU was calculated by sacreBLEU (Post 2018).

We also calculated the variance of the length difference between the translation results and

the references to investigate the effects of the output length constraints, following (Takase and

Okazaki 2019). The variance (VAR) on the n sentence pairs is calculated as follows:

V AR =
1

n

n∑
i=1

|li − ref leni|2 (8)

where ref leni is the reference length and li is the output length for i-th sentence.

5.4 Compared Methods

We compared the proposed method with other methods in the training and inference.
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5.4.1 Training

The baseline was a Transformer model consisting of n heads = 8 with a standard PE as in

Eq. (4). For the proposed method, we compared different length perturbation range training: no

perturbation (i.e. [0, 0]), [−2, 2], [−4, 4], [−6, 6] and [−8, 8]. The latter two ranges were used only

in WMT14 experiments due to the large length variance in the training data. In experiments using

the standard Transformer, we conducted five independent training runs with different random

seeds and chose the best runs and training epochs in the development set to determine the final

evaluation models. In experiments using the proposed method, we also chose the best choice of

the perturbation range on the development set with each length constraints, then we evaluated

the perturbated model.

5.4.2 Inference

We compared three inference-time length constraints: the predicted length from a simple

prediction formula (ratio train), the predicted length by the proposed length prediction model

(pred len) and the proxy by the input length (src len). The ratio train formula is given as

follows:

ratio train = src lentest×
1

ntrain

ntrain∑
i=1

src lentrain/ref lentrain (9)

In addition, we tried two other variants of the output length prediction in WMT14 experi-

ments, prediction of the length difference and ratio between input and output (diff pred and

ratio pred, respectively) using the same model architecture as pred len.

We also tested the reference (oracle) lengths (ref len) to investigate the upper-bound per-

formance by the proposed method. Note that we did not use length class tokens used by Lakew

et al. (2019), because our aim is not to control the output length shorter or longer.

For compared method, we used BP-norm (Yang et al. 2018) as length constraints method.

6 Results

Tables 3 and 4 show results in BLEU, length ratio, and variance on ASPEC and WMT14,

respectively.

6.1 BLEU

Here, we focus on the BLEU results among different methods.

First, we discuss the BLEU results using the length prediction. In ASPEC English-to-Japanese
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ASPEC En → Ja ASPEC Ja → En

Model BLEU LR VAR per range BLEU LR VAR per range

Transformer (baseline) 38.4 0.91 29.51 26.2 0.92 69.28

Input length in inference : ratio train (ours)

BP-norm 38.6 0.96 24.04 26.0 0.98 51.94

perLDPE (ours) 38.6 0.96 21.66 [-4, +4] 26.4 0.96 64.39 [-4, +4]

Input length in inference : pred len (ours)

BP-norm 38.6 0.95 24.25 26.0 0.98 51.88

perLDPE (ours) 38.8 0.92 21.15 [-4, +4] 26.5 0.95 59.99 [-4, +4]

Input length in inference : src len ((Lakew et al. 2019))

BP-norm 38.5 0.96 23.55 26.1 0.98 51.97

perLDPE (ours) 35.2 1.09 48.25 [-4, +4] 24.2 0.86 67.15 [-4, +4]

Input length in inference : ref len

BP-norm 38.6 0.95 24.14 25.9 0.99 51.41

perLDPE (ours) 38.7 0.97 2.41 [-2, +2] 27.5 0.98 12.13 [-2, +2]

Table 3 Results in BLEU, length ratio (LR), and length difference variance (VAR) on the ASPEC

dataset: BLEU scores in bold represent the ones better than the Transformer by the proposed method.

BLEU scores with underlines represent the ones better than the baseline Transformer in oracle length

constraints.

translation, the proposed method with ratio train or pred len resulted in a slightly better BLEU

score (38.6 or 38.8) than the baseline Transformer (38.4). These results are also seen in ASPEC

Japanese-to-English translation. Nevertheless, the difference was not statistically significant by

the bootstrap resampling test (Koehn 2004). In WMT14 German-to-English translation, the

proposed method with ratio train, diff pred or ratio pred slightly improved the BLEU score

(31.3, 30.7 or 30.2); the baseline Transformer’s BLEU score was 30.1. However, BLEU scores

were decreased with pred len constraints. Consequently, this was due to length prediction errors,

as discussed later in Section 6.3.

Next, we focus on the BLEU differences between the use of the length prediction and the

proxy by the input length. In ASPEC experiments, the proxy by the input length (src len)

resulted in much worse BLEU scores than the length prediction. On the other hand, in WMT14

German-to-English translation, the use of input length resulted better BLEU than the baseline

(30.1 vs. 31.1). This would be due to the variance between the input and output lengths were

small in the WMT14 test set as shown in the VAR column in Table 1. We discuss this issue in

detail in Section 6.3.

Finally, we discuss the results by the use of oracle length constraints with the reference lengths

(ref len). It showed better BLEU scores than those of the proposed with the length prediction.
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WMT14 De → En WMT14 En → De

Model BLEU LR VAR per range BLEU LR VAR per range

Transformer (baseline) 30.1 0.84 91.21 29.2 0.90 102.50

Input length in inference : ratio train (ours)

BP-norm 31.4 0.90 76.51 27.4 0.96 74.74

LDPE (ours) 31.3 0.95 76.23 [−4,+4] 28.8 0.92 66.01 [−8,+8]

Input length in inference : len pred (ours)

BP-norm 31.4 0.93 73.51 27.2 0.97 75.18

LDPE (ours) 30.1 0.97 97.60 [−8,+8] 28.4 0.96 65.01 [−8,+8]

Input length in inference : diff pred (ours)

BP-norm 31.4 0.90 76.45 27.3 0.97 74.67

LDPE (ours) 30.7 0.94 126.82 [−6,+6] 27.6 0.97 117.36 [−8,+8]

Input length in inference : ratio pred (ours)

BP-norm 31.3 0.91 75.21 27.3 0.97 74.98

LDPE (ours) 30.2 0.99 94.27 [−6,+6] 28.4 0.96 56.4 [−8,+8]

Input length in inference : src len ((Lakew et al. 2019))

BP-norm 31.4 0.90 76.51 27.4 0.96 74.74

LDPE (ours) 31.1 0.94 71.62 [−4,+4] 28.7 0.92 64.84 [−8,+8]

Input length in inference : ref len

BP-norm 31.3 0.90 76.56 27.5 0.96 75.33

LDPE (ours) 33.0 0.96 20.30 [−2,+2] 29.6 0.97 18.08 [−2,+2]

Table 4 Results in BLEU, length ratio (LR), and length difference variance (VAR) on the WMT14

dataset: BLEU scores in bold represent the ones better than the Transformer by the proposed method.

BLEU scores with underlines represent the ones better than the baseline Transformer in oracle length

constraints.

In WMT14 German-English, the BLEU result was better than the baseilne.

Compared with the BP-norm method, our method was the most accurate in the the ASPEC

experiments. When using the oracle length (ref len), our method significantly improved the

BLEU score, while the BP-norm method slightly improved the BLEU score. This tendency was

almost the same in WMT14 experiments. However, the BP-norm method was the most accurate

in the WMT14 German-to-English experiment.

6.2 Length Difference Variance

The length difference variances show that LDPE induced outputs in closer lengths to the

references than the baseline Transformer in most cases. Compared with BP-norm, the variance

of the proposed method changes significantly according to the length constraint. However, the

variance of BP-norm does not change significantly depending on the length constraint.
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Diff VAR Corr Diff VAR Corr

predicted → reference source ↔ reference

ASPEC En → Ja (len pred) 3.00 19.92 0.93 6.54 72.45 0.90

ASPEC En → Ja (ratio train) 3.74 28.12 0.90

ASPEC Ja → En (len pred) 4.23 37.16 0.91

ASPEC Ja → En (ratio train) 4.56 41.38 0.90

WMT14 En → De (len pred) 7.48 88.71 0.88 5.15 54.83 0.90

WMT14 En → De (ratio train) 5.20 56.12 0.90

WMT14 En → De (diff pred) 7.25 120.96 0.88

WMT14 En → De (ratio pred) 6.53 69.00 0.90

WMT14 De → En (len pred) 7.62 109.78 0.82

WMT14 De → En (ratio train) 5.27 57.62 0.90

WMT14 De → En (diff pred) 6.65 103.34 0.88

WMT14 De → En (ratio pred) 7.62 114.32 0.81

Table 5 Average token difference, variance and the Pearson correlation coefficient between the predicted

and reference lengths, and between the input and reference lengths (in the number of tokens) in testset

6.3 Length Prediction Accuracy

Table 5 shows the average difference, length difference variances, and the Pearson correlation

coefficients between the predicted output lengths and the reference lengths. From Table 1, the

mean error was 6.54, the variance was 72.45, and the Pearson correlation was 0.90 between

the reference and the source in the ASPEC English-Japanese test set. The variance of the

predicted length (pred len) was much smaller than the input length (19.92 vs. 72.45 in English-

to-Japanese, 37.16 vs. 72.45 in Japanese-to-English), the translation accuracy was improved in

English-to-Japanese translation and Japanese-to-English translation. The variance of the simple

predicted length (ratio train) was also smaller than the input length (28.12 vs. 72.45 in English-

to-Japanese, 41.38 vs. 72.45 in Japanese-to-English).

However, the variance in the WMT14 experiments was much larger than that in the ASPEC

experiments. From Table 1, WMT14 datasets have very different length-ratio for train, dev and

test set. Due to this, the accuracy of length prediction was poor, which is not a general tendency

and is not a language problem. We can see the source length worked better than all the predicted

lengths. This would be a reason why the translation accuracy improved using the input length

compared to the predicted length in the WMT14 experiments. We cannot reveal the reason of

the poor length prediction performance in the WMT14 experiments and reserve this problem for

future studies.
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6.4 Detailed Results in Different Length Ranges

We further investigated the ASPEC English-to-Japanese results with different length groups

to investigate the effects of the perturbation into length-aware PE, because the length constraints

are expected to have a larger impact on shorter sentences and vice versa. Note that we excluded

the longest length group that exceeded 80 tokens because it includes three sentences and serious

length errors. As shown in Table 6, the proposed method with a perturbation range of [−2, 2]

significantly outperformed the baseline Transformer by 3.22 points (50.81 vs. 47.59) in BLEU in

the shortest length group with one to ten tokens. The other setups showed better BLEU results

than the baseline, although the differences were not statistically significant. Another clear finding

is that the baseline Transformer generated very short translation results for long sentences, as

shown in the rightmost column; LDPE brought longer outputs. This finding is helpful for avoiding

under-translation problems in NMT.

Model BLEU (LR)

Length range in number of tokens

1 ∼ 10 11 ∼ 20 21 ∼ 40 41 ∼ 80

(118 sentences) (636 sentences) (890 sentences) (165 sentences)

Transformer (Baseline) 47.59 (1.004) 41.24 (0.951) 38.87 (0.920) 31.88 (0.862)

Input length in inference : pred len (ours)

BP-norm 40.70 (1.157) 40.71 (1.032) 38.96 (0.952) 32.67 (0.862)

LDPE (no perturbation) 40.30 (1.089) 38.10 (0.992) 36.43 (0.926) 30.12 (0.900)

LDPE [−2, 2] *50.81 (0.997) 41.77 (0.966) 39.08 (0.971) 31.99 (0.976)

[−4, 4] 48.05 (0.985) 42.38 (0.945) 39.46 (0.949) 32.54 (0.960)

Table 6 Detailed results in different length ranges in number of tokens in reference sentences in ASPEC

English-to-Japanese: BLEU values in bold outperformed baseline and * shows statistically significant

difference from baseline Transformer.

7 Discussion

7.1 Impact of Perturbation Range Size on Translation Accuracy

We investigated how much the proposed perturbation into length-aware PE can compensate

for length prediction errors.
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ASPEC En → Ja ASPEC Ja → En

Model BLEU LR VAR BLEU LR VAR

Transformer (baseline) 38.4 0.91 29.51 26.2 0.92 69.28

Input length in inference : ratio train (ours)

LDPE (no perturbation) 35.1 1.00 28.12 24.0 1.00 41.39

LDPE [-2, 2] (ours) 38.0 0.98 23.92 25.8 0.99 40.98

LDPE [-4, 4] (ours) 38.6 0.95 21.66 26.4 0.96 64.39

Input length in inference : pred len (ours)

LDPE (no perturbation) 35.8 0.93 19.91 24.6 0.99 37.12

LDPE [-2, 2] (ours) 38.5 0.92 20.11 26.1 0.98 43.57

LDPE [-4, 4] (ours) 38.8 0.92 21.15 26.5 0.95 59.99

Input length in inference : src len ((Lakew et al. 2019))

LDPE (no perturbation) 29.7 1.22 71.83 20.2 0.81 72.45

LDPE [-2, 2] (ours) 32.8 1.16 55.85 22.7 0.84 67.33

LDPE [-4, 4] (ours) 35.2 1.09 48.25 24.2 0.86 67.15

Input length in inference : ref len

LDPE (no perturbation) 37.1 1.00 0 26.3 0.99 0.50

LDPE [-2, 2] (ours) 38.7 0.97 2.41 27.5 0.98 12.13

LDPE [-4, 4] (ours) 39.0 0.95 6.42 27.1 0.96 33.79

Table 7 Results in BLEU, length ratio (LR), and length difference variance (VAR) on the ASPEC

dataset.

BLEU Table 7 and 8 show BLEU, length-ratio and variance on the ASPEC and the WMT14

datasets. In translations using ASPEC dataset, the proposed method improved translation ac-

curacy as the perturbation range increased. However, in German-to-English translation, the

translation accuracy reached its upper limit in a specific perturbation range (for example, its

perturbation range was [-4,4] (using ratio train as length-constraints), [-6,6] (pred len) or [-6,6]

(diff pred)), and the translation accuracy decreased when the perturbation range was increased

further. The proposed method improved translation accuracy as the perturbation range increased

in English-to-German translation, but did not outperform the baseline Transformer. This was

also the case with the oracle length constraints (ref len). It was sometimes better than the

results by the non-perturbed LDPE; this suggests the perturbation complements the inaccurate

length prediction. This feature suggests that the proposed perturbation complements the slightly

inaccurate length prediction. However, it was not enough to compensate for the loss if the error

of length prediction exceeds the perturbation range.

Length Difference Variance A wider perturbation range increased the variances when we

used the oracle length constraints, but the results using the predicted and proxy input lengths

were mixed. In the ASPEC experiments, no perturbation LDPE with the oracle length (ref len)
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WMT14 De → En WMT14 En → De

Model BLEU LR VAR BLEU LR VAR

Transformer (baseline) 30.1 0.84 91.21 29.2 0.90 102.50

Input length in inference : ratio train (ours)

LDPE (no perturbation) 27.9 1.02 57.63 24.7 1.00 60.21

LDPE [-2, 2] (ours) 29.9 0.98 64.94 26.0 0.97 62.57

LDPE [-4, 4] (ours) 31.3 0.95 76.23 26.7 0.94 64.83

LDPE [-6, 6] (ours) 31.0 0.91 85.38 28.0 0.93 68.95

LDPE [-8, 8] (ours) 30.6 0.90 86.57 28.8 0.92 66.01

Input length in inference : pred len (ours)

LDPE (no perturbation) 24.8 1.14 109.84 23.7 1.12 88.93

LDPE [-2, 2] (ours) 26.8 1.10 100.13 24.7 1.08 80.71

LDPE [-4, 4] (ours) 28.0 1.05 102.63 26.1 1.04 69.54

LDPE [-6, 6] (ours) 30.2 0.99 100.95 26.8 1.00 69.08

LDPE [-8, 8] (ours) 30.1 0.970 97.60 28.4 0.969 65.01

Input length in inference : diff pred

LDPE (no perturbation) 25.5 1.112 95.92 22.5 1.148 103.05

LDPE [-2, 2] (our) 27.8 1.062 99.64 24.1 1.094 99.03

LDPE [-4, 4] (our) 29.4 1.001 114.93 25.0 1.043 103.53

LDPE [-6, 6] (our) 30.7 0.947 126.82 26.2 1.003 122.94

LDPE [-8, 8] (ours) 30.2 0.924 136.23 27.6 0.973 117.36

Input length in inference : ratio pred

LDPE (no perturbation) 25.2 1.138 113.43 23.9 1.122 70.70

LDPE [-2, 2] (our) 27.3 1.095 100.84 24.8 1.087 64.22

LDPE [-4, 4] (our) 28.7 1.049 94.92 26.3 1.039 57.27

LDPE [-6, 6] (our) 30.2 0.998 94.27 27.0 1.007 55.42

LDPE [-8, 8] (ours) 30.2 0.968 90.45 28.4 0.966 56.4

Input length in inference : src len ((Lakew et al. 2019))

LDPE (no perturbation) 28.3 1.00 54.89 24.9 0.99 55.65

LDPE [-2, 2] (ours) 30.4 0.97 63.65 26.1 0.97 57.80

LDPE [-4, 4] (ours) 31.1 0.94 71.62 27.1 0.94 63.93

LDPE [-6, 6] (ours) 30.9 0.90 83.32 28.1 0.93 68.88

LDPE [-8, 8] (ours) 30.6 0.896 85.58 28.7 0.925 64.84

Input length in inference : ref len

LDPE (no perturbation) 30.9 0.99 1.44 28.7 1.00 4.52

LDPE [-2, 2] (ours) 33.0 0.96 20.30 29.6 0.97 18.08

LDPE [-4, 4] (ours) 33.0 0.93 40.23 29.9 0.95 36.44

LDPE [-6, 6] (ours) 32.2 0.90 60.67 30.0 0.93 41.01

LDPE [-8, 8] (ours) 31.5 0.890 69.66 29.9 0.928 51.57

Table 8 All perurbation range results in BLEU, length ratio (LR), and length difference variance (VAR)

on the WMT14 dataset.
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WMT14 De → En WMT14 En → De

SentencePiece Max Length BLEU LR VAR BLEU LR VAR

Input length in inference : ref len

spmlen = 16 (Default) 30.9 0.99 1.44 28.7 1.00 4.52

spmlen = 8 30.3 0.99 1.24 27.4 1.00 0

spmlen = 4 19.4 0.99 12.88 18.4 1.00 0

Table 9 BLEU, length ratio (LR), the average token error(Error), and variance (VAR) results with no

perturbation LDPE. All model get correct inference length in inference steps.

showed very small length differences. This clearly shows the LDPE successfully controlled the

output length. In WMT14 experiments, the length error variances became larger using larger per-

turbation range when we use the output length prediction (pred len or ratio pred), but this was

not the case with the use of input length or the simple predcited length (src len or ratio train).

This suggests that the proposed perturbation into length-aware PE improved the robustness for

length variances.

On the other hand, in the WMT14 experiments, there still remained some length differences

even with the oracle length constraints. The relationship between the perturbation range and

length difference variance were different from that in the ASPEC experiments. We discuss this

issue later in Section 7.2.

7.2 Influence by Different Subword Tokenization Strategies

In the WMT14 experiments, the NMT model with no perturbation LDPE failed to constrain

control the output length to be in the given length constraints. One possible concern here is that

the token-level sentence length varies with the tokenization method even though the sentence itself

holds the same content. We investigated the effects of the tokenization method by changing the

maximum subword length in the subword tokenization using Sentencepiece (Kudo and Richardson

2018). Since we used its default maximum subword length (--max sentencepiece length) of 16

characters in the experiments in Section 5, we tried 4 and 8 for the WMT14 dataset to simulate

finer tokenization resulting longer token-level lengths.

Table 9 shows the results by the use of oracle length constraints, and Figure 2 shows scatter-

plots between the MT output and reference lengths. We can observe differences in the variance

in Table 9 but also find that the errors came from just a couple of outliers as shown in Figure

2. Thus, we can conclude the length-aware PE can control the output length in most cases, even

though we cannot reveal a reason of such outliers. From the viewpoint of the translation accu-
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Fig. 2 Scatter plot of the output length of each model with no perturbation LDPE in WMT14

translation. All model get correct inference length in inference steps.

racy, BLEU decreased as max sentencepiece length became small. The very large BLEU drop

by spmlen = 4 was due to serious repetition in the translation results. Thus, we can conclude

that the output length control is not affected by tokenization strategies but is not enough to

maintain the translation quality.

8 Conclusion

In this work, we proposed a method to train Transformer model using perturbation into

length-aware PE . We incorporate random perturbation within a certain range to LDPE during

training. In inference, we used a length prediction based on a pre-trained model instead of

using the input length. The proposed method outperformed a standard Transformer in ASPEC

English-to-Japanese, Japanese-to-English, and WMT14 German-to-English translation. We also

revealed that the length prediction accuracy largely affects the final translation performance in

BLEU. In future work, we will explore sophisticated length constraints together with a better

length prediction method.
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Appendix

A The dataset histgram

We drew the histogram of sentence lengths (Train and Test) as shown below.

Table 10 The histogram of sentence lengths in ASPEC En-Ja, and WMT14 En-De

B Experimental Details

We list the Open-NMT FAQ model hyper-parameter in Table 11. The optimizer is Adam

optimizer (Kingma and Ba 2014) using β1 = 0.9, β2 = 0.998. The label smoothing is 0.1,

warmup steps is 8000 The batch size is 4096, and train steps are 200,000 steps.

dmodel dhidden nlayers nheads pdropout

512 2048 6 8 0.1

Table 11 Hyper-parameters of architecture for Transformer from Open-NMT FAQ.
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C The 1-gram precision results

We show the 1-gram precision results in Table 12 and Table 13. The 1-gram precision results

are similar to BLEU results.

ASPEC En → Ja ASPEC Ja → En

Model BLEU 1-gram LR VAR BLEU 1-gram LR VAR

Transformer (baseline) 38.4 72.0 0.91 29.51 26.2 61.3 0.92 69.28

Input length in inference : ratio train (ours)

BP-norm 38.6 69.7 0.96 24.04 26.0 58.7 0.98 51.94

perLDPE (ours) 38.6 70.1 0.96 21.66 26.4 59.9 0.96 64.39

Input length in inference : pred len (ours)

BP-norm 38.6 69.8 0.95 24.25 26.0 58.7 0.98 51.88

perLDPE (ours) 38.8 71.8 0.92 21.15 26.5 60.2 0.95 59.99

Input length in inference : src len ((Lakew et al. 2019))

BP-norm 38.5 69.3 0.96 23.55 26.1 59.0 0.98 51.97

perLDPE (ours) 35.2 64.7 1.09 48.25 24.2 62.4 0.86 67.15

Input length in inference : ref len

BP-norm 38.6 69.8 0.95 24.14 25.9 58.6 0.99 51.41

perLDPE (ours) 38.7 70.3 0.97 2.41 27.5 60.9 0.98 12.13

Table 12 Results in BLEU, length ratio (LR), and length error variance (VAR) on the ASPEC dataset:

BLEU scores in bold represent the ones better than the Transformer by the proposed method. BLEU

scores with underlines represent the ones better than the baseline Transformer in oracle length constraints.
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WMT14 De → En WMT14 En → De

Model BLEU 1-gram LR VAR BLEU 1-gram LR VAR

Transformer (baseline) 30.1 64.2 0.84 91.21 29.2 56.5 0.90 102.50

Input length in inference : ratio train (ours)

BP-norm 31.4 60.2 0.90 76.51 27.4 52.0 0.96 74.74

LDPE (ours) 31.3 58.9 0.95 76.23 28.8 56.7 0.92 66.01

Input length in inference : len pred (ours)

BP-norm 31.4 59.1 0.93 73.51 27.2 51.6 0.97 75.18

LDPE (ours) 30.1 57.4 0.970 97.60 28.4 55.1 0.969 65.01

Input length in inference : diff pred (ours)

BP-norm 31.4 60.2 0.90 76.45 27.3 51.9 0.97 74.67

LDPE (ours) 30.7 58.7 0.947 126.82 27.6 54.0 0.973 117.36

Input length in inference : ratio pred (ours)

BP-norm 31.3 59.4 0.91 75.21 27.3 51.8 0.97 74.98

LDPE (ours) 30.2 56.9 0.998 94.27 28.4 55.2 0.966 56.4

Input length in inference : src len ((Lakew et al. 2019))

BP-norm 31.4 60.2 0.90 76.51 27.4 52.0 0.96 74.74

LDPE (ours) 31.1 59.4 0.94 71.62 28.7 56.8 0.925 64.84

Input length in inference : ref len

BP-norm 31.3 60.1 0.90 76.56 27.5 52.1 0.96 75.33

LDPE (ours) 33.0 60.4 0.96 20.30 29.6 55.3 0.97 18.08

Table 13 Results in BLEU, length ratio (LR), and length error variance (VAR) on the WMT14 dataset:

BLEU scores in bold represent the ones better than the Transformer by the proposed method. BLEU

scores with underlines represent the ones better than the baseline Transformer in oracle length constraints.
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