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Neural Incremental Speech Recognition Toward Real-time Machine
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SUMMARY Real-time machine speech translation systems mimic hu-
man interpreters and translate incoming speech from a source language to
the target language in real-time. Such systems can be achieved by perform-
ing low-latency processing in ASR (automatic speech recognition) module
before passing the output to MT (machine translation) and TTS (text-to-
speech synthesis) modules. Although several studies recently proposed
sequence mechanisms for neural incremental ASR (ISR), these frameworks
have a more complicated training mechanism than the standard attention-
based ASR because they have to decide the incremental step and learn the
alignment between speech and text. In this paper, we propose attention-
transfer ISR (AT-ISR) that learns the knowledge from attention-based non-
incremental ASR for a low delay end-to-end speech recognition. ISR comes
with a trade-off between delay and performance, so we investigate how to
reduce AT-ISR delay without a significant performance drop. Our ex-
periment shows that AT-ISR achieves a comparable performance to the
non-incremental ASR when the incremental recognition begins after the
speech utterance reaches 25% of the complete utterance length. Additional
experiments to investigate the effect of ISR on translation tasks are also
performed. The focus is to find the optimum granularity of the output unit.
The results reveal that our end-to-end subword-level ISR resulted in the best
translation quality with the lowest WER and the lowest uncovered-word
rate.
key words: attention transfer, incremental speech recognition, real-time
speech translation

1. Introduction
As globalization rapidly expands, language barriers continue
to be the most notorious restriction on free communication
among different language speakers. In some situations, the
problems can be solved by human interpreters. Their ser-
vices are needed especially for direct human-to-human com-
munications, where the participants do not speak in the same
language. An example of such a situation is real-time lecture
translation for audiences fromvarious nationalitieswhere the
interpretation is done simultaneously to the lecturer’s speech
so the audience can follow it. Professional interpretation ser-
vices, however, are expensive because speech interpretation
is a complex skill that takes years to master. The availability
of language pairs also remains scarce.

Speech-to-speech translation (S2ST) technology [1], in
other words recognizing speech and translating it into an-
other language, is one innovative technology that can pro-
vide support in many everyday situations. S2ST systems
commonly consist of three components: automatic speech
recognition (ASR) system,machine translation (MT) system,
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and text-to-speech synthesis (TTS) system. In conventional
modular S2ST systems, MT starts the translation from the
source language into the target language after receiving a
complete sentence from the ASR [2], and TTS begins its
synthesis after receiving a complete sentence from the MT
system [3]. Recent studies also focus on end-to-end S2ST
systems [4–6], where all processes are done by a single
model. Both kinds of systems, however, suffer from a long
translation processing delay since the length of the complete
sentences in some talks can be long, complicated, or poorly
structured. Consequently, such systems are not practical in
situations where the delivery delay of the translation result
to the user is critical. A solution to this problem is a real-
time S2ST system that can mimic human interpreters, who
generally recognize and translate the speech based on partial
information with minimum delay.

Real-time S2ST systems require a low-latency ASR as
the foremost component. Several studies recently proposed
sequence mechanisms for incremental speech recognition
(ISR) that transcribe the speech within a low delay [7–13].
For low delay recognition, ISR needs to decide the incremen-
tal steps to extract the transcription information from a short
part of the speech. For this reason, the training mechanisms
and frameworks of neural ISR systems are more complex
than standard non-incremental neural ASRs that do not need
to consider the speech segment boundaries. Among the exist-
ing ISR frameworks, neural transducer has the most similar
neural network structure to the standard neural ASR [7].
This framework performs end-to-end incremental speech
recognition through fix-sized speech segments recognition
by learning the alignment between speech and text segments.
The construction of it requires several alignment computa-
tions and updates through the training process, which cause
the framework to be more complicated than the standard
attention-based ASR.

In this work, we propose attention-transfer ISR (AT-
ISR) for low delay speech recognition. AT-ISR employs
the original architecture of a standard attention-based ASR
to do the incremental recognition with the shorter se-
quences. It learns the incremental step from the stan-
dard non-incremental ASR, therefore, we consider the non-
incremental ASR as a teacher model and ISR as a student
model. Attention transfer allows AT-ISR to mimic the align-
ments that are produced by teacher ASR’s attention com-
ponent. AT-ISR construction only uses a standard non-
incremental model, from which the AT-ISR parameter can
be initialized, allowing a simple mechanism in the model
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Fig. 1 Modular S2ST system: conventional framework (a) and real-time framework (b).

construction and the incremental recognition process.
Toward real-time speech translation, we performed ad-

ditional experiments and explored two factors in ISR that
might affect the translation: ISR delay and ISR output
unit. End-to-end neural MT (NMT) systems are generally
designed to process subwords, whereas the basic end-to-
end neural ASR is generally trained to model speech-to-
character. Therefore, we investigate the interdependency of
both components’ construction in terms of ISR output and
NMT input unit parity. As developing incremental NMT is
not part of this study, we evaluate the ISR using a standard
NMT as a downstream task to see how the ISR performance
and error affect the translation. The languages involved in
the experiment are English, the source language, and French,
the target language.

2. Overview of Speech-to-speech Translation System
2.1 Components
Modular S2ST system consists of three main, interconnected
components: ASR,MT, and TTS. An illustration of modular
S2ST systems can be seen in Fig. 1. The following are the
details of each component.

2.1.1 Automatic Speech Recognition (ASR)
AnASR system converts the speech signal into a correspond-
ing transcription. The conversion is done by generating a se-
quence of text unit Y(src) from source speech features X(src)
extracted from the speech signal. Text generation is done by
satisfying the following condition:

Ŷ(src) = argmax
y(sr c)

P(Y(src) |X(src)). (1)

Attention-based end-to-end ASR, which consists of an
encoder-decoder with an attentionmechanism, predicts char-
acter or subword sequence from a speech features sequence
by modeling the conditional probability in Eq. (1) directly.
In the remaining parts of this paper, we simplify the nota-
tions in Eq. (1) by denoting X(src) as X and denoting Y(src)

as Y.

2.1.2 Machine Translation (MT)
An MT system translates transcription in a certain language
into the target language. In the S2ST system, it translates
ASR output Y(src) into text in target language Y(tgt). The
translation is done by satisfying the following condition:

Ŷ(tgt) = argmax
y(tgt )

P(Y(tgt) |Y(src)). (2)

We utilized attention-based NMT system for our experiment.
Both NMT input and output are represented as a sequence
of subwords in the corresponding language.

2.1.3 Text-to-Speech Synthesis (TTS)
In an S2ST system, TTS synthesizes a speech from a tran-
scription that is given by MT. This model takes hypothesis
text Y(tgt) from MT and produces a sequence of speech fea-
tures X(tgt). The resulting speech is uttered in the target
language with the same meaning as the source speech.

X̂(tgt) = argmax
x(tgt )

P(X(tgt) |Y(tgt)). (3)

In this paper, we did not involve TTS in the experiment
because we aimed to focus only on the ASR system and its
connection to MT system.

2.2 Real-time Speech Translation
A real-time S2ST system is illustrated in Fig. 1(b). It consists
of the same components as the conventional S2ST system in
Fig. 1(a). The difference between both systems lies in the
starting condition of each component’s process. In the con-
ventional S2ST system, each component has to wait for the
complete result from the previous component. The trans-
lated speech can be only heard after the source speech is
finished. On the other side, the real-time system does not
limit each component to wait for the complete result from
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the other component. It just waits for a part of input rather
than a complete input and works on the fly.

The performance of speech translation task involves
output delivery speed and accuracy. Output delivery speed
corresponds to the delay or time lag that occurs during the
speech translation task. Delay is a time difference between
the source speech start time and the initial time when the sys-
tem produces the output [14]. Time delay in the conventional
system (Fig. 1(a)) equals the total length of the source speech
and the delay in the real-time system (Fig. 1(b)) equals the
size of the first-recognized speech segment and is shorter
than the conventional system. The actual delay also includes
computational delay.

In many situations, a short speech translation delay is
more preferable than a long delay. A short delay can relax
the listener and facilitate indirect communication between
the source speaker and the listener [15]. In real-time speech
translation by human from English speech, the delay gen-
erally ranges from two to six seconds [16, 17], or roughly
about four to twelve words [18, 19]. A short delay is also
beneficial for human translators because it does not burden
their short-term memory heavily.

Although it costs a long waiting time, a longer delay
implies that we can get more information about the speech
content, so the understanding of it for the translation can
be improved [20]. For human interpreters, however, a long
delay might also cause the translation quality to decrease
because it can burden their working memory. In contrast to
humans, memory load is not a vital issue in speech interpre-
tation by a machine. However, a machine cannot understand
speech utterance well like a human does unless it is trained
using a large amount and variety of data. In this work, we not
only construct ISR but also investigate how the delay of ISR
system affects speech recognition and translation quality.

3. Sequence-to-sequence ASR Framework
A neural sequence-to-sequence (seq2seq) ASR consists of
encoder and decoder components with an attention mecha-
nism [21, 22]. It directly models P(Y|X) in Eq. (1) given
a speech utterance feature sequence X = [x1, ..., xS] with
length S and corresponding transcription Y = [y1, ..., yT ]
with length T . The encoder in the network transforms input
sequence X into hidden states he. The decoder then predicts
target sequence probability pyt , given previous output Y<t ,
current context information ct , and current decoder hidden
states hd

t . Context information ct is produced by attention
modules [23] at time t with the following formula:

ct =
S∑
s=1

at (s) ∗ he
s, (4)

at (s) =
exp(Score(he

s, h
d
t ))

S∑
s=1

exp(Score(he
s, hd

t ))

. (5)

The scoring for the context can be done using one of
the following scoring functions [24]:

Score(he
s, h

d
t ) =


〈he

s, h
d
t 〉, dot product,

heᵀ
s Wshd

t , bilinear,
Vᵀs tanh(Ws[he

s, h
d
t ]), MLP.

(6)

The model loss function is formulated:

LossASR(y, py) = −
1
T

T∑
t=1

C∑
c=1

1(yt = c)∗ log pyt [c], (7)

where C is the number of output classes.

4. Proposed Attention-Transfer ISR (AT-ISR)
We applied seq2seq ASR architecture to our ISR. Incremen-
tal recognitionwas done by applying attention transfer during
the training phase and performing segment-based recogni-
tion. The details are explained in the following subsections.

4.1 Recognition Method
AT-ISR predicts the transcription Y with length T from
a speech utterance X with length S through N recogni-
tion steps, where each step performs a short-segment-based
recognition. In each recognition step n = [1, ..., N], the
model takes the n-th speech segment from X, which seg-
ment consists of w frames, denoted as Xn, to predict the n-th
text segment of Y that consists of kn tokens, denoted as Yn.
The following is the mechanism of each model component
for each recognition step n.

4.1.1 Encoding
In each step n, ISR encodes Xn = [x(n−1)w+1, ..., x(n−1)w+w],
which is the n-th speech segment from X, inside the input
window with a fixed-length of w frames, where w < S. The
input delay or the waiting time for the encoder to start the
encoding is calculated as:

delay = w · f eatshi f t + ( f eatwin − f eatshi f t ), (8)

where f eatwin and f eatshi f t are the speech feature window
length and window shift length. In the experiment, we al-
lowed the encoder to look at several frames ahead of the
main input frames. The look-ahead frames are regarded as
the contextual input to enrich the information of the main
input.

4.1.2 Decoding
After the encoding in step n finishes, the decoder predicts
Yn = [yn,1, ..., yn,kn ], which is the n-th text segment of Y
with a length of kn, where 0 ≤ kn < T . Yn aligns with Xn.
If the encoder input also includes the contextual frames, Yn

only aligns with the main input speech. In the text segment,
yn,kn is a segment delimiter that is learned by the ISR during
training. We define the text segment delimiter as an end-of-
block symbol denoted as </m>. In the actual transcription,
the actual last token in Yn is yn,kn−1. During the decoding
in step n + 1, yn+1,k1 is a token next to yn,kn−1 in the actual
transcription.

The decoding process in step n starts by taking yn−1,kn−1
as the decoder’s first token input, which is the actual last
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Fig. 2 Attention-transfer ISR training.

token from the previous step. When the decoder predicts
</m> token, it marks that the text prediction from Xn has
finished. The prediction of Yn is done by attending only
to Xn. To avoid additional computation delay, we applied
greedy decoding in our experiment.

The recognition in step n + 1 starts by shifting the in-
put window w frames while keeping the model states from
the previous step. If the encoder is set to take contextual
input frames, the window shift equals the length of the main
input frames. These incremental recognition processes are
repeated until the step reaches the N-th speech segment or
until an end-of-sentence token is predicted.

4.2 Training
We applied attention information transfer from a non-
incremental ASR to train an AT-ISR, which mechanism is
illustrated in Fig. 2. To enable short-segment-based speech
recognition, AT-ISR is trained using Yn that is followed by
an end-of-block </m> as the target of Xn. The Xn and
Yn pairs are decided based on alignments from the atten-
tion component of the non-incremental ASR, which acts as
a teacher, during a teacher-forcing text generation. Here the
alignments are generated once without using another system.

In the alignment, output token yt at time t is aligned to
s-th input frame xs , which correspond to encoder state he

s .
Speech frame index s which yt aligns to (lt ) is chosen by
following the monotonic condition:

lt = argmax
lt−1≤s≤lt+1

Score(he
s, h

d
t ). (9)

In the training data based on the obtained alignments,

each transcription segment Yn consists of the output tokens,
where each token is sequentially aligned to one of the speech
frames in Xn. If states downsampling [25] is applied in the
encoder, encoder state he

s will correspond to multiple speech
frames, depending on the downsampling rate. The AT-ISR
incremental unit or delay can be controlled by combining
consecutive alignment units during the training. The shortest
or basic incremental unit equal the number of speech frames
that an encoder state represents in the attention alignment.

The transfer of attention information aims to make AT-
ISR mimic the alignments by a non-incremental ASR. AT-
ISR applies identical architecture as the non-incremental
ASR. By priorly adding the special tokens in the non-
incremental ASR output vocabulary, AT-ISR also can be
initialized with the non-incremental ASR parameters. At-
tention transfer mechanism is only applied during AT-ISR
training, therefore, AT-ISR inference is done without involv-
ing the teacher model.
4.3 Output Unit
In this work, we considered two types of ISR output repre-
sentation units based on token granularity: characters and
subwords. We did not consider whole-word units as our ISR
output because word vocabulary is large so it is impractical
when the ISR is utilized in the translation system. The word-
level ISR also could not cope with the out-of-vocabulary
condition.

4.3.1 Characters
Fig. 3(a) illustrates character-level ISR. It models an end-
to-end relation between acoustic features and character se-
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Fig. 3 End-to-end character level ISR (a) and subword-level ISR (b).

quences. Character unit is one of the basic token units that
is commonly used in end-to-end ASR [21, 26, 27]. Since
character-level representation enhances the ASR general-
ity, it can prevent overfitting and out-of-vocabulary condi-
tions [27].

In our experiment, character-level ISR’s output vocab-
ulary only included alphabet tokens and special tokens re-
quired for ISR. A special token that symbolizes whitespace
was placed between character sequences that belong to dif-
ferent words so they could be segmented back into a word
sequence.

4.3.2 Subwords
A subword-level ISR predicts a sequence of subwords, as
shown in Fig. 3(b). Subword is a sequence of characters
that is tokenized from a word. We can consider a word
as a combination of one or several subwords. In terms of
token granularity level, subwords have a coarser granularity
than characters, but finer than words. The subwords that we
discuss in this work are subwords that are generally used in
the machine translation system. This kind of subword unit
is also used in the recent end-to-end ASR systems [28, 29].
The utilization of subword unit in ASR is generally done
to avoid out-of-vocabulary conditions, similar to character-
level ASR, and also to keep a longer context of a word.
Subword sequences of different words are separated with a
whitespace token.

In this work, we constructed a subword vocabulary
by training a word-to-subword segmentation model using
a byte-pair-encoding (BPE) algorithm [30], which is imple-
mented in the SentencePiece tokenizer toolkit [31]. Here the
segmentation model is trained based on text sentences that
consist of word tokens. The BPE algorithm first trains the
model by initializing the subword vocabulary with a list of
unique characters and converting eachword from the training
data into a character sequence. In the subsequent processes,
the algorithm iteratively replaces themost frequent token pair
in the training data with a new token, which merged from
that token pair, and adds it to the vocabulary. The segmen-
tation model construction is done using only text sentences,
without depending on language and phonemes. In inference,
given a word, the segmentation model converts the word into
subwords by representing it as a character sequence and ap-

plying the merge operation learned by the model.

5. Experiment Settings
5.1 Dataset
We utilized theWall Street Journal (WSJ) dataset [32] to train
our basic non-incremental ASR and proposed ISR, and com-
pared those systems with other speech recognition systems
that used different frameworks. The WSJ dataset consists of
multi-speaker speech utterances recorded by reading English
news passages. We used the SI-284 set as the training set,
dev93 as the development set, and eval92 as the evaluation
set. The SI-284 set consists of 81 hours of speech. All mod-
els that were trained with the WSJ set were character-level
models.

We utilized our proposed ISR in a speech translation
task. Automatic real-time lecture translation is a challenging
task that requires a real-time speech translation system. In
this work, since we focus on ISR for lecture translation tasks
with a less-restricted content domain, we used corpora that
were collected from TED talks to create our ISR system and
an NMT system for modular speech translation.

Data from TED talks consist of lecture speech and tran-
scription that were presented at TED talks. The lectures
covered various topic domains that were spoken by speak-
ers with various speaking styles. Following this condition,
and also since the speech originated from actual talks, the
transcription and translation texts were written in a spoken
language style, which is slightly different from a written
language style. These conditions lead to ISR and NMT sys-
tems with highly diversified training examples in a matching
language style.

We trained the ISRmodel using the TED-LIUM release
1 dataset [33]. TED-LIUM release 1 corpus consists of 118
hours of English speech data that were recorded from TED
talks. This dataset was split into training, development, and
evaluation sets based on the Kaldi recipe [34]. The acoustic
features for the ISR input consisted of 80 dimensions of
Mel-spectrogramwith a 0.05 seconds window ( f eatwin) and
0.0125 seconds shift ( f eatshi f t ).

The NMT model was trained using English-French
translation dataset from the IWSLT 2017 shared task [35].
This dataset consists of English speech transcription and
French translation texts from TED talks. We used the in-
domain IWSLT 2017 training set to train the model and
dev2010 as the development data. The translation evalu-
ation was done based on tst2010 set for the translation from
the correct text and ISR text.

To minimize the dissimilarity between the ISR and
NMT training materials, we removed the punctuation and
normalized the numbers in the NMT training texts. The
Unicode symbols in the English texts were also normalized
into basic Latin alphabet letters due to TED-LIUM release
1 text conditions that did not contain punctuation, numbers,
andUnicode letters. TheTED-LIUM release 1 transcriptions
contain speech fillers, unlike the NMT dataset. Therefore,
we removed the fillers in the ISR output before passing it to
NMT.
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The NMT model in our experiment applied subword
units as the input and output representation. Each input and
output vocabulary consisted of 16,000 subwords. All the
subword vocabularies were constructed using the BPE algo-
rithm in the SentencePiece tokenizer based on the cleaned
NMT training data in their respective languages. The En-
glish subword tokenizer was also utilized to tokenize the
training texts for the subword-level ISR model.

5.2 Model Configuration
The following are the descriptions of the model configura-
tions. In this work, we did not utilize external language
model in any neural non-incremental ASR, ISR, and NMT
models.

5.2.1 ISR
We used attention-based network with an encoder and a
decoder [21–23] to construct our non-incremental ASR and
ISR, and applied the similar structure to the character- and
the subword-level models.

The encoder consisted of a feed-forward layer (512
units) followed by three stacked bidirectional long-short term
memory neural network (BiLSTM) layers (256 units). The
encoder applied state downsampling with a downsampling
rate that equal eight states into one state. Consequently, the
shortest alignment unit in the attention transfer for an output
token was eight speech feature frames (0.14 seconds). In this
work, we define eight speech frames as one block of speech
features.

The decoder side consisted of an embedding layer (256
units), an LSTM layer (512 units), and a softmax layer. The
embedding layer and the softmax layer sizes were configured
according to the model output unit. In the attention compo-
nent, we applied an attention mechanism with MLP-scoring
based on multi-scale alignment and contextual history [36].

We evaluated the AT-ISR by comparing it to the teacher
non-incremental ASR as the topline and also to the base-
line ISR. The baseline ISR was an ISR that applied the
same architecture as the topline and AT-ISR, but the in-
cremental steps were taught based on the alignments gen-
erated with forced-alignment procedure [34, 37] by hid-
den Markov model and Gaussian mixture model (HMM-
GMM) ASR [38], which is the standard alignment gen-
eration method that applied in neural transducer based on
the HMM-GMM alignments. The baseline subword- and
character-level alignments were obtained by aligning all the
tokens (in their respective unit) of a word into speech seg-
ments where the word ends [8].

We also compared our AT-ISR to a neural ISR without
an attentionmechanism. The structure consisted of unidirec-
tional LSTM network layers with a connectionist temporal
classification (CTC) training objective and the optimal in-
cremental output was determined through beam-searching
with depth-pruning [39].

5.2.2 NMT
The NMT model was constructed by applying an encoder-
decoder structure with an attention mechanism. The NMT

Table 1 Character-level speech recognition performance on WSJ: Aver-
age full speech utterance duration was 7.88 sec. (↓ = lower is better; m =
main input frame block; la = look-ahead input frame block; 1 block = 8
frames = 0.14 sec.)

Model CER ↓ (%) WER ↓ (%) UCR ↓ (%)
Topline: Non-incremental ASR
CTC [40] 8.97 - -
Att Enc-Dec Content [40] 11.08 - -
Att Enc-Dec Location [40] 8.17 - -
Joint CTC+Att (MTL) [40] 7.36 18.20 -
Att Enc-Dec (ours; AT-ISR teacher) 6.26 16.49 7.69
Baseline ISR: Att Enc-Dec ISR + HMM-GMM alignment
delay = 0.24 sec (1 m + 1 la) 20.15 49.75 25.10
delay = 0.54 sec (1 m + 4 la) 11.95 30.77 16.93
Proposed ISR: AT-ISR
delay = 0.24 sec (1 m + 1 la) 18.37 43.59 20.14
delay = 0.54 sec (1 m + 4 la) 7.52 20.06 11.10
Other existing ISR
LSTM + CTC [39] 10.96 38.37 -

encoder consists of an embedding layer (256 units), a feed-
forward layer (512 units), and two BiLSTM layers (256
units). The decoder side consists of an embedding layer
(512 units), two LSTM layers (512 units), and a softmax
layer.

6. Experiments Result and Discussion

6.1 ISR Performance in Error Rates
We first evaluated our non-incremental ASR and ISR sys-
tems on basic character-level speech recognition task on
WSJ dataset, which results is shown in Table 1. The av-
erage length of the full-utterance speech in this experiment
was 7.88 seconds. The performance scores here are re-
ported as the character error rate (CER). For our proposed
AT-ISR and the baseline ISR, the reported delays are the
input delay that corresponds to the size of the input window
for an incremental step. Here the ISR computational delay
was below 0.05 seconds; our non-incremental ASR compu-
tational delay averaged 0.3 seconds. Our non-incremental
ASR, which is a standard encoder-decoder network with an
attention mechanism, achieved the best performance.

By using our non-incremental ASR, we taught two AT-
ISRmodels for incremental speech recognitionwith the input
window size of 0.24 seconds and 0.54 seconds each. In each
kind of input window, the main speech input segment was set
to a block of speech frames, which consists of eight frames,
to see the ISR performance with the basic incremental unit
that implies the shortest delay that it could made. However,
based on our exploration, ISR without a contextual input
could not perform a reliable recognition [41]. So in addition
to the main input, we used contextual input, which was look-
ahead speech segment, to improve the ISR performance. We
used look-ahead segment with a size of one or four speech
frame blocks to keep the recognition delay lowwith a reliable
performance†. Our experiment results show that AT-ISR
resulted in a better performance than the baseline model and
†Parts of this work have been presented in [41]. The work

here provides a more comprehensive and systematic description of
the method, additional experiments related to translation task, and
deeper analyses of the experiment results. We also updated our
results on WSJ with our recent scores.
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Fig. 4 Examples of attention matrix generated by a non-incremental ASR and ISRs during inference
on a 5.50 sec-long speech from WSJ eval92 set. In all ISR attention matrices presented, attention scores
to speech segments that were not in the range of the input window were filled with zero. (d = delay; 1
block = 8 frames = 0.14 sec.)

a close CER to the teacher model.
We further examined the attention sequence of AT-ISR

to see how it mimicked the teacher’s attention alignments.
Fig. 4 shows the attentionmatrices generated during the infer-
ence by teacher non-incremental ASR, AT-ISR, and baseline
ISR. The ISRs attention matrices were normalized from the
original matrices by padding the matrices. Since the ISRs
here performed window-based recognition, these models did
not attend to the speech segments that were not within the
input window. Therefore, we filled each rowwith zero for the
segments outside the input window in the corresponding in-
cremental steps. Furthermore, before the normalization, the
baseline’s and AT-ISR’s attention component has the highest
attention score on the last speech block in the input window
for each decoding step because the models anticipated the
end-of-block token that marks the end of an incremental
step. To simplify the comparison with the teacher model,
we removed the attention score that corresponded to the last
speech block in each incremental step. In all our experimen-
tal settings, the last speech block in an incremental step was
the last block of the contextual input segment.

Fig. 4 shows that the AT-ISR attention sequences had
a similar pattern to the teacher model’s attention sequences.
AT-ISR’s attention concentrated most on the main speech
segment for each incremental step, and it also attended the
necessary contextual segment to improve the recognition.
This figure shows that the attention-transfer training enabled
the AT-ISR to mimic how its teacher attends the necessary
information in the speech sequence to predict the transcrip-
tion token. Attention-transfer training also resulted in an
ISR with a cleaner and more monotonic attention sequence
than the baseline method. Here the AT-ISR with a delay of
0.54 seconds resulted in the most similar attention pattern

to the teacher and achieved the best score among the other
ISRmodels. In the teacher’s attentionmatrix, each text token
scored high attention scores to several speech blocks consec-
utively, with an average of three consecutive speech blocks.
As a result, the AT-ISR with a short input window size or
delay might not receive enough information to predict the
token sequences correctly. An example of such a condition
can be seen in our ISR result with a delay of 0.24 seconds, in
which the input window only consists of two speech blocks.

In the second experiment, we made a deeper analysis
of the AT-ISR model by using TED-LIUM release 1 dataset.
The speech recognition performance on TED-LIUM release
1 is shown in Table 2. We also performed statistical t-test
to see the statistical difference between the ISR models with
a significance level of 5%. The results are represented as
symbols next to the performance score in Table 2. The
performance comparison is done based on CER, word error
rate (WER), and uncovered-word rate (UCR). An uncovered-
word is one that does not exist in the training data because
of one or several character-level mistakes in that word. For
this reason, an uncovered-word could be a word that does
not have linguistical meaning. A lower UCR implies a lower
uncovered-word number and a better performance. TheUCR
of the correct transcription in the evaluation set was 1.55%.
We set the AT-ISR input size to one and four main frame
blocks, with the addition of two or four look-ahead blocks.
The input size here was chosen to keep the output quality
with a limited delay.

With the same amount of delay, AT-ISRWER and CER
outperformed the baseline. The baseline ISR was better in
producing semantically recognizable words, but it struggled
to produce the correct words. The performance difference
between the baseline ISR andAT-ISRmight be caused by the
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Table 2 Speech recognition performance on TED-LIUM release 1: Sym-
bols in some scores indicate statistical significance test result with p < 0.05.
(↓ = lower is better;? = significantly different from baseline with identical
output units; � = not significantly different from baseline with identical out-
put units; • = significantly different from character-level model with identi-
cal delay and framework; † = not significantly different from character-level
model with identical delay and framework; e2e = end-to-end model; m =
main input frame block; la = look-ahead input frame block; 1 block = 8
frames = 0.14 sec.)

Model Output Unit (e2e) CER ↓ (%) WER ↓ (%) UCR ↓ (%)
Topline: Teacher Non-incremental ASR (Att Enc-Dec)
delay = 7.58 sec (avg.)
Character 15.21 27.37 3.02
Subword 13.35 • 23.98 • 0.54 •
Baseline ISR: Att Enc-Dec ISR + HMM-GMM alignment
delay = 0.84 sec (4 m + 4 la)
Character 27.89 43.10 2.10
Subword 28.43 • 39.77 • 0.37 •
Proposed ISR: AT-ISR
delay = 0.44 sec (1 m + 2 la)
Character 24.65? 46.14? 9.95?
Subword 27.53 � • 45.39? † 0.54? •
delay = 0.54 sec (1 m + 4 la)
Character 21.00? 41.10? 11.7?
Subword 21.28? † 36.78? • 0.66? •
delay = 0.84 sec (4 m + 4 la)
Character 16.22? 31.04? 5.19?
Subword 15.20 ? † 28.26 ? • 1.04? •

precision difference in the ground alignments of bothmodels.
The baseline learned the alignments that were originally at
the word-level. Here the precise alignments of character or
subword units cannot be inferred, therefore, all units within
a word were aligned into a speech segment where that word
ends. It implies that some token alignments are delayed by
several segments. As a result, if the speech segment window
cannot include the necessary segments, the baseline ISR
cannot produce the tokens that form correct words. On the
other hand, the AT-ISR learns from more precise alignments
based on its teacher’s attentionmodule, so it can immediately
recognize the tokens from a speech segmentwithout delaying
it to the next segment. The baseline might have a better UCR
because it learned to produce all tokens of a word in one
recognition step.

Based on our result in Table 2, the subword-level
model outperformed the character-level model in all non-
incremental and incremental recognition tasks. Statistically,
although the CERs of character- and subword-level AT-ISR
models were not different, there were some differences in
the WERs and the UCRs, especially in the models with a
longer delay. Subword sequence is more reliable in forming
correct words because it retains a longer word context than
a character. During inference, character-level output might
also contain more low-level errors than subwords. As a re-
sult, when the characters are concatenated into a word, the
chance of forming an uncovered-word will be higher than
the concatenation from subwords. In conclusion, subword-
level AT-ISR improves speech recognition performance, es-
pecially in terms of WER and UCR. We will discuss how
these affected the translation task in Section 6.3.

As we expected, non-incremental ASR’s performance
is better than ISR because the former is allowed to analyze
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Fig. 6 Examples of attention matrix generated by the non-incremental
ASR during inference. From these matrices, in AT-ISRs training, a text
token is aligned to a speech segment, which corresponds to an encoder
state, with the monotonically highest alignment score.

the entire speech sequence. However, non-incremental ASR
is not suitable for tasks that require simultaneous or real-time
processing because it could cost a high delay. The amount
of delay in ISR has to be configured carefully because the
output quality might drop if the delay is too short. In this
experiment, AT-ISR with a delay of 0.84 seconds achieved
a close performance to that of non-incremental ASR that
requires a delay of 7.58 seconds on average. It shows that
AT-ISR with an appropriate delay could result in output with
quality that is close to the non-incremental ASR.

6.2 ISR Performance in Delay and Output Unit
Fig. 5 shows how the AT-ISR delay and output unit affected
the speech recognition performance. Delays shown here are
the size of the input segment of an incremental step. All AT-
ISR models in this figure included two look-ahead blocks in
addition to the main blocks in their input window. Here we
made the size of the look-ahead segment shorter than those
in Table 2 to limit the delay.

In speech recognition tasks, there is a trade-off between
recognition delay and performance. It is shown in Fig. 5,
where the AT-ISR WER decreases along with the increase
of the delay. Since ISR with a short speech recognition de-
lay and a close performance to the non-incremental ASR is
more preferable, we need to find a delay configuration that
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Fig. 7 Examples of speech and subword token alignment of a 3.1 sec speech based on non-incremental
ASR and ISR (delay 0.84 sec) inference. The black-colored tokens are the correctly recognized tokens,
whereas the red-colored tokens are the incorrect tokens. For the non-incremental ASR alignments, each
subword is aligned to the speech part that scored the highest attention score. (‘_’ = whitespace token; ‘-
-’ = no text output or only output ‘</m>’ token; 1 block = 8 frames = 0.14 sec.)

keeps the balance between the recognition delay and per-
formance. In our delay investigation here, we found that
character-level AT-ISR performance improvement did not
happen significantly between the following delays: 25% of
utterance length, 50% of utterance length, and full-utterance
length. Here when the recognition delay was equal to 2.04
seconds or 25% of the full-utterance length, it also started to
achieving a comparable WER to the non-incremental ASR
that took a full-utterance at once to generate the transcrip-
tion. This result shows that the character-level model was
able to retain the balance between recognition delay and per-
formance when the delay was 2.04 seconds or 25% of the
full-utterance length.

Interestingly, the subword-level models outperformed
the character-level models in general, but the character-level
AT-ISR achieved a closer performance to the teacher with a
short delay than the subword-level model. In Fig. 5, when
the AT-ISR delay was 25% of the full-utterance length, the
WER difference between character-level student and teacher
models was 1.38%. In our experiment, this model achieved
CER 15.73%, which was higher only 0.52% than the teacher
model. With an identical delay, subword-level AT-ISRWER
was 3.7% higher than the teacher. In addition, its CER was
15.24% or 1.89% higher than the teacher. In the subse-
quent delays that we explored, the subword-level also had
not shown the balance point between the speed and per-
formance, unlike the character-level AT-ISR. The character-
level AT-ISR is better at mimicking the teacher because the
necessary information to predict a character token can be
satisfied by a shorter speech segment than for predicting a
subword token. Fig. 6 shows the examples of character-level
and subword-level attention matrices that were generated us-
ing non-incremental ASR in the corresponding unit-level. It
shows that the subword token scored a high score to several

encoder states consecutively more than the character token.
This is because a subword token consists of several charac-
ters. Therefore, the subword-level ISR’s performance cannot
approach the teacher’s level when the input window cannot
include or fails to reach the other speech segments with a
high attention score.

Since a subword consists of several characters, the
subword-level ISR requires a longer speech context than the
character-level ISR. Theoretically, when the input segment
is very short, the character-level ISR should be able to result
in a better performance than the subword-level ISR. In our
experiment, however, the subword-level ISR outperformed
the character-level ISR in every delay that we tried. This is
because our ISRs looked at look-ahead blocks when taking
an input segment. In our data, a subword token consists of
seven characters on average, and one speech frame block
was aligned to two characters on average. Our shortest input
window configuration utilized onemain blockwith two look-
ahead blocks, which contained information of six characters
on average; it might have a similar amount of information
as the character-level recognition. When the recognition
delay was below 50% of the average utterance length, the
WER difference between the character- and the subword-
level ISRs was around 1%. So within that delay, the quality
of both models was similar, although the subword-level ISR
was slightly better.

Fig. 7 shows the examples of subword-level ISR output
sequences that are aligned to the corresponding input speech
segment. Many subword tokens resembled words due the
size of our subword vocabulary. AT-ISR predicted the sub-
words well when the input window covered all the speech
parts where the subwords were uttered. Mistakes occurred
when a subword’s speech duration exceeded the length of the
window. In this picture, for example, token ’impurities‘ was
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predicted by the AT-ISR as three subwords: ‘em’, ‘pha’, and
‘ities’. The AT-ISR split the prediction of this token into two
incremental steps, causing the recognition in both steps to
overlook some information and output inaccurate sequences.
The non-incremental ASR also struggled to recognize this
token correctly but it results in a word with the sound that
resembles the target word since it had a longer information
context. ISR improvement might be made by splitting a sub-
word token with a long speech duration into several subword
tokens when training the ISR.

6.3 Effect of ISR Delay and Output Unit in Speech Trans-
lation

We performed additional experiments by exploring the ISR
delay and output units that might affect the translation. As
developing incremental NMT is not part of this study, we
evaluated the ISR using a standard NMT as a downstream
task by connecting these systems.

NMT systems generally adopt subwords as the input
and output representation [42–44]. Subword representation
could avoid out-of-vocabulary condition, which often hap-
pens in the word-level model, and preserve the word’s con-
text better than the character-level token. For these factors,
our experiment focused on the subword-level translation and
see how the ISR affects the translation performance. In this
experiment, the AT-ISR models were the models that were
trained with TED-LIUM release 1 dataset.

Since translation by a subword-level NMT requires
subword-level tokens as input, we unified the ISR tokens into
subwords that can be recognized by the NMT system. We
performed two approaches to unify and connect the ISR into a
subword-level NMT, which approaches shown in Fig. 8. The
first approach converted the character-level ISR output into
subwords that were covered by the NMT input vocabulary.
Since uniforming the ISR output and NMT input vocabu-
laries with the best performance for both systems might be
time-consuming, this approach is suitable when a subword-
level ISR with the same output vocabulary as the NMT input
vocabulary is unavailable. In this approach, when a character
sequence from ISR forms aword, this word is segmented into
subwords using a word-to-subword segmentation model. In
our experiment, the word-to-subword segmentation model
was the SentencePiece model that we used to tokenize the
words in the NMT source language training data into sub-
words. The second approach was a direct ISR and NMT
integration, where the ISR is a subword-level model with a
matching output vocabulary with the NMT input vocabulary.

The speech recognition performance and translation
quality on tst2010 set can be seen in Table 3. We marked
the results based on the statistical significance test result
with a significance level of 5%. The translation quality was
measured by 1-gram and 4-gram BLEU (bilingual evalua-
tion understudy) [46] scores, NIST [47], TER (translation
error rate), and METEOR (metric for evaluation of trans-
lation with explicit ordering) [48] scores of the translation
result. BLEU score measures the position-independent n-
gram word matches between the hypothesis and the refer-

SentencePiece

HELLO

HEL    LO 

NMT

BON   JOUR

H    E    L   L  O

ISR
(char)

(source language speech)

(target language text)
HEL    LO 

NMT

BON   JOUR

ISR
(subword)

(source language speech)

(target language text)

(a) (b)

Fig. 8 ISR in speech translation task (En-Fr): (a) end-to-end character-
level ISR is connected to NMT via character-to-subword conversion with
SentencePiece tokenizer; (b) end-to-end subword-level ISR directly con-
nected to subword-level NMT.

ence. NIST evaluation metric is an alteration from BLEU,
in which it gives more weight to the correct n-gram that is
rare to occur. TER measures the minimum number of edits
that are required to change the translation result so it exactly
matches the reference, where the possible edits are inser-
tion, deletion, and substitution. METEOR is an evaluation
metric that calculates the score based on the harmonic mean
of unigram precision and recall. Translation result with
the higher BLEU, NIST, and METEOR scores represents a
higher performance, while a lower TER is better. Since the
ASR results contain errors, the translation quality degrades
compared to the translation from the correct transcription.
The low translation quality from the ISR output was caused
by the nature of incremental recognition, in which the model
is forced to produce outputs based on a short input segment.
This situation affected the translation quality.

With the condition of low delay speech recognition,
end-to-end subword-level AT-ISR resulted in the best speech
recognition and translation performance. The translation re-
sult from the character-level AT-ISR output that was con-
verted into subwords was less successful than the end-to-
end subword-level AT-ISR due to its low speech recognition
performance and error propagation. The translation qual-
ity from subword-level AT-ISR text also approached those
of published system with an NMT, which the results com-
parison on IWSLT 2015 English-French speech translation
task [49] is shown in Table 4.

AT-ISR delay affected not only the speech recognition
but also the translation performance; a higher delay resulted
in a lower WER and a higher BLEU score. Fig. 9 shows how
the AT-ISR delay and output adaptation approach affected
the translation 4-gram BLEU score.

Interestingly, although the character-level AT-ISR and
the subword-level AT-ISRmight have a similar WER in with
the same delay, the translation quality from the subword-level
AT-ISR still outperformed the character-level AT-ISR. It can
be seen in Fig. 9 at the point of AT-ISR delay of 50% of
the total utterance length. In that condition, although the
WERs of both AT-ISR systems were close, the ISR UCRs
and BLEUs were significantly different; the best UCR and
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Table 3 Speech recognition and English-French translation performance on tst2010 set: Symbols in
some scores indicate statistical significance test result with p < 0.05. (↓ = lower is better; ↑ = higher is
better; ch-sw (spm) = character-level ASR with character-to-subword conversion using SentencePiece;
sw (e2e) = end-to-end subword-level ASR;?= significantly different from baseline with identical output
units; � = not significantly different from baseline with identical output units; • = significantly different
from ch-sw (spm) with identical delays; † = not significantly different from ch-sw (spm) with identical
delays; m = main input frame block; la = look-ahead input frame block; 1 block = 8 frames = 0.14 sec.)

ASR Output Speech Recognition Translation
CER ↓ WER ↓ UCR ↓ BLEU1 ↑ BLEU4 ↑ NIST ↑ TER ↓ METEOR ↑

Correct transcription 0.0 0.0 1.36 59.4 31.6 7.34 53.7 52.0
Topline: Non-incremental ASR (delay = 7.58 sec (avg.))
ch-sw (spm) 15.11 26.75 2.67 47.1 21.1 5.37 69.1 39.4
sw (e2e) 12.39 • 22.43 • 0.50 • 50.0 • 23.1 • 5.80 • 65.4 • 42.2 •
Baseline ISR: Att Enc-Dec ISR + HMM-GMM alignment
delay = 0.84 sec (4 m + 4 la)
ch-sw (spm) 28.03 42.50 1.74 37.8 13.3 3.93 79.8 28.7
sw (e2e) 31.17 • 38.31 • 0.44 • 41.5 • 15.9 • 4.47 • 74.8 • 31.1 •
Proposed: AT-ISR
delay = 0.54 sec (1 m + 4 la)
ch-sw (spm) 21.56? 41.39 � 10.07? 38.0� 13.5� 4.00 � 80.9? 29.8 �
sw (e2e) 21.52 ? † 36.56 ? • 0.60 ? • 42.6 ? • 16.3 ? • 4.66 ? • 74.3 ? • 33.4 ? •

delay = 0.84 sec (4 m + 4 la)
ch-sw (spm) 19.18? 33.09? 4.45? 44.0? 17.9? 4.87? 72.8? 34.8?
sw (e2e) 15.71 ? • 28.17 ? • 0.86 ? • 47.2 ? • 20.6 ? • 5.38 ? • 68.7 ? • 39.1 ? •

Table 4 Speech translation performance of our system and other works
on IWSLT 2015 English-French translation task tested on tst2015. (↓ = the
lower the better; ↑ = the higher the better)

System Performance
BLEU4 ↑ TER ↓

Official IWSLT system result [45] 16.98 80.4
Ours with correct source text (topline) 31.41 54.5
Ours with non-incremental ASR 19.95 72.5
Ours with AT-ISR (proposed) 16.67 75.1

BLEU scores were achieved by the end-to-end subword-level
AT-ISR. A similar trend was observed in the other transla-
tion metrics. It implies that speech translation quality is not
only affected by the WER but also by the UCR that rep-
resents the number of words that do not exist in the NMT
word vocabulary. Since language translation is depends on
word semantics, ISR token sequences that did not resem-
ble a word with meaning, which might not appear in NMT
training material, could decrease the speech translation per-
formance. Subwords maintains a longer context of a word
than characters, so it could resulted in better translation than
the character-level model.

7. Related Works
ISR system is a necessary component in a modular real-time
speech translation system. The HMM-based ASR [38, 50],
the conventional ASR approach, could perform real-time
speech recognition because it recognizes the speech incre-
mentally. The HMM-based ASR, however, cannot perform
end-to-end recognition, which is the current state-of-the-art
approach, although the prediction accuracy could be bet-
ter than end-to-end systems. End-to-end ASR [21, 22, 28]
use attention-based encoder-decoder architecture to do the
recognition by combining the acoustic, lexicon, and lan-
guage model components in the conventional ASR into a
single neural network model. Previously, several neural net-
work frameworks that can be applied for ISR tasks were
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Fig. 9 The effect of AT-ISR delay on the speech translation task. The
evaluation was done on tst2010 set. (’ch-sw (spm)‘ = character-level ASR
with character-to-subword conversion using SentencePiece; ’sw (e2e)‘ =
end-to-end subword-level ASR; S = average speech utterance length in
tst2010 set (7.58 sec); 1 block = 8 frames = 0.14 sec.)

proposed. Hwang et al. [39] proposed a neural ISR that
uses unidirectional LSTM with CTC training objective and
beam-search mechanism with depth-pruning. Jaitly et al. [7]
proposed a neural transducer framework that consists of an
attention-based structure. This framework recognizes the
speech segment-by-segment with a fixed window. Segment-
based speech recognition is achieved by learning the align-
ment during the training phase. In the original work [7],
the alignment can be either generated by an external sys-
tem, such as HMM-GMM ASR, or with the neural trans-
ducer itself by computing and updating the approximately
best alignment several times through dynamic programming
type of methods. But, as we mentioned earlier, since the
neural transducer is required to compute and update the best
alignment within the segment in order to lean the incremen-
tal recognition, this framework becomes more complicated
than the standard attention-based ASR.



12
IEICE TRANS. ??, VOL.Exx–??, NO.xx XXXX 200x

After finishing our experiment, we noticed recent pa-
pers that also introduced approaches for a neural incremental
ASR. For example, Inaguma et al. (2020) proposed an ISR
based on a seq2seq model with monotonic chunkwise atten-
tion, whose model learns from the alignment taken from a
hybrid ASR model [9]. ISR frameworks were also recently
proposed that utilize a recurrent neural network transducer
(RNN-T) and a frame-synchronous model [10, 11]. An ISR
model with an RNN-T consists of an RNN-T encoder, an
RNN-T decoder, and a standard attention-based seq2seq re-
scorer. ISRs based on a neural transformer with CTC were
also proposed in which the model did incremental recogni-
tion by segmenting the input [12] or by limiting the attention
range [13]. The related ISR works generally focused on ISR
for mobile-based applications, and utilization on a speech
translation task remains uninvestigated. As we mentioned
above, the recent ISR frameworks also require a more com-
plicated structure than the standard non-incremental ASR.
In our framework, we tackled this problem by tuning the
non-incremental ASR for incremental recognition tasks by
learning from its attention alignment, allowing an ISR with
a simple mechanism and a close performance to the non-
incremental recognition task. In this work, we demonstrated
it using an LSTM-based seq2seq model. Our approach can
also be applied to other attention-based neural network struc-
tures, such as Transformer, whichwe postpone to futurework
because here we are focusing on an attention transfer mech-
anism between a teacher and a student model with identical
structure to build a simple ISR.

ISR-MT or ASR-MT integration is a challenging prob-
lem due to error propagation and the incompatibility of train-
ing materials in both modules. By using non-incremental
systems, several studies addressed this challenge by adapt-
ing the ASR output to MT [51, 52]. Wang et al. [53] previ-
ously constructed a real-time system prototype by unifying
an HMM-based ASR system and an online MT system [54].
Recently, Ren et al. proposed an end-to-end simultaneous
speech translation with wait-k strategy [55]. Compared to
the number of ISR studies, the study about the utilization of
neural ISR in speech translation remains limited.

8. Conclusion
In this work, we constructed neural ISR for low-delay end-to-
end speech recognition. We proposed attention-transfer ISR
(AT-ISR) that learns attention knowledge from its teacher
neural non-incremental ASR and adopts the teacher’s struc-
ture. Low delay speech recognition is followed by a trade-off
between delay and performance. Our character-level AT-ISR
showed a comparable performance to the non-incremental
ASR when the delay equals to or more than 25% of the total
utterance length, therefore, we could use this configuration
for this model to keep the balance between speech recogni-
tion latency and performance. ISR’s performance closeness
to the teacher depends on the granularity of the output unit.
When the output unit has a coarse granularity, such as sub-
word, it might result in higher recognition performance than
the model with finer output unit granularity, such as char-

acter. On the other side, ISR with a fine-granulated output
unit is faster to achieve a teacher-like performance than ISR
with a coarse-granulated output unit. In the downstream task
with NMT, our end-to-end subword-level ISR resulted in the
best translation quality with the lowest WER and the lowest
uncovered-word rate.

For future work, we are interested in the exploration
to improve ISR and construct a full-fledged real-time S2ST
system.
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