
Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2017.DOI

Policy reuse for dialog management
using action-relation probability
TUNG. T. NGUYEN1, KOICHIRO YOSHINO1,2, (MEMBER, IEEE), SAKRIANI SAKTI1,3,
(MEMBER, IEEE), AND SATOSHI NAKAMURA 1,3, (Fellow, IEEE)
1Nara Institute of Science and Technology, Ikoma, Nara, Japan 630-0192 Japan
2Japan Science and Technology Agency, Japan
3RIKEN, Center for Advanced Intelligence Project AIP, Japan

Corresponding author: Tung T. Nguyen (e-mail: nguyen.tung.np5@ is.naist.jp).

Parts of this work are supported by JSPS KAKENHI Grant Number 20H05567 and JP17H06101.

ABSTRACT We study the problem of policy adaptation for reinforcement-learning-based dialog man-
agement. Policy adaptation is a commonly used technique to alleviate the problem of data sparsity when
training a goal-oriented dialog system for a new task (the target task) by using knowledge when learning
policies in an existing task. The methods used by current works in dialog policy adaptation need much
time and effort for adapting because they use reinforcement learning algorithms to train a new policy for
the target task from scratch. In this paper, we show that a dialog policy can be learned without training
by reinforcement learning in the target task. In contrast to existing works, our proposed method learns the
relation in the form of probability distribution between the action sets of the source and the target tasks.
Thus, we can immediately derive a policy for the target task, which significantly reduces the adaptation
time. Our experiments show that the proposed method learns a new policy for the target task much more
quickly. In addition, the learned policy achieves higher performance than policies created by fine-tuning
when the amount of available data on the target task is limited.

INDEX TERMS dialog management, reinforcement learning, transfer learning, policy adaptation, mixture
density network

I. INTRODUCTION

REINFORCEMENT learning (RL) is a widely used
framework for modeling the decision-making process

in such tasks as the dialog management of conversational
systems [1]–[3]. In general, training a policy with rein-
forcement learning helps the system to learn a more robust
behavior and its performance will not be upper-bounded by
the human performance in the training dialog samples, which
is sometimes not optimal. Nonetheless, the training process
of reinforcement learning is usually tedious and needs a
large number of samples to train an optimal policy. Policy
adaptation, or policy transfer, is a very useful technique that
can tackle this problem in reinforcement learning.

Policy adaptation refers to the process of reusing knowl-
edge, i.e., a policy that is learned in one or multiple source
tasks to a new target task. Various literatures which has
studied about policy adaptation in RL proposed different
techniques that show such promising results as the accelera-
tion of the convergence rate and the reduction of data volume
requirements [4], [5].

Within the scope of reinforcement learning-based dialog
management, the application of policy adaptation remains
very limited. Current works in dialog policy adaptation [6]–
[8] follow the weight initialization strategy, which contains
two steps: pre-training and fine-tuning. Pre-training refers to
the process that trains a policy in the source task, where the
policy is usually represented by a neural network. Some of
the source policy’s weight parameters are used to initialize
the neural network’s weights to train a policy in the target
task. Next, we fine-tune the network weights by training with
a reinforcement learning algorithm.

However, when we do not have enough data on the target
task, this strategy does not work well because it barely uses
the knowledge from the source task’s policy, forcing the
target task’s policy to be basically trained from scratch. Con-
sider a situation with a dialog policy that handles restaurant
reservations and we want to adapt to manage the task of
booking hotel rooms. Obviously, we expect that this adapta-
tion can be performed with minor adjustment to the restaurant
booking task’s policy. Motivated by this observation, we

VOLUME 4, 2016 1

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

proposed a novel method to adapt dialog policy called the
Dialog Policy Reuse Algorithm (DPRA). Unlike previous
works, our proposed method learns the relation between
the action sets of the source and the target tasks using a
mixture density network [9], and then we can quickly infer
the policy for the target task without RL training. In other
words, DPRA allows us to “reuse” the source task policy for
action decision-making in the target task. The following are
the primary contributions of our work:

• We propose a novel method for the policy adaptation
of reinforcement-learning-based dialog management. In
particular, the source task’s policy can be used for the
action selection procedure in the target task through
a special mapping called action-relation probability.
We propose a mixture density network to model this
distribution.

• Since our proposed method can learn a policy for the
target task without RL training, it reduces the effort to
construct dialog policies in the target task.

• Experimental results show that, when only a small
amount of data is available for training, our proposed
method achieves higher performance than the baseline
adaptation method, which is based on fine-tuning, and
also requires much less time for training.

The remainder of this paper is organized as follows. Section
II provides background knowledge in reinforcement learn-
ing and dialog management. In Section III, we explain our
proposed method, the DPRA algorithm. Section IV describes
our experiment setting, its results, and analyses. Section V
explains current works in dialog policy adaptation and their
drawbacks. Finally, we summarize our work and discuss
future directions in Section VI.

II. REINFORCEMENT LEARNING AND DIALOG
MANAGEMENT
A. REINFORCEMENT LEARNING
Reinforcement learning is a popular framework for learning
autonomous behavior. We consider the standard reinforce-
ment learning setting where an agent interacts with an envi-
ronment that follows a Markov decision process (MDP) over
a number of discrete time steps [10]. At each time step t, the
state, action, and reward are respectively denoted by st ∈ S,
at ∈ A, and rt ∈ R. The dynamics of the task (the envi-
ronment) are characterized by two random variables: state
transition probabilities P ass′ = P (st+1 = s′|st = s, at = a),
and the expected reward, given by Ras = E[rt+1|st =
s, at = a] =

∑
rt+1

rt+1P (rt+1|st = s, at = a). The
agent’s procedure for selecting action a given state s is the
agent’s policy, denoted by π(s, a) = P (a|s). We define the
return, which is the total rewards that received by the agent,
as Rt =

∑T−k
k=1 rt+k where T is the final time step. The

agent’s objective is to maximize expected return E[Rt|st, π]
at each time step t when following policy π. If the agent-
environment interactions do not stop, T goes to ∞. We
describe our task as continuing. If the interactions eventually

end when we reach certain terminal states, then our task
is called episodic. In this setting, the interactions from the
beginning until the agent reaches a terminal state is called
an episode. Appropriate setting are chosen depends on the
problem we want to solve using reinforcement learning.

Given policy π, the state-action value is defined as:
Qπ(s, a) = E[

∑T−k
k=1 rt+k|st = s, at = a, π], which is the

expectation of the return if action a is chosen at time step t.
Similarly, we define the state value of policy π: V π(s) =
E[
∑T−k
k=1 rt+k|st = s, π]. Note that the above definitions

of state-action, and state value fall under the undiscounted
setting.

Reinforcement learning algorithms can be divided into
two classes: value-based and policy-based. In value-based
reinforcement learning methods, we estimate action-state
Qπ(s, a) or the state value V π(s) by using a function ap-
proximator, such as neural networks or simple value tables.
Classic Q-learning [11] or deep Q-network [12] are exam-
ples of this class of algorithms. In contrast to value-based
methods, policy-based RL algorithms parameterize policy π
by parameters θ, which we update by performing (typically
approximate) gradient ascent to maximize E[Rt|π]. There
are various policy-based RL studies, especially with policy
gradient methods, such as Actor-Critic [13], [14] or REIN-
FORCE [15], which we are using in our evaluation.

B. DIALOG MANAGEMENT USING REINFORCEMENT
LEARNING
A dialog can be divided into multiple turns, where each turn
contains a user utterance and a system response. We can
formulate the problem of dialog management as an MDP and
apply any RL algorithm to solve it. We can define a set of
actions for the system to interact with the user and define a
reward function based on the system’s goal. Since all dialogs
only have a finite number of turn (or time steps) we need to
use the episodic and undiscounted setting as a formulation of
dialog management problem.

At each time step t, the required information for the action
selection procedure is defined as an observation, denoted
by ot. The type of information included in an observation
depends entirely on the task that is being solved. For exam-
ple, in dialog management, the observation may consist of
recognition results of slot information [6], [7], [16], user’s
dialog actions [17], [18], or such high-level multimodal
information as user’s deception [19]. Recall that the policy
is a conditional probability for selecting action a given state
s, P (a|s); thus, the state must include critical information
for making the decision. A natural approach is to represent
the state by the vector of observation or the concatenation of
observations from multiple time steps. We call such state rep-
resentation as explicit state representation. In modular-based
dialog systems [1], [2], [17]–[19], the state is represented by
this explicit representation.

In dialog management procedures, the system needs to
consider the dialog history, which contains the user’s utter-
ances and the system’s actions from the beginning. With

2 VOLUME 4, 2016

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

such long-term tracking requirements, explicit representation
becomes unsuitable if the observations are high-dimensional
or the conversations are lengthy. A common solution is using
a Recurrent Neural Network (RNN) to learn state embedding,
which resembles a latent state representation that stores the
dialog history and current observation [16], [20]. Such state
representation is used in end-to-end dialog modeling [20].
Fig. 1 shows an example of this approach. The RNN plays
the role of dialog state tracker (DST) and its output, the latent
state representation, is used by the dialog policy module for
management. With an end-to-end approach, we are free from
designing a complicated explicit representation of the dialog
states.

at-1 ol
t

LSTM

Dialog policy

stst-1 st+1

at

Note:
ol: linguistic features
s: dialog state
a: system’s action

st
Dialog state

at-1 ol
t

LSTM

Dialog Policy at+1

st+1

FIGURE 1. Dialog modeling with end-to-end approach.

RL training requires a huge amount of agent-environment
interactions to learn a good policy. In dialog management,
it is impossible to collect enough dialog samples to ful-
fill this requirement. Scheffler and Young proposed a user
simulator as replacement for actual human users to train
the policy [1]. This approach has become the standard for
training dialog policies with RL. The user simulator is built
from dialog samples by maximum likelihood or supervised
learning methods, to imitate the human user’s behavior. The
user simulator can also be viewed as an approximation of the
dialog management task’s true state transition P ass′ , which is
provided by the actual human user.

C. POLICY ADAPTATION

Humans are capable of learning a task better and faster
by transferring the knowledge retained from solving similar
tasks. This observation motivates the idea of transferring
knowledge across different but related tasks to improve
the performance of machine learning (ML) algorithms. The
techniques that allow such knowledge transferring is called
transfer learning.

Application of transfer learning to RL algorithms started
to gain attention of the machine learning community from the
middle of the 2000s. In reinforcement learning, the number
of samples needed to learn an optimal solution is usually
prohibitive, especially for dialog management, where data
sparsity is a huge challenge [21]. Transfer learning can build
prior information from the knowledge collected to solve a set

of source tasks and be used for learning a policy in the target
task.

Many types of knowledge can be used in transfer learning
in RL, such as samples, representation, or parameters [4].
Policy adaptation, or policy transfer, refers to transfer learn-
ing methods that use knowledge of the policy from the source
task for the transferring process. Policy adaptation methods
are subclass of transfer learning solutions in reinforcement
learning.

We usually face the problem of data sparsity when train-
ing policies for dialog tasks, because they do not require
additional knowledge between the source and the target
task. In this situation, the policy adaptation approach is a
promising solution. Multiple studies investigate its appli-
cation in reinforcement-learning-based dialog management
[6]–[8]. All of these methods improve learning speed, reduce
data requirements, or performance.

D. PROBLEM STATEMENT OF POLICY ADAPTATION

Current policy adaptation studies in reinforcement-learning-
based dialog management follow the weight initialization
approach [6]–[8]. As explained in Section I, this strategy
requires us to train the target policy from scratch with an
RL algorithm, which is a tedious process that requires great
effort, especially for complex tasks. In addition, the con-
struction of dialog policies usually involves user simulations.
When we only have a small amount of data in the target
dataset, the user simulator does not represent the behavior
from the actual human users very well. Therefore, a policy
that we train can have high performance against the simulator
even though fails to work well versus actual human users.

Problem statement. Given a source task with the state
space SA and action set A, assume that we have trained
policy π(s, a) for the source task. The target task’s state space
and action set are denoted as SB and B, our goal is to derive
policy π(s, b) for the target task from π(s, a) without RL
training.

III. POLICY REUSE BASED ON ACTION-RELATION
PROBABILITY

In this section, we show that a policy can be adapted for the
target task without RL training from the scratch. Instead of
training a policy by interactions with a user simulator, we
establish a connection between the policies of the source
and target tasks through a special mapping distribution called
action-relation probability. Our proposed adaptation method,
DPRA, learns this distribution from dialog samples in both
tasks, and can immediately derive a policy for the target
task. Thus, DPRA can remarkbly reduce learning time. Since
our proposed method does not use the user simulator, we
can avoid the problem of low performance due to errors in
constructing the user simulator.

VOLUME 4, 2016 3

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

A. POLICY ADAPTATION BY ACTION-RELATION
PROBABILITY
We consider policy adaptation from a source task to a target
task. First, we make the following assumptions, which allow
the derivation of relation between the policies of the source
and the target tasks :

Assumption 1: The source and the target tasks share iden-
tical state space S. This assumption is actually not restrictive.
Union space S = SA ∪SB is the state space that satisfies the
assumption.

Assumption 2: The source and the target tasks have iden-
tical state representation.

We define observation as the information that is necessary
for the agent’s action selection in each time step. An example
is the features extracted from the user’s utterance at each turn.
Obviously, in a policy adaptation setting, the source and the
target tasks are different and they require distinctive sets of
features. Thus, the state representation of the source task is
also not identical to the target task’s. However, we can define
a unified set of features for those tasks and have the same
observation and state representation across the source and the
target tasks.

We establish a connection between the source and the
target task’s policy as follows. Denote the source task’s
policy as π(s, a) and the target task’s policy as π(s, b), where
a ∈ A, b ∈ B are action sets in the source and target tasks.

π(s, b) =
∑
a∈A

P (b|a, s)π(s, a). (1)

Equation (1) argues that with any conditional distribution of
P (b|a, s); from source task’s policy π(s, a), we can directly
infer a policy for target task π(s, b). We call this P (b|a, s)
action-relation probability. Our proposed policy adaptation
method models this distribution instead of performing RL
training.

B. ACTION-RELATION MODELING WITH MIXTURE
DENSITY NETWORK
This section explains the modeling of action-relation proba-
bility distribution based on a mixture model. First, denote the
state and action at time step t as s = st and a = at, where the
state at the next time step is s′ = st+1. The state transition in
the target task is given:

P (s′|a, s) =
∑
b∈B

P (s′, b|a, s) (law of total probability)

=
∑
b∈B

P (s′|b, a, s)P (b|a, s).

(2)
The state transition of the source task has the form of

a mixture model with the action-relation probability as the
component weights. Mixture density network (MDN) [9], is
a suitable approach for modeling state transition P (s′|a, s).
In principle, a mixture density network is a type of Gaus-
sian mixture model (GMM) that utilizes an artificial neural

network. Given multivariate random variables x, y, MDN
models conditional probability density p(y|x):

p(y|x) =
M∑
m=1

wm(x) · N (y;µm(x), σ2
m(x)). (3)

M is the number of components, and wm(x), µm(x), and
σ2
m(x) are the component weight, mean, and standard de-

viation for component m. We assume that these mixture
variables are functions of input x that are approximated by
neural networks fwm, f

µ
m, f

σ
m, parameterized by θwm, θ

µ
m, θ

σ
m.

With some slight abuse of notation, we have:

wm(x) ≈ exp(fwm(x; θwm))∑M
l=1 exp(f

w
l (x; θ

w
l))

(4a)

µm(x) ≈ fµm(x; θµm) (4b)
σ(x) ≈ exp(fσm(x; θσm)) (4c)

With MDN, we assume that all the components in multi-
variate random variable y are mutually independent, and thus
the covariance matrix is diagonal and can be represented
by a vector with the same dimension as fµm(x). Denote
the dataset as D = {(x(i),y(i))}, i = 1..N , where x,y
are the observed data for random variables x and y. The
parameters are optimized using gradient descent with the
following negative log-likelihood:

L =

− log(
N∏
i=1

p(

M∑
m=1

wm(x(i)) · N (y(i);µm(x(i)), σ2
m(x(i)))))

(5)
By replacing the probabilities with probability density

functions, the mixture model in (2) is now given:

p(s′|ai, s) = pi(s
′|s) (ai ∈ A)

=

|B|∑
j=1

Pij(s) · pij(s′|s)

=

|B|∑
j=1

wij(s) · N (s′;µij(s), σ
2
ij(s)).

(6)

An illustration of these mixture models is given in
Fig. 2. In principle, the density of the state transition
caused by ai is a mixture model with each component
pij(s

′|s) = p(s′|ai, bj , s) follows Gaussian distribution
N (s′;µij(s), σ

2
ij(s)).

For each action ai in the source task, we can train its
corresponding MDN with just the samples (s′, ai, s). Partic-
ularly, s is observed variable x and s′ is the latent variable
y in (5), ai is the indicator to which Gaussian component
corresponds to sample s, s′. The action-relation probability
P (b = bj |a = ai, s) is approximated by fw(x; θwij)), as
shown in (4a). However, in that case, we cannot guaran-
tee that N (s′;µij(s), σ

2
ij(s)) truly models state transition

p(s′|ai, bj , s) since the source task samples do not contain

4 VOLUME 4, 2016

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

𝑎1
𝑝 𝑠′ 𝑎1, 𝑠

… …
𝑁 𝑠′; 𝜇11 𝑠 , 𝜎11

2 𝑠

𝑏1 𝑏𝑗… 𝑏𝐿…

𝑁 𝑠′; 𝜇11 𝑠 , 𝜎11
2 𝑠 𝑁 𝑠′; 𝜇1𝐿 𝑠 , 𝜎1𝐿

2 𝑠

𝑎𝑖

…

𝑁 𝑠′; 𝜇𝑖1 𝑠 , 𝜎𝑖1
2 𝑠 𝑁 𝑠′; 𝜇𝑖𝑗 𝑠 , 𝜎𝑖𝑗

2 𝑠

𝑎𝐾

𝑝 𝑠′ 𝑎𝑖 , 𝑠

…

… …

𝑝 𝑠′ 𝑎𝐾 , 𝑠

𝑁 𝑠′; 𝜇𝑖𝐿 𝑠 , 𝜎𝑖𝐿
2 𝑠

𝑁 𝑠′; 𝜇𝑖1 𝑠 , 𝜎𝑖1
2 𝑠 𝑁 𝑠′; 𝜇11 𝑠 , 𝜎11

2 𝑠 𝑁 𝑠′; 𝜇𝐾𝐿 𝑠 , 𝜎𝐾𝐿
2 𝑠

𝐴 = 𝐾; 𝐵 = 𝐿

… …

𝑝 𝑠′ 𝑏1, 𝑠 𝑝 𝑠′ 𝑏𝑗 , 𝑠 𝑝 𝑠′ 𝑏𝐿, 𝑠

FIGURE 2. State transition modeling by mixture density network. Components
in each column correspond to an action in the target task.

any information of bj . A natural solution is to additionally
train the components using the samples (s′, bj , s) by compo-
nent matching process, which actually “matches” the distri-
bution of component N (s′;µij(s), σ

2
ij(s)) to the transition

of p(s′|bj , s).
In this work, we propose two methods of component

matching. In the first, we assume that p(s′|ai, bj , s) =
p(s′|bj , s)∀ai ∈ A, bj ∈ B. With this assumption, we
can perform component matching by simply optimizing the
networks’ parameters using the negative log-likelihood of the
target task’s samples:

L = −log(
N∏
i=1

N (s′
(i)
;µ(s(i)), σ2(s(i)))). (7)

Since the training of this component matching method re-
sembles the training process of a regression model, we define
it component matching by regression. Algorithm 1 shows the
pseudo code for the training process of the mixture model in
6 using component matching by regression.

Algorithm 1 Action-relation probability modeling by MDN
with component matching by regression

Randomly initialize the network weights θw, θµ, θσ

Initialize MDN gradient dθMDN ← 0
Initialize the gradient for component matching dθCM ← 0
Initialize iteration counter t← 0
repeat

for all ai such that ai ∈ A do
for all bj such that bj ∈ B do

Calculate gradient dθCM by (7)
Update parameters θµ, θσ with dθCM

end for
Calculate gradient dθMDN by (5)
Update parameters θw, θµ, θσ with dθMDN

end for
t← t+ 1

until t > tmax

The second component matching method stems from the
following derivation:

P (s′|b, s) =
∑
a∈A

P (s′, a|b, s) (law of total probability)

=
∑
a∈A

P (s′|b, a, s)P (a|b, s).

(8)
Equation (8) argues that transition distribution P (s′|b, s)
also has the form of a mixture model that can be repre-
sented by MDN. The mixture in (8) has the same compo-
nent P (s′|a, b, s) as in (2), but different component weights
P (a|b, s). We define the network’s parameters that approxi-
mates the component weights as θ̂w.

Algorithm 2 Action-relation probability modeling by MDN
with component matching by MDN

Randomly initialize the network weights θw, θ̂w, θµ, θσ

Initialize MDN gradient dθMDN ← 0
Initialize the gradient for component matching dθCM ← 0
Initialize the iteration counter t← 0
repeat

for all ai such that ai ∈ A do
for all bj such that bj ∈ B do

Calculate gradient dθCM by (9)
Update parameters θ̂w, θµ, θσ with dθCM

end for
Calculate gradient dθMDN by (5)
Update parameters θw, θµ, θσ with dθMDN

end for
t← t+ 1

until t > tmax

In principle, the components in column of bj in Fig. 2 form
a mixture model for the density of state transition p(s′|bj , s).
Similarly, we can train this mixture with a loss function that
resembles (5) using the target task samples (s′, bj , s):

L =

− log(
N∏
i=1

p(

M∑
m=1

ŵm(x(i)) · N (y(i);µm(x(i)), σ2
m(x(i))))).

(9)
We call this method component matching by MDN. The
pseudo code for action-relation probability modeling using
MDN component matching is shown in Algorithm 2.

Finally, the procedure of our proposed method, the dialog
policy reuse algorithm, is shown in Algorithm 3:

Algorithm 3 Dialog policy reuse algorithm: DPRA
Step 1: Train policy π(s, a) for source task
Step 2: Model action-relation probability P (b|s, a) using
either Algorithms 1 or 2
Step 3: Create a policy for target task π(s, b) , by using 1
with the action-relation probability learned in Step 2.

VOLUME 4, 2016 5

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

We summarize this section by showing that resultant pol-
icy π(s, b) of DPRA is proper:∑

b∈B

π(s, b) = 1 (10)

Intuitively, DPRA works as follows. Given policy π(s, a)
in the source task, assume that an agent with policy π selects
action a given current state s. DPRA finds action b in the
target task that makes similar transition s→ s′ to action a: in
other words, P (s′|s, a) ' P (s′|s, b). Instead of making a de-
terministic mapping, we learn a distribution that connects a to
all the available actions in the target task, which is P (b|a, s).
This is why we use the term action-relation probability to
define this special distribution. With the condition that the
source and target tasks are also similar in the reward dynamic,
if learned policy π(s, a) in the source task is optimal, then
policy π(s, b) learned by DPRA is nearly optimal as well.

Source task:
State space: S
Action set: A
Policy: 𝜋 𝑠, 𝑎

Target task:
State space: S
Action set: B
Policy: 𝜋 𝑠, 𝑏

DPRA
Model the distribution

𝑃(𝑏|𝑎, 𝑠)

FIGURE 3. Working procedure of the proposed method.

An illustration of DPRA is shown in Fig. 3. DPRA requires
identical state space and state representation of the source
and target tasks (Assumption 1 and 2). Recall that all policy
adaptation methods only work in the cases where the source
and target tasks are similar. In this situation, even if the two
tasks’ state spaces and state representations are not com-
pletely identical, we expect that they still share considerable
similarities, and thus, the proposed method can still learn a
good policy for the target task without the ideal conditions in
Assumption 1 and 2.

IV. EVALUATION
A. SETTING
We experimentally assessed the following hypotheses:

1) Our proposed adaptation algorithm, DPRA, requires
much less training time than conventional fine-tuning
methods.

2) DPRA learns policies that achieves equivalent or
higher performance than those learned with current
methods when limited data available in the target task.

For comparison with our proposed methods, we used
policy adaptation by action embedding [8]. This method
uses the same network as our end-to-end dialog modeling
and changes its last layer of the network to connect to a
new action space in the target task. This simple model does
not require any prior information such as relations between
actions. Since our proposed algorithm also does not require
such prior information either, we selected this method as the
baseline.

In our evaluation, we performed policy adaptation for a
multimodal goal-oriented dialog system with an end-to-end
approach. We chose a multimodal dialog setting because the
available corpora for such conversations are mostly small-
scale [21] and thus suitable to assess our second hypothesis.
In particular, we augment the original end-to-end dialog
model(Fig. 1) with a multimodal fusion component that uses
the Hierarchical Tensor Fusion Network [22]. This compo-
nent’s role is to efficiently combine features from multiple
modalities: linguistic, visual, and acoustic. Since it is fully
connected to the dialog state tracker (the LSTM layer in Fig.
1), our dialog model still adheres to the end-to-end paradigm.

We formulated the problem of dialog management with
an episodic and undiscounted reward setting and trained
the dialog policies using REINFORCE [15], which updates
policy parameters θ with the following gradient:

∂(θ) = E

[
T∑
t=0

Rt
∂logπθ(st, at)

∂θ

∣∣∣∣π
]

(11)

As in (11), the “vanilla” version of REINFORCE has high
variance and slow convergence. To combat this problem, a
baseline technique was introduced [23], [24]. [25] described
how the most natural and effective baseline is the state-value
function. Thus, we use V π(s, a) as the baseline and the
gradient is given by:

∂(θ) = E

[
T∑
t=0

(Rt − V π(st, at))
∂logπθ(st, at)

∂θ

∣∣∣∣π
]

(12)

The baseline’s role in (12) is to reduce the variance of the
gradient estimation and smoothen the training. In principle,
since any RL algorithm can be used for training the policies,
we chose REINFORCE due to its simplicity and good per-
formance.

The output layers of the multimodal fusion component and
the DST both have 128 units. Therefore, the dialog state is
represented by vector s ∈ R128. The neural network that
represents the dialog policy has one single hidden layer with
128 units and is fully connected to the input and output
layers. We used the Adam optimizer for optimization of
the networks’ parameters and initialized the learning rate at
1e− 3. We trained the policies for the source and target tasks
with 20,000 and 10,000 episodes, of which can be seen as
a simulated dialog with the user simulator. The learning rate
decreased by 10% every 1000 episodes.

The neural networks that approximate the mixture vari-
ables in Algorithms 1 and 2 have one hidden layer with
256 units. We also used the Adam optimizer for parameter
optimization. The learning rate is fixed at 1e − 4, and the
number of training epochs is 10. Note that in Algorithms 1
and 2, the network parameters are updated sequentially with
two different gradients. Thus, the training process has large
oscillation and converges slowly. To avoid this problem, we
adopted the p : q training scheme. Every epoch, we perform
component matching for p = 2 times and trained the mixture
model for q = 2 times.

6 VOLUME 4, 2016

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

Source task
dataset

User simulator

1. RL
training

Policy
𝜋 𝑠, 𝑎

2. Policy
adaptation

Policy
𝜋 𝑠, 𝑏

Target task
dataset

User simulator

3.1 Evaluation
with simulator

3.2 Evaluation
by DA

selection

FIGURE 4. Experiment procedure.

B. PERFORMANCE METRICS
We measured the training time of all the methods in seconds.
Only the time spent in adaptation is measured; the learning
times of the source task’s policy and for creating the sim-
ulator is not included. We run the adaptation algorithms on
identical hardware 1 to ensure a fair comparison among the
evaluated methods.

To assess out second hypothesis, we used two performance
metrics: average reward per episode and the system’s action
selection accuracy. With the first metric, we used a user
simulator created from the target dataset. We ran the learned
policies against this simulator for 1000 episodes and mea-
sured the average total reward per episode. For the second
metric, several human experts read the dialog transcript and
selected the most appropriate system action for each turn.
These actions are used as groundtruth for measuring the
action selection accuracy of the policies. This metric shows
the appropriateness of the learned policy behaviors on each
turn.

C. DIALOG TASK
In this evaluation setting, both the source and the target tasks
are negotiation task in healthcare domain [19]. The system
tries to convince the users that their current living style is
unhealthy and suggests that they adopt its proposed living
habits.

We used the previously proposed healthcare consultation
dataset [19], which contains conversations on six topics:
sleeping, eating, working, exercising, social media usage,
and leisure activities. The conversations of the first four
topics (51 dialogs) are used for training the policies of
the source task. The remaining 24 dialogs in two topics
are used for training the target task’s policy. In each turn,
we split the recorded video of the users into 30 segments
and randomly sampled one frame from each segment to be
used for extracting visual features. We extracted 14 face
action unit (AU) regressions and 6 AU classification values
for each frame with the OpenFace toolkit [26]. The visual
observation at each turn ov is a vector that contains these

1CPU: Intel Xeon CPU E5-2630 v4, GPU: GTX Titan X.

extracted values. We extracted acoustic features from the
audio using the OpenSMILE toolkit [27] with the Interspeech
2009 (IS09) emotion challenge standard feature-set as our
feature template [28]. We used these extracted features to
create acoustic observation oa.

The set of system’s actions in the source task is iden-
tical as [19], which includes {Offer, Framing, End}. We
changed the system’s action set of the target task into {Of-
fer_New, Offer_Change, Framing_Argue, Framing_Answer,
End_Dialog}. The source policy never sees these actions
during training.

For the RL training, we created a user simulator that
generates labels of user action u and deception information d
with the following intention and deception models:

intention model = P (ut+1|ut, dt, dt+1, at)

deception model = P (dt+1|ut, dt, at)
(13)

Recall that in each dialog turn, the system takes input fea-
tures (observations) from three modalities: linguistic, visual,
and acoustic. We employed the user action u as linguistic
observation ol. The visual and acoustic observations, ov and
oa, are sampled uniformly from the dialog corpus using u and
d.

D. EXPERIMENT RESULTS
We conduct the following experiments to assess the hypothe-
ses raised in the beginning of this section.

1) Policy adaptation time

TABLE 1. Comparison of training time required for different policy adaptation
methods.

Model Training
time

Policy adaptation by action embedding [8] ∼ 350s
DPRA - regression component matching ∼ 40s
DPRA - MDN component matching ∼ 45s

Table 1 shows the training times required for all the policy
adaptation methods. The numbers reported for DPRA are
from a case in which all 24 dialogs of the target task are
available for training. Cases with less data will obviously take
less time for training with DPRA. With policy adaptation
by action embedding [8], we chose the number of episodes
(interactions with simulated users) for training the target
policy based on the average rewards received per episode.
As seen from Table 1, since DPRA requires significantly less
time for training, our first hypothesis stands.

2) Dialog policy performance comparison
We recreated scenarios in test sets where the amount of data
available for training in the target task is limited to assess
the second hypothesis. In particular, we sampled k dialogs
from the target task dataset, k ∈ {1, 2, 4, 8, 16}. We used
these k dialog samples to create a user simulator for training

VOLUME 4, 2016 7

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

TABLE 2. Average reward per episode of learned policies with different amounts of available data. Numbers in brackets indicate 95% confidence intervals.

Model

available
dialogs 1 dialog 2 dialogs 4 dialogs 8 dialogs 16 dialogs

NoAdapt - 2k -52.93(±16.59) -23.42(±13.93) -26.61(±17.98) -19.15(±18.29) -11.77(±19.80)
NoAdapt - 10k -36.95(±15.21) -17.72(±16.27) -9.02(±13.92) -7.75(±14.40) 10.55(±19.95)
ActEmb - 2k -33.56(±17.03) -11.48(±10.33) 0.01(±11.45) -8.56(±13.00) 12.86(±11.05)
ActEmb - 10k -29.98(±13.12) -18.07(±11.60) -13.42(±12.22) 0.64(±11.99) 2.04(±13.72)
DPRA - MDN -25.43 (±16.16) -10.33 (±8.94) -2.18 (±10.71) 14.93 (±4.11) 17.21 (±4.2)
DPRA - regression -12.96 (±11.05) -0.01(±10.24) 6.11(±6.03) 14.65(±6.27) 19.41(±4.49)

TABLE 3. Dialog act selection accuracy of learned policies with different amounts of available data. Numbers in brackets indicate 95% confidence intervals.

Model

available
dialogs 1 dialog 2 dialogs 4 dialogs 8 dialogs 16 dialogs

NoAdapt - 2k 33.80% (±7.54%) 35.86% (±7.06%) 35.62% (±7.06%) 34.80% (±7.17%) 43.14% (±7.50%)
NoAdapt - 10k 37.39% (±6.91%) 44.50% (±8.01%) 47.86% (±7.61%) 44.41% (±6.31%) 52.16% (±7.76%)
ActEmb - 2k 33.83% (±4.88%) 33.25% (±4.73%) 41.41% (±5.92%) 39.41% (±5.75%) 43.64% (±5.41%)
ActEmb - 10k 28.04% (±5.24%) 24.79% (±5.04%) 26.11% (±6.78%) 25.62% (±6.06%) 29.30% (±5.04%)
DPRA - MDN 40.96% (±7.79%) 39.86% (±6.81%) 56.16% (±7.82%) 62.05% (±4.94%) 62.05% (±4.64%)
DPRA - regression 45.41% (±5.99%) 52.79% (±5.18%) 60.48% (±6.02%) 62.98% (±5.08%) 69.30% (±3.22%)

the target policy in the ActEmb adaptation method and for
modeling the action-relation probability in DPRA. For each
value of k, we sampled k dialogs five times, thus making
five different datasets. With each dataset, we perform policy
adaptation ten times for each method and conduct 50 runs of
the policy adaptation experiment with each value of k.

Performance in terms of received rewards. Table 2
shows the performance of the dialog policies in terms of
the average reward per episode. The details of the reward
function for both the source and target tasks are provided
in Appendix A. DPRA-MDN and DPRA-regression respec-
tively refer to the proposed policy adaptation method with
component matching by MDN and regression. ActEmb-2k
and ActEmb-10k refer to policy adaptation by action embed-
ding method, where the number of episodes for training in
the target task is 2,000 and 10,000. Finally, NoAdapt refers
to a policy that is trained on the source task without adap-
tation, where the notation for number of training episodes is
identical as ActEmb. As seen in the table, the performance
generally increases when more data are available. In Table
2, bold numbers indicate the policy with the highest aver-
age reward per episode in each scenario where the number
of available dialogs k. Policies adapted by DPRA shows
significantly higher performance than those from ActEmb
and NoAdapt (p < 0.05) with all k, and the difference
is bigger when k is small. ActEmb-2k and ActEmb-10k
perform similarly; on the other hand, the performance of
NoAdapt-10k is remarkably higher than NoAdapt-2k.

Performance in terms of DA selection. The performance
in terms of dialog act selection accuracy for all the policies
is shown in Table 3. Similarly, the dialog policies learned by
DPRA outperformed those of ActEmb and NoAdapt with a
large margin (p < 0.05) for all values of k. Surprisingly,
when more data available the performance gap between
DPRA and the other methods increases. In fact, there is only a
subtle increase in the action selection accuracy of the policies

learned by ActEmb and NoAdapt when k increases from 1 to
16. Recall that the results in Table 2 were reported under a
setting where the policies were run against a simulator that is
created from all 24 dialogs in the target dataset. Therefore, if
we train a policy using a simulator created from 16 dialogs,
the performance in terms of average reward per episode will
be much higher than using a simulator from just one dialog.
However, because ActEmbed and NoAdapt does not use
full knowledge from the source task policy, 16 dialogs are
insufficient to train a policy with high action selection accu-
racy. Thus, the gain is modest when increasing the amount
of available data in Table 3. In contrast, DPRA can retain
knowledge from the source task policy and effectively adapt
it to the target task, thus achieving high performance in terms
of action selection accuracy, especially when more data are
available.

V. RELATED WORKS
Many studies have addressed policy adaptation for
reinforcement-learning-based goal-oriented dialog manage-
ment.

Chen et al. [6] proposed a policy adaptation method using
a multi-agent dialog policy. They used an explicit represen-
tation of the dialog state, which contains of multiple slot
information. For each slot, they built an “agent” that learns
how to choose actions corresponding to this slot. The dialog
policy is an ensemble of these agents. In the target task,
for each new slot information, the network weights of its
corresponding agent are initialized using the weights of the
agents that have been trained in the source task. Although this
adaptation method does not require the state representation
to be similar, as in DPRA, it has a restriction: the state
representation of both tasks must be explicit, such as slots or
values. In addition, this method requires identical action sets
for each agent to perform weight initialization. This makes
Chen et al.’s method [6] less flexible than DPRA in terms of

8 VOLUME 4, 2016

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

action space restriction.
Ilievski et al. [7] introduced a new policy adaptation

method by using weight bootstrapping and also used slot
information for the state representation. Their method shares
the slots and actions across the source and target tasks and
constructs a neural network where the input layer ’s number
of neurons equals to the number of unique slots in both tasks.
Similarly, the output layer has the number of neurons that
is equal to the number of total grouped actions. First, they
trained a policy on a source task by reinforcement learning.
The network weights are then fine-tuned by training on the
target task. This adaptation method has the same restriction
of state representation as in a previous work [6]. Furthermore,
[7] also requires overlapping of the action sets of the source
and target tasks. Our proposed method is more flexible and
lacks this limitation.

Mendez et al. [8] proposed an adaptation of dialog policy
using action embeddings. They argued that there is a set of
action embeddings can be shared across the source and the
target tasks. In practice, action embedding is represented by
a hidden layer that is fully connected to both the input and
output layers. After training the policies from all the source
tasks, the weight parameters that connect the input and the
hidden layers are used to initialize the corresponding weights
in the target policy’s neural network. We used this method
as our baseline because this adaptation method requires no
additional knowledge or relations between the source and
target tasks and is comparable to our proposed method in
terms of flexibility.

VI. CONCLUSIONS
We propose a novel method for policy adaptation in dia-
log management called the dialog policy reuse algorithm –
DPRA. Our proposed method uses action-relation probability
for adaptation, which allows the source task policy to be
reused for the action selection of the target task. DPRA learns
the action-relation probability from dialog samples in both
tasks using a mixture density network, and can immediately
derive a policy for the target task. Thus, DPRA learns the
target task’s policy much more quickly than conventional
methods that require RL training and user simulation. Since
our proposed method does not employ the user simulator, it
can avoid the problem of low performance due to errors in
constructing the user simulator.

Future work will conduct a deeper scrutiny of DPRA to
determine in which adaptation setting it works and what kind
of performance we should expect from it. In addition, DPRA
currently does not take the changes in reward dynamics
into consideration. We believe that if we can incorporate an
estimation of such changes in reward functions of the source
and target tasks, we can further improve the performance
of the policies learned by DPRA. Finally, we also want to
investigate the applications of our method to other settings,
such as adaptation for autonomous control tasks.

.

APPENDIX A REWARD FUNCTIONS IN THE
EXPERIMENT
Table 4 shows the reward in the source task that received by
the agent when selecting an action given the user dialog act
(u) and the deception label (d), which are generated by the
user simulator.

TABLE 4. Reward definition for the source task.

Dialog state Rewards
User DA (u) d Offer Framing End

Accept 0 –10 –10 +100
1 –10 +10 -100

Reject 0 +10 +10 –100
1 –10 +10 –100

Question 0 –10 +10 –100
Hesitate 0 +10 +10 –100

The reward definition for the target task in Section IV is
shown in Table 5. Note that Offer_New gives +10 reward only
if it is selected in the first turn.

APPENDIX B PROOF OF EQUATION 1 AND EQUATION
10
First, we show the proof for (1):

π(s, b) = P (b|s)

=
∑
a∈A

P (b, a|s) (law of total probability)

=
∑
a∈A

P (b|a, s)P (a|s)

=
∑
a∈A

P (b|a, s)π(s, a) Q.E.D

The following is full proof for (9):∑
b∈B

π(s, b) =
∑
bj∈B

P (bj |s)

=
∑
bj∈B

∑
ai∈A

P (ai, bj |s)

=
∑
bj∈B

∑
ai∈A

P (ai|s)P (bj |ai, s)

=
∑
ai∈A

P (ai|s)(
∑
bj∈B

P (bj |ai, s))

=
∑
ai∈A

P (ai|s)(
∑
bj∈B

wij(s))

=
∑
ai∈A

P (ai|s) · 1

(sum of component weights is 1)

=
∑
a∈A

P (a|s) = 1 Q.E.D

VOLUME 4, 2016 9

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

TABLE 5. Reward definition for the target task. Note: Offer_New gives +10 reward only if it is selected in the first turn.

Dialog state Rewards
User DA (u) d Offer_Change Offer_New Framing_Answer Framing_Argue End

Accept 0 –10 –10 –10 –10 +100
1 –10 –10 –10 +10 -100

Reject 0 +10 –10 –10 –10 –100
1 –10 –10 –10 +10 –100

Question 0 –10 –10 +10 –10 –100
Hesitate 0 +10 –10 –10 +10 –100

TABLE 6. Experiment environment details.

Description
Operating system Ubuntu 16.04.6 LTS – “xenial”
CPU Intel(R) Xeon(R) CPU E5-2630 v4 @ 2.20GHz
GPU NVIDIA Corporation GM200 [GeForce GTX TITAN X]
Programming language Python 2.7.12
Frameworks PyTorch 1.4.0, CUDA 9.0, NumPy 1.16.6

APPENDIX C DETAILS ON EXPERIMENT
ENVIRONMENT
Table 6 shows the details of the environment that was used
for our experiments described in Section IV.

REFERENCES
[1] K. Scheffler, & S. Young, “Automatic learning of dialogue strategy using

dialogue simulation and reinforcement learning,” in Proc. HLT, San Diego,
CA, USA, 2002, pp. 12–19.

[2] J.D. Williams, P. Poupart, and S. Young, “Partially Observable Markov
Decision Processes with Continuous Observations for Dialogue Manage-
ment,” in Proc.6th SigDial, Lisbon, Portugal, 2005.

[3] J.D. Williams and S. Young (2005, November). Scaling up POMDPs for
Dialog Management: The“Summary POMDP”Method. Presented at IEEE
Workshop on Automatic Speech Recognition and Understanding.

[4] A. Lazaric,“Transfer in reinforcement learning: a framework and a survey,
” in Reinforcement Learning, vol. 12, Springer, Berlin, Heidelberg, 2012,
pp. 143–173.

[5] R. A. C. Bianchi, L. A. Celiberto Jr, P. E. Santos, J. P. Matsuura, , &
R.L. de Mantaras, “Transferring knowledge as heuristics in reinforcement
learning: A case-based approach,” in Artificial Intelligence, vol. 226,
Elsevier, pp. 102–121, 2015.

[6] L. Chen, C. Chang, Z. Chen, B. Tan, M. Gašić, & K. Yu (2018, April).
“Policy adaptation for deep reinforcement learning-based dialogue man-
agement,” in Proc. ICASSP, Calgary, AB, Canada, 2018, pp. 6074–6078.

[7] V. Ilievski, C. Musat, A. Hossmann, & M. Baeriswyl, “Goal-oriented
chatbot dialog management bootstrapping with transfer learning,” in Proc.
IJCAI, Stockholm, Sweden, 2018, pp. 4115–4121.

[8] J.A. Mendez, A. Geramifard, M. Ghavamzadeh, and B. Liu. (2019, De-
cember). Reinforcement Learning of Multi-Domain Dialog Policies Via
Action Embeddings. Presented at the 3rd Workshop on Conversational AI:
Today’s Practice Tomorrow’s Potential, NeurIPS. Available: http://alborz-
geramifard.com/workshops/neurips19-Conversational-AI/Papers/33.pdf

[9] C.M. Bishop, “Mixture Density Networks," Aston University. Birming-
ham, UK. February, 1994.

[10] R. Bellman, “A Markovian decision process,” Journal of
mathematics and mechanics, vol. 6, no. 5, pp 679–684, 2957.
www.jstor.org/stable/24900506. Accessed on: June, 8, 2020.

[11] C.J.C.H Watkins and P. Dayan, “Q-learning,” Machine learning, vol. 8,
no.3–4, pp. 279–292, 1992.

[12] V. Mnih, K. Kavukcuoglu, D. Silver et al., “Human-level control through
deep reinforcement learning,” Nature, vol. 518, no. 7540, pp. 529–533,
Feb. 2015. DOI: https://doi.org/10.1038/nature14236

[13] R.H. Crites and A.G. Barto, (1995, November). “An actor/critic algorithm
that is equivalent to Q-learning,” in Proc. Advances in Neural Information
Processing Systems, Denver, CO, USA, 1995, pp. 401–408.

[14] V.R. Konda and J.N. Tsitsiklis, “Actor-critic algorithms,” in Proc. Ad-
vances in neural information processing systems, Denver, CO, USA, 2000,
pp. 1008–1014.

[15] R.J. Williams, “Simple statistical gradient-following algorithms for con-
nectionist reinforcement learning,” Machine learning, vol. 8, no.3-4, pp.
229–256, 1992.

[16] B. Dhingra, L. Li, X. Li, J. Gao, Y.N. Chen, F. Ahmad, & L. Deng, (2017,
July), “Towards End-to-End Reinforcement Learning of Dialogue Agents
for Information Access, ” in Proc. ACL, Vancouver, BC, Canada, 2017, pp.
484–495.

[17] T. Hiraoka, G. Neubig,S. Sakti, T. Toda, and S. Nakamura. (2014, August).
Reinforcement learning of cooperative persuasive dialogue policies using
framing. Presented at COLING 2014, the 25th International Conference
on Computational. Available: https://www.aclweb.org/anthology/C14-
1161.pdf

[18] K. Yoshino, and T. Kawahara, “Conversational system for information
navigation based on POMDP with user focus tracking,” in Computer
Speech & Language vol. 34, no. 1, pp. 275–291, 2015.

[19] T.T. Nguyen, K. Yoshino, S. Sakti, and S. Nakamura, “Dialog Management
of Healthcare Consulting System by Utilizing Deceptive Information, ” in
Transactions of the Japanese Society for Artificial Intelligence, vol. 35, no.
1, 2020.

[20] T. Zhao and M. Eskenazi, “Towards End-to-End Learning for Dialog State
Tracking and Management using Deep Reinforcement Learning,” in Proc.
SIGDIAL, Los Angeles, CA, USA, 2016, pp. 1–10.

[21] J.V. Serban et al, “A survey of available corpora for building data-driven
dialogue systems: The journal version,” in Dialogue & Discourse, vol. 9,
no. 1, pp. 1–49, 2018.

[22] T.T. Nguyen, K. Yoshino, S. Sakti, and S. Nakamura,. (2019, December).
Hierarchical Tensor Fusion Network for Deception Handling Negotiation
Dialog Model. Presented at the 3rd Workshop on Conversational AI:
Today’s Practice Tomorrow’s Potential, NeurIPS. Available: http://alborz-
geramifard.com/workshops/neurips19-Conversational-AI/Papers/10.pdf

[23] J.R. Wilson “Variance reduction techniques for digital simulation,” Amer-
ican Journal of Mathematical and Management Sciences, vol.4, no. 3-4,
pp. 277-–312, 1984.

[24] P. L’Ecuyer, “Efficiency improvement and variance reduction,” in Proc.
WSC, pp. 122–132, 1994.

[25] R.S. Sutton, D.A. McAllester, S.P. Singh, and Y. Mansour, “Policy gradient
methods for reinforcement learning with function approximation,” in Proc
NeuRIPS, Denver, CO, USA, pp. 1057–1063, 2000.

[26] T. Baltrušaitis, P. Robinson, and L.P. Morency, “Openface: an open source
facial behavior analysis toolkit,” in Proc. WACV, Lake Placid, NY, USA,
2016, pp. 1-10. doi: 10.1109/WACV.2016.7477553.

[27] F. Eyben, M. Wöllmer, and B. Schuller. (2010, October). Opensmile:
the munich versatile and fast open-source audio feature extractor. Pre-
sented at ACM international conference on Multimedia. Available:
https://dl.acm.org/doi/pdf/10.1145/1873951.1874246

10 VOLUME 4, 2016

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

[28] B. Schuller, S. Steidl, and A. Batliner. (2009). The interspeech
2009 emotion challenge. Presented at Tenth Annual Conference
of the International Speech Communication Association. Available:
https://mediatum.ub.tum.de/doc/980035/file.pdf

TUNG T. NGUYEN received his Bachelor degree
in Computer Science from University of Engineer-
ing and Technology, Vietnam National University,
in 2014 and the M.Eng degree in Information
Science from Nara Institute of Science and Tech-
nology (NAIST), in 2017.

He is currently a doctoral candidate at
Augmented Human Communication Laboratory,
NAIST. His research area includes multimodal
processing, reinforcement learning, and spoken

dialog system.
Mr. Nguyen is a recipient of the scholarship from the Japanese Ministry

of Education, Culture, Sport, Science, and Technology (MEXT) from 2017
to 2020. He is a member of the Japan Association for Natural Language
Processing.

KOICHIRO YOSHINO received his B.A. degree
in 2009 from Keio University, M.S. degree in in-
formatics in 2011, and a Ph.D. degree in informat-
ics in 2014 from Kyoto University, respectively.
From 2014 to 2015, he was a research fellow
(PD) of Japan Society for Promotion of Science.
From 2015 to 2016, he was a research assistant
professor of the Graduate School of Information
Science, Nara Institute of Science and Technology
(NAIST). Currently, he is an assistant professor of

NAIST. He is also a researcher of PRESTO, JST, concurrently. He is working
on areas of spoken and natural language processing, especially on spoken
dialogue systems. Dr. Koichiro Yoshino received the JSAI SIG-research
award in 2013. He is a member of IEEE, ISCA, IPSJ, and ANLP.

SAKRIANI SAKTI received her B.E. degree in
Informatics (cum laude) from Bandung Institute
of Technology, Indonesia, in 1999. In 2000, she
received DAAD-Siemens Program Asia 21st Cen-
tury Award to study in Communication Technol-
ogy, University of Ulm, Germany, and received her
MSc degree in 2002. During her thesis work, she
worked with the Speech Understanding Depart-
ment, Daimler Chrysler Research Center, Ulm,
Germany. Between 2003-2009, she worked as a

researcher at ATR SLC Labs, Japan, and during 2006-2011, she worked as
an expert researcher at NICT SLC Groups, Japan. While working with ATR-
NICT, Japan, she continued her study (2005-2008) with Dialog Systems
Group University of Ulm, Germany, and received her Ph.D. degree in
2008. She actively involved in collaboration activities such as Asian Pacific
Telecommunity Project (2003-2007), A-STAR, and U-STAR (2006-2011).
In 2009-2011, she served as a visiting professor of the Computer Science
Department, University of Indonesia (UI), Indonesia. In 2011-2017, she was
an assistant professor at the Augmented Human Communication Laboratory,
NAIST, Japan. She also served as a visiting scientific researcher of INRIA
Paris-Rocquencourt, France, in 2015-2016, under “JSPS Strategic Young
Researcher Overseas Visits Program for Accelerating Brain Circulation”.
Currently, she is a research associate professor at NAIST, as well as a
research scientist at RIKEN, the Center of for Advanced Intelligent Project
AIP, Japan. She is a member of JNS, SFN, ASJ, ISCA, IEICE, and IEEE. She
is also the officer of ELRA/ISCA Special Interest Group on Under-resourced
Languages (SIGUL) and a board Member of Spoken Language Technologies
for Under-Resourced Languages (SLTU). Her research interests include
statistical pattern recognition, graphical modeling framework, deep learning,
multilingual speech recognition & synthesis, spoken language translation,
affective dialog system, and cognitive communication.

VOLUME 4, 2016 11

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

SATOSHI NAKAMURA is Professor of Graduate
School of Science and Technology, Nara Insti-
tute of Science and Technology, Japan, Project
Leader of Tourism Information Analytics Team of
RIKEN, Center for Advanced Intelligence Project
AIP, Honorarprofessor of Karlsruhe Institute of
Technology, Germany, and ATR Fellow. He re-
ceived his B.S. from Kyoto Institute of Technology
in 1981 and Ph.D. from Kyoto University in 1992.
He was Associate Professor of Graduate School of

Information Science at Nara Institute of Science and Technology in 1994-
2000. He was Director of ATR Spoken Language Communication Research
Laboratories in 2000-2008 and Vice president of ATR in 2007-2008. He
was Director General of Keihanna Research Laboratories and the Executive
Director of Knowledge Creating Communication Research Center, National
Institute of Information and Communications Technology, Japan in 2009-
2010. He is currently Director of Augmented Human Communication lab-
oratory and a full professor of Graduate School of Information Science at
Nara Institute of Science and Technology. He is interested in modeling and
systems of speech-to-speech translation and speech recognition. He is one of
the leaders of speech-to-speech translation research and has been serving for
various speech-to-speech translation research projects in the world including
C-STAR, IWSLT, and A-STAR. He received Yamashita Research Award,
Kiyasu Award from the Information Processing Society of Japan, Telecom
System Award, AAMT Nagao Award, Docomo Mobile Science Award
in 2007, ASJ Award for Distinguished Achievements in Acoustics. He
received the Commendation for Science and Technology by the Minister
of Education, Science and Technology, and the Commendation for Science
and Technology by the Minister of Internal Affair and Communications. He
also received the LREC Antonio Zampolli Award 2012. He has been Elected
Board Member of International Speech Communication Association, ISCA,
2011-2019, IEEE Signal Processing Magazine Editorial Board Member
since April 2012, IEEE SPS Speech and Language Technical Committee
Member since 2013-2016, IEEE Fellow since 2016 and ISCA Fellow since
2020.

12 VOLUME 4, 2016

