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Abstract—Directly translating spoken utterances from a source
language to a target language is challenging because it requires
a fundamental transformation in both linguistic and para/non-
linguistic features. Traditional speech-to-speech translation ap-
proaches concatenate automatic speech recognition (ASR), text-
to-text machine translation (MT), and text-to-speech synthesizer
(TTS) by text information. The current state-of-the-art models
for ASR, MT, and TTS have mainly been built using deep neural
networks, in particular, an attention-based encoder-decoder neu-
ral network with an attention mechanism. Recently, several works
have constructed end-to-end direct speech-to-text translation by
combining ASR and MT into a single model. However, the useful-
ness of these models has only been investigated on language pairs
of similar syntax and word order (e.g., English-French or English-
Spanish). For syntactically distant language pairs (e.g., English-
Japanese), speech translation requires distant word reordering.
Furthermore, parallel texts with corresponding speech utterances
that are suitable for training end-to-end speech translation are
generally unavailable. Collecting such corpora is usually time-
consuming and expensive. This paper proposes the first attempt
to build an end-to-end direct speech-to-text translation system on
syntactically distant language pairs that suffer from long-distance
reordering. We train the model on English (subject-verb-object
(SVO) word order) and Japanese (SOV word order) language
pairs. To guide the attention-based encoder-decoder model on this
difficult problem, we construct end-to-end speech translation with
transcoding and utilize curriculum learning (CL) strategies that
gradually train the network for end-to-end speech translation
tasks by adapting the decoder or encoder parts. We use TTS for
data augmentation to generate corresponding speech utterances
from the existing parallel text data. Our experiment results show
that the proposed approach provides significant improvements
compared with conventional cascade models and the direct speech
translation approach that uses a single model without transcoding
and CL strategies.

Index Terms—End-to-end speech-to-text translation, automatic
speech recognition, machine translation, multi-task learning.

AS globalization continues to expand, language barriers
remain notorious obstacles to free communication. Spo-

ken language translation is one innovative technology that
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enables people to communicate among speakers of different
languages. However, translating spoken language remains a
very complicated task that involves recognizing and automat-
ically translating speech in real time.

A traditional approach in speech-to-speech translation sys-
tems constructs ASR, MT, and TTS systems that are trained
and tuned independently. Given speech input, ASR processes
and transforms the speech into text in the source language,
which MT then transforms into corresponding text in the target
language. Finally, TTS converts the target language text into
speech utterances [1]. The basic unit for information sharing
among these components is the “text representation” of words.
Even though significant progress has been made and various
commercial speech translation systems have been introduced,
this approach still suffers from several significant limitations.

One drawback is that over half of the world’s languages
are actually only spoken and have no written form. Thus,
constructing speech translation that heavily relies on infor-
mation sharing of the text representation of words is difficult.
Another problem is that speech acoustics generally involve
both linguistic and paralinguistic information (i.e., rhythm,
emphasis, or emotion). Unfortunately, since such paralinguistic
information is not a factor in written communication, much
cannot be expressed in text. Consequently, the text output by
ASR has lost all paralinguistic information; only the linguistic
parts are translated by MT. Some studies have proposed the
inclusion of additional components that just handle paralin-
guistic translation, but this step introduces more complexity
and delay [2–4]. We need an architecture that can handle both
linguistic and acoustic feature contents at once and generate
a translation to other languages.

Deep learning has shown much promise in many tasks. An
attention-based encoder-decoder neural network is a powerful
model for ASR, MT, and TTS [5–7]. Several recent works
have extended the task and constructed an end-to-end, direct
speech-to-text translation system that combines ASR and MT
tasks in a single model. Duong et al. introduced the first
study that considered speech-to-text translation with deep-
neural networks [8] and proposed alignment and translation
reranking directly from source-language speech with target
text translations. However, their work was only based on
Spanish-English language pairs with similar syntax and word
order, and the results failed to outperform the traditional
cascade approach based only on a statistical word level MT
(MOSES) [9]. Their proposed attention-based model achieved
a BLEU score of 14.6%, where the MOSES baselines out-
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performed their proposed method on the BLEU scores in
a range between 18.2 and 20.2. Bérard et al. built a full-
fledged, end-to-end attention-based speech-to-text translation
system [10]. It was the first work that used speech generated
by TTS as a corpus for speech translation (ST) tasks to
simplify the expansion of training data. However, this work
was only compared with statistical text-based MT systems and
performed on a small French-English synthetic corpus. These
two languages share similar word order (SVO-SVO). For such
languages, only local movements are sufficient for translation.
Bérard et al. [11] further investigated speech-to-text translation
with various units as character-, subword-, and word-based
speech translation with a beam search, a greedy search, and
an ensemble search that combined them and successfully
improved the translation accuracy. Their studies concentrated
on French-English translation using both synthesis and natural
speech data. Weiss et al. focused on Spanish-English speech-
to-text translation and proposed sharing the parameters of an
ASR encoder to an ST encoder. Their study revealed that an
encoder could transform speech into a consistent interlingual
subword unit representation, which the respective decoders
assembled into phrases in either language [12]. Bansal et al.
then performed speech translation with natural speech from
multi-speakers and used unsupervised term discovery on clus-
ter repeated patterns in the audio to create pseudo-text instead
of performing ASR [13]. Ultimately, all of these previous
researches just focused on syntactically similar language pairs.

In this work, we propose the first attempt to build an end-to-
end attention-based speech translation system on syntactically
distant language pairs that suffer from long-distance reordering
phenomena. We trained our attention-based encoder-decoder
model on English-Japanese language pairs with SVO versus
SOV word order and utilized TTS for data augmentation to
generate the corresponding speech utterances from the exist-
ing parallel text data. To guide the attention-based encoder-
decoder model to learn this difficult problem, we proposed
transcoding based on a curriculum learning (CL) strategy. Un-
like a conventional CL strategy that starts with easy data and
gradually emphasizes difficult data examples, we formalized
CL strategies that start the training with an end-to-end encoder-
decoder for ASR or MT tasks and gradually trained the
network for end-to-end speech translation tasks by adapting
the decoder or encoder parts.

I. RELATED WORKS

Curriculum learning, which is a learning paradigm, was
inspired by the learning processes of humans and animals
that start by grasping easy aspects and gradually increasing to
more difficult ones. Although the application of such training
strategies to machine learning has been discussed between
machine learning and cognitive science researchers as far back
as Elman et al. [14], CL’s first formulation in the context of
machine learning was introduced by Bengio et al. (2009) [15].

Using CL might help avoid bad local minimums, hasten
training convergence, and improve generalization. These ad-
vantages have been empirically demonstrated in various tasks,
including shape recognition [15], object classification [16], and

language modeling [17]. However, most studies focus on how
to organize the sequence of the learning data examples in the
context of single-task learning. Bengio et al. [15] proposed
CL for multiple tasks. Again, all of these tasks still belong
to the same type of problem (object classification) and share
identical input and output spaces.
In speech translation tasks, the translation difficulty depends
on the relationship between source and target sentences, such
as word re-ordering, alignment, insertion, and deletion. Even
if both the source and target are clean speech and short
sentences, some cases are difficult to translate. For example,
some sentences might include uncommon names or words
with multiple definitions. These translation difficulties for ST
systems are found after training.

In contrast to most previous CL studies,
(1) instead of utilizing the CL strategy for simple recogni-
tion/classification problems we use it for an attention-based
encoder-decoder neural network learning problems in speech
translation tasks;
(2) we train the model step by step from the easy task to
the complicated task changing the model structures. We start
training of an end-to-end encoder-decoder for ASR and MT
task. Then we gradually extend to the ST task by respectively
adapting the decoder or encoder parts; (3) in the original CL
learning, the input and output spaces are kept the same even
the training data become difficult. However in our CL learning,
the model input and output space will be changed as we go
to a more difficult task during the training steps.

II. BASIC ATTENTION-BASED SPEECH TRANSLATION

A. Attention-based encoder-decoder using RNN

We built an end-to-end speech translation system on a stan-
dard attention-based encoder-decoder neural network architec-
ture using an RNN [6,18] that consists of encoder, decoder, and
attention modules. Given input sequence x = [x1, x2, ..., xN ]
with length N , the encoder produces a sequence of vector
representation henc = (henc

1 , henc
2 , ..., henc

N ). We used the
following bidirectional recurrent neural network (BiRNN)
with long short-term memory units (Bi-LSTM) [19] and a
gated recurrent unit (GRU) [20] that consists of forward and
backward recurrent neural networks (RNNs) [20] comprised
of forward and backward recurrent neural networks (RNNs):

hf
n = LSTM(xn) (1)

hb
n = LSTM(xN−n)

henc
n = [hf

n, h
b
n].

Here hf denotes the forward RNN hidden states and hb

denotes the backward RNN hidden states. Thus, for each input
xn, we obtain henc

n by concatenating forward hf
n and backward

hb
n. The decoder predicts target sequence y = [y1, y2, ..., yT ]

with length T by estimating conditional probability p(y|x).
We use a uni-directional GRU. Conditional probability p(y|x)
is estimated based on the entire sequence of the previous
output:

p(yt|y1, y2, ..., yt−1, x) = softmax(Wy õ
dec
t ). (2)
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Decoder output vector odect is computed by applying linear
layer Wo to context information ct and current hidden state
hdec
t :

hdec
t = GRU(embyt−1) (3)

ct = attention(henc, hdec
t )

odect = Wo[ct;h
dec
t ].

Here ct is the context information of the input sequence
when generating the current output at time t, estimated by the
attention module over encoder hidden states henc

n :

ct =

N∑
n=1

at(n) ∗ henc
n , (4)

where variable-length alignment vector at is computed whose
size equals the length of input sequence x:

at(n) = align(henc
n , hdec

t ) (5)
= softmax(dot(henc

n , hdec
t )).

This step helps the decoder find relevant information on the
encoder side based on the current decoder hidden states. There
are several variations for calculating align(henc

n , hdec
t ); we

simply use the general attention between the encoder and
decoder hidden states [21].

B. Attention-based encoder-decoder using Transformer

In performing RNN, since each step calculation needs
to weight the previous step process, the model cannot
compute the sequence data in parallel. Ashish et al. proposed
an attention-based encoder-decoder transaction model
without a recurrent mechanism called Transformer [22]. The
encoder maps an input sequence of symbol representations
x = [x1, ..., xN ] to a sequence of continuous representations
h = [h1, ..., hN ] using a stacked feed-forward neural network
(FNN). Given h, the decoder generates output sequence
y = [y1, ..., yT ] of the symbols one element at a time.
Transformer follows this overall architecture using a stacked,
self-attention, point-wise FNN for both the encoder and
decoder. The encoder is composed of a stack of multiple
layers, each of which has two sub-layers. The first is a
multi-head self-attention mechanism, and the second is a
position-wise FNN. Transformer has a residual connection
around each of the two sub-layers, followed by layer
normalization [23,24]. The decoder is also composed of
multiple layers like the encoder. In addition to the two
sub-layers in each encoder layer, the decoder inserts a third
sub-layer, which performs multi-head attention over the
encoder stack’s output. The attention function resembles
mapping a query and a set of key-value pairs to an output,
where the query, keys, values, and output are all vectors. The
output is computed as a weighted sum of the values, where the
weight assigned to each value is computed by a compatibility
function of the query with the corresponding key. Fig.
1 illustrates the overall architecture of the Transformers.
Basically, the Transformer model offers two benefits: (1)
it models sequential data without recurrent connections.
Therefore it does not need to wait to process previous results

Fig. 1. Overview of Transformer architecture [22]
.

and can process the whole sequence at once; (2) self-attention
provides an opportunity for injecting the global context
of the whole sequence into each input frame to directly
build long-range dependencies. When performing forward
and backward processing for the current input and output,
Transformer only makes a calculation graph path for relative
states that are attended by a self-attention mechanism. But
the RNN-based encoder-decoder model makes a calculation
graph path for all the previous states because it models the
global context with recurrent structures.

C. Basic attention-based speech translation

In this study, we apply this basic architecture to various
tasks.

• ASR system:
Input sequence x = [x1, ..., xN ] is the input speech
sequence of the source language, and target sequence
y = [y1, ..., yT ] is the predicted text of the corresponding
transcription (Fig. 2). The RNN-based ASR system has
multi-layer perceptron (MLP) with a rectified linear
unit (ReLu) activation function as an input layer. The
encoder part consists of a Bi-LSTM at the 1st layer and
a unidirectional GRU at the 2nd layer. Both networks
only use an even number of input vector sequences
to reduce the memory and calculation time. For the
decoder part, we use Luong’s design decoder [21] with a
GRU decoder. The Transformer-based ASR system has
an MLP and a convolution network as an input layer.
The encoder part consists of three fully connected (FC)
layers and a self-attention function, and the decoder part
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consists of six FC layers and a self-attention function,
which are identical as the original Transformer encoder
and decoder layers [22].

Fig. 2. ASR system

• Neural Machine Translation (NMT) system:
Input sequence x = [x1, ..., xN ] is the text sequence of
the source language, and target sequence y = [y1, ..., yT ]
is the predicted text sequence in the target language (Fig.
3). The text can be represented by words, subwords,
or character sequences. The RNN-based NMT encoder
part consists of two Bi-LSTM layers. For the decoder
part, we used Luong’s design decoder [21] with a GRU
decoder. The Transformer-based NMT encoder consists
of three FC layers and a self-attention function, and the
decoder part consists of six FC layers and a self-attention
function, which are identical to the original Transformer
encoder and decoder layers [22].

Fig. 3. NMT system

• Speech translation (ST) system:

– Direct ST system
Input sequence x = [x1, ..., xN ] is the input
speech sequence of the source language, and
target sequence y = [y1, ..., yT ] is the predicted
corresponding text sequences (words, subwords, or
character sequences) in the target language (Fig.
4). As a baseline, we trained the attention-based
encoder-decoder neural network from an initial
state. Each RNN and Transformer-based direct ST

has identical architecture as each ASR model.

Fig. 4. Direct ST system

– Cascade ST system:
The Cascade ST system combines two systems:
ASR and NMT (Fig. 5). The overall system has
input sequence x = [x1, ..., xN ], which is the input
speech sequence of the source language and the
target language sequence y = [y1, ..., yT ]. We did
not perform joint training or adaptation for this
model.

Fig. 5. Cascade ST system

– ASRenc-NMTdec ST system:
Input sequence x = [x1, ..., xN ] is the input speech
sequence of the source language, and target sequence
y = [y1, ..., yT ] is the predicted corresponding text
(words, subwords, or character sequences) in the
target language. Here the attention-based encoder-
decoder neural network uses the pre-trained ASR
encoder and NMT decoder parts, following previous
works [11,12] (Fig. 6).
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Fig. 6. ASRenc-NMTdec ST system

Fig. 7. Transcoding process

– Proposed CL-Transcoder ST system:
Input sequence x = [x1, ..., xN ] is the input speech
sequence of the source language, and target sequence
y = [y1, ..., yT ] is the predicted corresponding word
sequence in the target language. For the ST system
encoding and decoding parts, we pre-trained the
ASR encoder and NMT decoder networks. To
combine them smoothly to improve performance,
we used the transcoder to transfer the context vector
from the ASR encoder to the NMT decoder (Fig.
1). The transcoder architecture follows the NMT
encoder architecture. If we build an RNN-based
ST system, the transcoder should be a two-layer
Bi-LSTM. If we build a Transformer-based ST
system, the transcoder should be Transformer.

For the RNN-based ST and ASR encoder, since the input is
speech features (continuous space), we also did downsampling
during the encoding process to save memory resources [10].
The encoder’s first layer uses the entire input sequence. The
second layer only uses every other index, the third only uses
every fourth index, and so forth. The decoder maps input
embeddings to a hidden space using a unidirectional RNN
network and applies attention to get a context vector. Finally,
we concatenate the context and decoder hidden states and map
this super vector to the target language dictionary space using
a FC network [21]. Our end-to-end ST models also skip odd
index states, as shown in Fig. 8. However, we do not apply
this downsampling to the Transformer-based model, because

Fig. 8. End-to-end speech translation skipping odd index states

Transformer uses self-attention to model long-term context
information.

III. ATTENTION-BASED SPEECH TRANSLATION BY
MULTI-TASK LEARNING WITH TRANSCODING

Utilizing attention-based encoder-decoder architecture for
constructing a Direct ST task is difficult because the model
needs to solve two complex problems:
(1) learning how to process a long speech sequence and
mapping it to the corresponding words, similar to the issues
focused on in the ASR field [5];
(2) learning how to make proper alignment rules between the
source and target languages, similar to the issues discussed in
the NMT field [6,25]. In our proposed method, the attention-
based encoder-decoder neural network is not trained directly
for speech translation tasks using parallel data. Inspired by
the original CL ideas, we proposed a new CL training strategy.
Instead of increasingly adding difficult data examples, as in the
conventional CL, we train the model step by step from the easy
task to the complicated task changing the model structures. We
start training of an attention-based encoder-decoder for speech
recognition (speech-to-text on the same source language) and
text-based machine translation (text-to-text on the source and
target languages) task. Then we gradually extend to the end-
to-end speech translation (speech-to-text or speech-to-speech
on the source and target languages) task. We describe each
training phase’s input and target sequence with their structures
in Figs. 9-11.

The encoder part received the speech features and converted
them by an MLP layer and output encoder state sequence
Henc = [henc

0 , ..., henc
n ]. We did the ASR decoding process to

get ASR decoder outputs hdec
m and used the MLP attention

mechanism for the RNN-based model and the Multi-head
attention mechanism for the Transformer-based model. The
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Fig. 9. Proposed: pre-training phase

Fig. 10. Proposed: training transcoding phase

Fig. 11. Proposed: total optimization phase
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ASR model provides a context vector sequence CASR =
[cASR

0 , ..., cASR
m ], where m represents the length of a source-

language text (words, subwords, or character sequences):

hdec
m = DecoderASR(embym−1) (6)

am = attention(henc, hdec
m )

cm =

N∑
n=1

at(n) ∗ henc
n .

The DecoderASR is a pre-trained ASR decoder, where
y denotes the source language-text (words, subwords, or
character sequences) and embym−1 denotes the previous ASR
decoder embedding vector. am is an attention score vector at
decoding step m. CASR denotes a hidden representation of
the source-language acoustic information. We input source
text embedding Xemb into the pre-trained NMT encoder and
generated output as linguistic hidden states. The transcoding
process maps these acoustic hidden states to the linguistic
hidden states of the source language. This process improves
the attention result between the source and target sequences
in the NMT decoder. The transcoding receives ASR context
vector sequence CASR and generates transcoder output HTRC.
The transcoder has identical architecture as the pre-trained
NMT encoder. We copied the pre-trained NMT encoder
(except the embedding layer) and initialized the parameters.
We then used NMT encoder hidden states HNMT as a target
to optimize the transcoder:

HTRC = Transcoder(CASR), (7)
HNMT = NMTEncoder(Xemb).

Here Xemb is a source-sentence embedding. The number of
HTRC and HNMT states equals the source text length. During
this transcoding process training, we froze the NMT encoder
parameters and only updated the ASR encoder and transcoder
parameters. We thoroughly optimized the transcoder to mini-
mize the smooth L1 loss between HTRC and HNMT:

loss(HTRC, HNMT) =


0.5 ∗ (hTRC

m − hNMT
m )2,

if |hTRC
m − hNMT

m | < 1,

|hTRC
m − hNMT

m | − 0.5,

otherwise.

(8)

The model can learn a difficult problem on a small dataset
using CL. End-to-end speech translation is difficult. Solving
this problem requires the preparation of a deeper neural
network and larger amounts of data compared to regular
text NMT tasks. Since preparing parallel speech data is very
expensive, we start training a model on a simple task and
proceed to a more difficult task. In this way, the difficulty of
the problems gradually increases with each training phase. In
the end, the model can perform end-to-end speech translation
using only a small initial training dataset. We first performed
end-to-end speech translation with a small linguistic distant-
language-pair dataset to confirm the CL benefits and compared
the translation performance of several model architectures. We
also performed speech translations with various language-pair

large datasets to evaluate our proposed model and the baseline
model. Finally, we used TED natural speech and performed
end-to-end speech translation to confirm the effectiveness of
our proposed approach.

IV. EXPERIMENTAL SET-UP AND RESULTS

A. Experiments on BTEC data

1) Experimental set-up for BTEC: First, we conducted
our experiments using a basic travel expression corpus
(BTEC) [26,27]. The BTEC English-Japanese parallel corpus
consists of training (480k) and test (20k) utterances. The
BTEC English-French and Japanese-Korean corpus consist
of training (160k) and test (500) utterances. We only used
utterances that exceed 4-words. Since the corresponding
speech utterances for this text corpus are unavailable, we used
the Google text-to-speech synthesis1 to generate a speech
corpus of the source language. To investigate the performance
of our proposed system in natural speech, we also utilized
the BTEC corpus that consists of 190k utterances of natural
English speech. Since it only has an 8k speech-to-text parallel
data of English-French and English-Japanese, we used natural
and generated speech to train the ASR and ST systems and
tested it on BTEC natural speech data.

Throughout this experiment, we describe the benefits and
potential of our proposal’s results. First, we demonstrate the
BTEC translation task with the RNN-based model on the
generated speech. Then we performed end-to-end translation
tasks on natural speech with the Transformer model [22,28],
which is a state-of-the-art sequential model. We changed all
the RNN networks to the FC layer and the self-attention
function and applied our proposed method to confirm how it
works with natural speech translation tasks. We segmented the
speech utterances into multiple frames with a 50-ms window
and 12-ms steps and extracted 80-dimension Mel-spectrogram
features using LibROSA2. We further used these data to build
an attention-based ASR, an NMT system, the baseline Direct
ST system, and our proposed ST system. The hyperparameter
settings of these models are displayed in Tables III-VIII.

TABLE I
DATA SETTING OF BTEC GENERATED SPEECH GENERATED BY GOOGLE

TTS

BTEC generated speech.
Language pairs En-Ja En-Fr Ja-Ko
Paired speech 480k 160k 160k

TABLE II
DATA SETTING OF BTEC NATURAL SPEECH

BTEC natural speech
Language pairs En-Ja

Unpaired speech 190k
Paired speech 8k

1Google TTS: https://pypi.python.org/pypi/gTTS
2LibROSA: https://librosa.github.io/librosa/
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For each system, we prepared characters, subwords [29],
and words as translation sequences. At the evaluation steps,
our final goal is to increase the translation accuracy, which
is the word level. Therefore, we combined characters or
subwords into words for evaluation.

Next we summarize the network parameters. For all sys-
tems, we used the same learning rate and adopted Adam [30]
in all of the models (Table VII).

We applied the attention-based encoder-decoder architecture
described in Section II to train the ASR, NMT, and Direct
ST systems. We also constructed a Cascade ST system and
an ASRenc-NMTdec ST system, as described in Figs. 5-
6. For our proposed models, we applied our proposed CL-
based training strategy to the attention-based encoder-decoder
architecture described in Section III.

Baseline Cascade ST:
A conventional speech-to-text translation model that
cascades ASR and NMT systems (Fig. 5).

Baseline Direct ST:
A direct end-to-end speech translation model that
uses a single attention-based neural network (Fig. 4).

Baseline ASRenc-NMTdec ST:
An end-to-end speech translation model that uses a
pre-trained ASR encoder and an NMT decoder (Fig.
6).

Proposed CL-Transcoder ST:
Our proposed direct end-to-end speech translation
model trained with transcoder and CL strategies (Fig.
11).

To confirm our assumptions and the behavior of the proposed
method, we extracted a small dataset from the original dataset.
It was only 45k utterances for training and 500 utterances for
testing, and we also limited the length of the input speech
to less than 500 frames to save memory resources. Our ASR
system achieved an 8% word error rate (WER). For translation
quality, we compared the BLEU+1 scores of each model’s
performance. We chose BLEU+1 because a BTEC corpus
consists of many short utterances and BLEU+1 is a more
suitable objective evaluation method than BLEU [31] scores
for short translations [32].

2) Experimental results on BTEC: First, we show how our
proposed method works during training with a small amount
of data. In this experiment, we limited the training data to only
45 k of generated speech utterances. We report the validation
set softmax cross-entropy of each model in Fig. 12. From
this figure, we conclude that the direct speech translation
model encounters difficulties in the training process. This
leads us to suspect that we require more training data. On
the other hand, our proposed model and the pre-trained ASR
encoder and NMT decoder concatenation model reduced the
validation loss even with fewer training data. Note also that
the ASRenc-NMTdec ST model’s first epoch validation loss
is as high as that of the direct translation model. Furthermore,
our transcoding method begins and converges with better
validation loss than the ASRenc-NMTdec ST model.

Table IX shows the translation results of the baseline and
proposed systems with the BLEU+1 scores. We also include

TABLE III
ASR SETTINGS

ASR system
Input units 80

Downsampling ratio 0.25
MLP hidden units 256

Encoder RNN layers LSTM, GRU
LSTM and GRU hidden units 256,512

Encoder dropout ratio 0, 0.3
Attention General

Decoder layer depth GRU
Decoder dropout ratio 0.8

Embed size 128
Embed dropout ratio 0.5

TABLE IV
NMT SETTINGS

NMT system
Encoder layers LSTM, GRU

LSTM and GRU hidden units 256, 512
Encoder dropout ratio 01, 0.3

Attention General
Decoder layer depth GRU

Decoder dropout ratio 0.3
Embed size 128

Embed dropout ratio 0.5

TABLE V
DIRECT ST SETTINGS

ST system
Input units 80

Downsampling ratio 0.25
MLP hidden units 256

Encoder layers LSTM, GRU
LSTM and GRU hidden units 256, 512

Encoder dropout ratio 0, 0.3
Attention General

Decoder layer GRU
Decoder dropout ratio 0.3

Embed size 128
Embed dropout ratio 0.5

TABLE VI
PROPOSED ST SETTINGS

ST system
Input units 80

Downsampling ratio 0.25
MLP hidden units 256

Encoder layers LSTM, GRU
LSTM and GRU hidden units 256, 512

Transcoder layers LSTM, GRU
LSTM and GRU hidden units 256, 512

Decoder layer GRU
Decoder dropout ratio 0.3

Embed size 128
Embed dropout ratio 0.5
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Fig. 12. Small dataset of English-to-Japanese training steps with softmax cross-entropy loss

TABLE VII
OPTIMIZER SETTINGS

Optimization
Initial learning rate 0.001
Optimizing method Adam [30]

TABLE VIII
VOCABULARY SIZE OF EACH LANGUAGE AND SEGMENT ON BTEC

Vocabulary size
Language Word Subword Character
English 27011 2918 29
Japanese 32794 2899 2691
Korean 55092 2902 1422
French 14802 2789 31

text-to-text translation results (text-based NMT). The baseline
Direct ST system with a single attention module failed to
translate the English speech to Japanese text. Learning such
syntactically distant languages as Japanese and English is
difficult when the training data are limited. However, the
performance greatly improved when we applied pre-trained
ASR and NMT parameters to the encoder and decoder in the
ASRenc-NMTdec ST system, which achieved identical per-
formance as the baseline Cascade ST systems. Our proposed
CL-Transcoder ST system achieved the best performance. It
can be stably trained and successfully outperformed all the
baseline systems with a significant BLEU+1 score margin.
The proposed method’s performance even surpassed that of
the text-based NMT. We constructed our proposed system with
[ASRenc+att]+[Transcoder]+[att+MTdec]. From a text-based
MT system viewpoint, the combination of the second and third
parts resembles MT, and the additional components in the first
part, which introduced more noise to the MT system’s input,
might function as a denoising encoder-decoder that prevents
overfitting.

Next we evaluated with a complete dataset and further
investigated the performance of the systems in various units
(character, subword, and word units) and various language
pairs. We first calculated the WER for each ASR system

TABLE IX
TRANSLATION RESULTS (BLEU+1) OF ENGLISH-TO-JAPANESE

LANGUAGE PAIRS WITH A SMALL DATASET

Model BLEU+1
Baseline Cascade ST 28.6
Baseline Direct ST 14.0
Baseline ASRenc-NMTdec ST 28.2
Proposed CL-Transcoder ST 34.3
Text-based NMT 33.2

TABLE X
ASR WORD ERROR RATE ON SMALL AMOUNT OF BTEC DATA

Language Characters Subwords Words
Ja 14.3 7.1 6.9
En 10.1 6.0 5.9

on a small BTEC dataset (Table X). Our ASR achieved a
satisfactory performance below 10% WER. We achieved a
higher performance on ASR because we used speech generated
from TTS to train and evaluate the models. A single speaker
generated TTS speech, and the speaking style is very stable.

We then evaluated the translation quality for each system
and show the results in Tables XI-XIII. Tables XI and XII
demonstrate that the performances of the baseline Cascade ST
and Direct ST approaches are similar on subword and word
translation on syntactically similar language pairs. However,
similar to the phenomena with the small dataset, the baseline
Direct ST did not perform well for syntactically distant lan-
guage pairs. In such language pairs, richer architecture and a
better training strategy are necessary.

In contrast, our proposed models outperformed both base-
line systems on syntactically distant language pairs in the
character-, subword-, and word-based systems (Table XIII).
Even on similar language pairs, our proposed approach suc-
cessfully improved the end-to-end speech translation quality
in the subword and word units.

These experiments show that our proposed system has the
potential to outperform the Cascade ST model. However, these
results are based on generated speech data; therefore, we also
performed a BTEC translation task with natural speech with
a state-of-the-art sequential model Transformer for the ASR



IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING 10

0.0

0.2

0.4

0.6

0.8

Fig. 13. Japanese ASR attention Fig. 14. Japanese-to-Korean direct translation attention

Fig. 15. Japanese-to-English cascade translation attention Fig. 16. Proposed Japanese-to-English translation attention compared
with cascade translation

Fig. 17. Japanese-to-English direct translation attention Fig. 18. Proposed Japanese-to-English translation attention compared
with direct translation

TABLE XI
BLEU+1 SCORE OF BASELINE CASCADE ST SYSTEM

Language pair Characters Subwords Words
Ja to En 25.5 30.5 32.6
Ja to Ko 31.0 40.1 41.9
En to Fr 34.8 39.9 39.7
En to Ja 29.2 32.7 33.1

and NMT models. In this experiment, we used a character as a
basic unit for ASR model. We prepared a BTEC English nat-

TABLE XII
BLEU+1 SCORE OF BASELINE DIRECT ST MODEL

Language pair Characters Subwords Words
Ja to En 17.3 18.7 19.3
Ja to Ko 29.6 39.4 39.0
En to Fr 22.3 35.2 36.8
En to Ja 20.4 27.0 22.3

ural speech dataset for English-French and English-Japanese
translation. We summarize our Transformer parameters in
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TABLE XIII
BLEU+1 SCORE OF PROPOSED CL-TRANSCODER ST MODEL

Language pair Characters Subwords Words
Ja to En 30.5 36.2 37.4
Ja to Ko 30.1 42.8 43.0
En to Fr 33.0 41.4 42.7
En to Ja 30.9 37.0 38.6

Table XIX. We used the same Transformer model for ASR
and NMT, but ASR has a prenet module (FC and Convolution
network) instead of a source embedding layer [28]. We added
20% Gaussian noise to the decoder embedding vectors to
increase the beam-search performance on the test set. The
transcoder model has three FC layers and a self-attention
function, which is identical to the Transformer encoder layers.
First, we trained the ASR model using the BTEC natural and
generated speech. ASR achieved a 6% WER on the BTEC
natural speech test set (500 utterances). The BTEC text NMT
systems were given English character sequences as input and
output subword target sequences. We show our ASR model’s
performance in Table XIV and present the text NMT, Cascade
ST, and Proposed ST BLEU scores in Table XV. The results
for the RNN-based model in natural speech are slightly worse
compared to the performance with generated speech. But, if
we use the Transformer instead of RNN that is trained using
both natural and generated speech, we achieved a high ASR
performance of 6% WER. Also, the Transformer framework
improved the text translation performance when compared
to RNN-based model. Based on these results, we used the
Transformer architecture as the standard architecture of our
proposed model in later sections.

TABLE XIV
ASR WORD ERROR RATE OF BTEC NATURAL SPEECH

Model
Test speech data

Generated Natural
BTEC BTEC

RNN ASR 8 % 9 %
Transformer ASR 1 % 6 %

TABLE XV
BLEU SCORES OF BTEC NATURAL SPEECH TRANSLATION

Model En to Fr En to Ja
Direct ST 36.2 28.2

ASR and NMT Cascade ST 40.3 35.0
End-to-end Proposed ST 43.8 40.0

B. Experiments on TED Talk data

1) Experimental set-up for TED Talk: We also performed
experiments on the TED corpus3, which consisted of 270k
English sentences. All of these sentences have a corresponding
French translation, but only 210k have German translations.

3TED talks: https://www.ted.com/talks

TABLE XVI
DATA SETTING OF TED GENERATED SPEECH CREATED BY GOOGLE TTS

SYSTEM

TED generated speech
Language pairs En-Fr En-De
Paired speech 270k 210k

TABLE XVII
DATA SETTING OF TED NATURAL SPEECH

TED natural speech
Language pairs En-Fr En-De

Unpaired speech 236k 236k
Paired speech 8k 178k

TABLE XVIII
ASR PRENET SETTINGS FOR TED TALK

ASR prenet functions
Input FC units 80

Output FC units 512
hline Convolution layers 3
Convolution input units 512
Convolution kernel size 5

Convolution dropout ratio 0.2
Batch normalize True

Post FC units input and output units 512

TABLE XIX
TRANSFORMER SETTINGS FOR TED TALK

Transformer parameters
Encoder layers 3
Decoder layers 6

Input and hidden units 512
Transformer FC units 1024
Multi-head number 8

Dropout ratio 0.2

TABLE XX
TEXT EMBEDDING SETTINGS FOR TED TALK

Text embedding layers
English character embedding input units 32
English subword embedding input units 31011
German subword embedding input units 33124
French subword embedding input units 31092

Embedding output units 512
Position encoding True

Decoder noising rate 0.2

TABLE XXI
OPTIMIZER SETTINGS

Optimization
Optimizing method Adam [30]

Warm-up steps 4000
Initial learning rate 0.001
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We used these text datasets to train each English-French and
English-German MT model. For the speech-to-text model,
we used the TEDLIUM English 58k natural speech. Only
6k English utterances overlap between the TEDLIUM 58k
natural speech and the TED talk parallel text dataset. We made
a 6k-utterance English-French and English-German natural
speech-to-text corpus using these overlapping data. To add
more data, we used Google TTS to generate another 270k
English speech utterances from a parallel text corpus. Finally,
we also utilized the IWSLT2018 English-German speech-to-
text TED dataset, which consists of 2k talk waveform data.
Based on the provided IWSLT2018 alignment information,
we segmented those waveforms and got 178k English-German
parallel utterances. Therefore, we trained our English ASR
and transcoder with the TEDLIUM 58k utterances of natural
speech, the IWSLT2018 178k utterances of natural speech,
and 270k generated speech utterances. The English-French
ST model was trained with a 270k generated speech-to-
text corpus and a 6k natural speech-to-text corpus, and the
English-German ST model was trained with a 210k generated
speech-to-text corpus, a 6k natural speech-to-text corpus, and
the IWSLT2018 178k utterances of the natural speech-to-text
corpus. For evaluation, we used the IWSLT2018 “dev2010”
dataset for a validation set as well as a “tst2015” and “tst2018”
datasets for test sets.

2) Experimental results on TED Talk: We also trained the
ASR model using TED natural speech, BTEC natural speech,
and TED generated speech. ASR achieved a 18% WER on
the TED natural speech test set shown in Table XXII. The
TED natural speech included lots of noise, and therefore
the generated speech and the BTEC natural speech did not
improve the TED natural test speech ASR performance. We
also trained the NMT model using only the TED corpus. We
present the text NMT, Cascade ST, and Proposed ST BLEU
scores in Table XXIII. For comparison in the same condition,
the TED text NMT systems were given English character
sequences as input and output subword target sequences. We
trained the text NMT for each language pair and chose the
best performance setting’s output segments to train the ST
model.

TABLE XXII
ASR WORD ERROR RATE OF TED NATURAL SPEECH

Model tst2015 tst2018
Transformer ASR 18 % 19 %

TABLE XXIII
BLEU SCORES OF TED NATURAL SPEECH TRANSLATION

Model
En to Fr En to De
tst2015 tst2015 tst2018

Text-based NMT 29.8 25.1 25.3
Cascade ST 16.3 13.1 12.7
Proposed ST 17.1 13.8 13.0

The results of this experiment are displayed in Table XXIII.
The performances of Cascade ST and Proposed ST models

were affected by ASR errors. Although Transformer can
give better performance than that of RNN, the Transformer
still has some weaknesses. If the Transformer NMT got
incorrect inputs (i.e., ASR errors), then NMT may output
very short sequences (e.g., “so” or “and”). However, our
proposed method has a potential to recover the ASR errors
in the translation process. Therefore, our proposed method
outperformed Cascade ST in natural speech translation tasks.

C. Discussion
To provide more detail, we visualized a sample attention

matrix of alignment weights from the ASR and all translation
methods. Each pixel shows the alignment weight of the j-
th source sequence (in the horizontal axis) to the i-th target
sequence (in the vertical axis) in gray-scale (0: black indicates
the lowest weight, and 1: white indicates the highest weight).
The attention weights of the ASR system are shown in Fig. 13.
The values are high along the diagonal of the matrix, which
illustrates the monotonous (left-to-right) natural alignment
between speech and text. Fig. 14 shows the attention weights
of the baseline Direct ST for similar language pairs of Japanese
and Korean. It also has a diagonal line, which indicates
that the alignment of words between Japanese and Korean
is mostly monotonic. However, the attention scores are not
as high as in the ASR system since there are many possible
ways to translate from one language to another. Therefore,
instead of having a significant weight in a single pixel, it has
weak weights in several pixels that represent several possible
candidates.

Next we investigated the attention weights for the ST task
with distant language pairs. First, we compared the attention
weights of the baseline Cascade ST in Fig. 15 with the
proposed CL-Transcoder ST in Fig. 16 for Sentence 1 of
Table XXIV. In our proposed method, we have two attention
modules. The first aligns the encoder’s hidden states of speech
features with the transcoder input sequence, and the second
aligns the transcoder output sequence with the decoder. In
this figure, we display only the second. The first attention
module has a monotonic shape that resembles ASR attention
(Fig. 13). In the baseline Cascade ST, the NMT model input
is the sampled output from the ASR model hypotheses, which
is a single character, subword, or word unit. Unfortunately,
when the ASR hypotheses are wrong, the NMT is unable
to fix such errors. On the other hand, our proposed CL-
Transcoder ST model solves this problem by directly mapping
the speech context vector into a latent translation state using
the transcoder. In this way, the speech context vector has
more latent information compared with the sampled character
or word. In other words, instead of having the 1-best ASR
hypothesis, it had an n-best hypothesis. As seen from Figs. 15-
16, our proposed method produces better attention and results,
specifically on the top part of attention weights “may I” versus
“let me” due to the ability to recover some ASR errors. Thus,
our proposed CL-Transcoder ST with transcoder successfully
solved the error propagation problem in traditional model
cascade architecture.

We also compared the attention weights of the baseline
Direct ST in Fig. 17 with the attention weights of the proposed
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TABLE XXIV
TRANSLATION RESULTS FOR FIGS. 14-17

Speech translation results of sentence 1
Recognition Reference seisan syo wo kakunin sa se te kuda sa i .

(Ja) ASR Result seisan syo wo kakunin shi ma su ka .
Translation Reference let me check your account .
(Ja to En) Cascade ST may i check my bill ?

Proposed ST let me check the bill .
Translation results of sentence 2

Recognition Reference ano otoko ha do ahoh de su .
(Ja) ASR Result ano otoko ha ** ahoh de su .

Translation Reference that man is an asshole .
(Ja to En) Direct ST the guy is in the tower of the tower of the blue man .

Proposed ST the man is a horror man .

CL-Transcoder ST from the second attention module in Fig. 18
for Sentence 2 of Table XXIV. As seen from Fig. 17, there is
no clear association between the speech input frames and their
corresponding words. This indicates that direct translation for
distant language pairs using standard attention-based end-to-
end architecture is difficult. In contrast, our proposed architec-
ture addresses the problem with two attention modules and one
transcoder. The first attention handles the mapping between
the source speech encoder and the hidden representation of
the transcoder input, and the transcoder maps the underlying
representation of the input speech context vector into the latent
representation of the text transcription of the transcoder output.
Therefore, the task of the second attention is only to map
between the transcoder output state to the target text translation
of the decoder. In this way, the attention module generated a
better attention map and result (Fig. 18) for Sentence 2 in
Table XXIV.

Our most significant contribution is that we directly trans-
ferred the ASR hidden vector to the translation part. Since
the cascade models transfer the transcript results, when an
ASR error occurs, and attention spreads widely, the attention
module cannot find useful information to recover the ASR
error. In our proposed models, we processed the BiRNNs or
Transformer for the ASR context vectors in the transcoding
part, and the transcoder hidden states are the attention keys,
such as in the hidden states of machine translation encoders.
Therefore, when an ASR error occurs and the attention scores
spread widely, the attention module can gather information
before and after the hidden sequences to recover the error.
Another contribution is simplifying the task of the attention
module. Constructing a direct speech translation in a single
model means that we combine both tasks and perform many-
to-many mapping tasks over long sequences (i.e., mapping
from various speech utterances of identical contents to multiple
possible translations). For language pairs with similar syntax
and word order, the alignment between the source and target
sequences is almost monotonous (left-to-right), but the model
can still handle the task. In contrast, with syntactically distant
language pairs, speech translation requires distant word order.
Therefore the attention module suffers when it handles a long
input sequence and a distant alignment between the source and
target sequence states. Such a condition is computationally

expensive and often produces misalignment. Therefore, we
propose a framework with two attention modules and one
transcoder instead of just a single attention module. The
first attention module task works on the alignment between
a vector representation sequence of the speech utterance to
the corresponding text sequence in the source language and
produces context information (similar in complexity to an ASR
attention module). The second attention module task works
on the alignment between a vector representation of the text
sequence in the source language to the target language (similar
in complexity to an NMT attention module). Finally, the
transcoder task connects both attention modules and converts
the ASR context information to text vector representation
in the source language. In this way, we can perform direct
speech-to-text translation while keeping the complexity almost
similar to the cascade ASR-NMT systems.

Our final contribution is providing the possibility to perform
direct speech translation without large-size parallel speech
data. One main issue in developing a direct ST system is
the need for parallel speech (speech-text or speech-speech
translation) data. Many studies have addressed this problem by
utilizing TTS to generate speech data. In this paper, we also
use 160k parallel text and the corresponding speech generated
by TTS for pre-training ASR and NMT as well as for the total
optimization of the direct ST system. This was done to have
a fair comparison with the baseline Cascade ST and Direct
ST. Our proposed architecture, however, allows us to perform
without extensive size parallel speech data. For example, we
can pre-train ASR with natural and synthesized data that do
not have the corresponding translation and pre-train NMT
with standard parallel text that lacks relevant speech data. We
perform total optimization with only a small amount of parallel
natural speech data. Furthermore, our proposed method utilizes
pre-trained ASR and NMT models and transfers and optimizes
pre-trained models in a hidden state sequence as a transcoding
process. The optimization process no longer depends on the
text data of the source language.

Our second experiment on the BTEC and TED dataset
shows that our proposed method also works on difficult natural
speech translation tasks. The ASR and transcoder model can
use natural and generated speech corpus in training. The
transcoding process maps the ASR context sequence to the
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NMT encoder sequence; even then, however, ASR occurs,
and the context vector includes much noise. However, the
transcoding process can recover the noise. Therefore, our
proposed method outperforms the standard cascade ASR +
NMT model.

If the source language lacks a written form or a sufficient
amount of data, we can first pre-train the ASR and NMT
models using similar languages or other languages from the
same family that have written forms. We can then perform total
optimization with the required language. Further investigation
is needed about the effectiveness of our proposed architecture
to extend the application to various languages (even for those
without a written form) as well as possibly extending the TTS
part and performing a complete speech-to-speech translation.

V. CONCLUSIONS

We presented the construction of end-to-end speech transla-
tion for distant language pairs with transcoding based on CL
strategies that gradually trained the network for end-to-end
speech translation tasks by adapting decoder or encoder parts.

Our experimental results demonstrated that the translation
quality outperformed the Cascaded ST, standard Direct ST, and
ASRenc-NMTdec ST systems and revealed that our proposed
model effectively decreased loss even using direct complex
problems. These results still rely on synthetic data because we
need to prepare the same data for all the baseline and proposed
systems, and a huge parallel speech corpus is not available.
Our proposed architecture, however, can effectively use mono-
lingual speech and parallel text. Our transcoding process may
also be useful for joint TTS schemes to achieve speech-to-
speech and/or paralinguistic translations. In the future, we
will investigate the effectiveness of our proposed method
using natural speech data and paralinguistic information and
expand the speech-to-text translation task to a speech-to-
speech translation task.
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