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We propose an approach for the detection of language expectation violations

that occur in communication. We examined semantic and syntactic violations from

electroencephalogram (EEG) when participants listened to spoken sentences. Previous

studies have shown that such event-related potential (ERP) components as N400 and

the late positivity (P600) are evoked in the auditory where semantic and syntactic

anomalies occur. We used this knowledge to detect language expectation violation from

single-trial EEGs by machine learning techniques. We recorded the brain activity of 18

participants while they listened to sentences that contained semantic and syntactic

anomalies and identified the significant main effects of these anomalies in the ERP

components. We also found that a multilayer perceptron achieved 59.5% (semantic)

and 57.7% (syntactic) accuracies.

Keywords: electroencephalogram, event-related potentials, N400, P600, single-trial analysis, multilayer

perceptron

INTRODUCTION

In speech communication, we often face several types of language expectation violations, such as
prosodic, semantic, and syntactic errors, especially in conversation through machine output (e.g.,
human–computer interaction; Koponen, 2010). Questionnaire-based subjective judgments are
commonly used to rate such language expectation violations as linguistic discrepancies (Dybkjær
et al., 2007). For example, regarding errors in the responses of spoken dialogue systems and
machine translation, human examiners in previous research judged each sentence on an error scale
from 1 to 5, unlike automatic evaluation metrics, e.g., word error rate (Lippmann, 1997; Och et al.,
1999; Papineni et al., 2002). Even though this approach is quick and practical, it suffers from several
problems. For instance, such subjective evaluations of participants contain ambiguity and cannot
guarantee accurate answers. In this paper, we propose a new objective approach that automatically
detects such language expectation violations from physiological signals (Näätänen et al., 2004;
Morikawa et al., 2011; Honda et al., 2018) because participants face more obstacles when they are
manipulating physiological signals. Although our goal is to develop an online detection tool of the
language expectation violations of humans using physiological signals, we simplify the problem by
detecting clear language expectation violations as our first step. We assume that this system can
also be used for assessing people who exhibit the anomalies of semantic context sensitivity (e.g.,
autism spectrum, dementia, Olichney et al., 2008; Pijnacker et al., 2010; O’Connor, 2012; Tanaka
et al., 2012, 2015, 2017a,b, 2018a; Ujiro et al., 2018).

An electroencephalogram (EEG) is a non-invasive tool that records the electrical activity of
the human brain with electrodes placed on the scalp. Regarding real applications using EEGs, in
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the context of motor imagery, which is reflected in event-
related desynchronization [ERD; (Yeom and Sim, 2008)], the
automatic detection of mental states based on convolutional
neural networks (CNNs) has been proposed (Tang et al., 2017).

Unlike ERD, an event-related potential (ERP) is a measured
time-locked brain response that is a direct result of a specific
sensory, cognitive, or motor event. Since ERPs generally have
a low signal/noise ratio in individual trials, many consecutive
trials (e.g., 30 times) are usually averaged to diminish the random
noise. Thus, single-trial detection of ERP components is very
challenging due to their low signal/noise ratios (Blankertz et al.,
2008; Lotte, 2015; Magee and Givigi, 2015). One public dataset
focused on the single-trial detection of P300 components (Hald
et al., 2006; Daubigney and Pietquin, 2011), which were elicited
with relatively high signal/noise ratios. Most previous works have
shown that P300 components can be detected with around 50–
70% accuracy (exceeding the chance rate) using several machine
learning algorithms (Stewart et al., 2014; Akram et al., 2015;
Higashi et al., 2015; Sharma, 2017). Several approaches reached
100% accuracy using four to eight averaged trials in the BCI
Competition 2003 (Cashero, 2012).We also need to consider that
most works created subject-dependent models (within-subjects)
because EEG signals are prone to being subject-dependent, and it
remains challenging to generalize to subject-independent models
(Terasawa et al., 2017).

Even though P300-based single-trial detection is one
successful real application (P300-speller), it failed to detect
language expectation violations including semantic and syntactic
errors. To achieve single-trial detection of such errors, we focus
on other ERP components, e.g., N400 and P600. N400 is a
well-known ERP component that is evoked in auditory and
visual modalities where semantic anomalies occur (Hagoort
and Brown, 2000b). N400 is a phenomenon in which the
potential shift in the negative direction increases around the
brain’s parietal region at around 400ms from the onset of
semantic and syntactic anomalies. Because N400 is strongly
influenced by background noise, artifacts, and variations
among trials, multiple times must be averaged. One study
concluded that N400 is further influenced by a mismatch of
the syntactic case information (Frisch and Schlesewsky, 2001).
P600 (Narumi, 2014), another well-known ERP component
(Hagoort and Brown, 2000a), is evoked in auditory and visual
modalities where rule-governed anomalies generally occur.
P600 is a language-related ERP that is thought to be elicited
by grammatical errors and other syntactic anomalies. Several
works have been done in Japanese (Ueno and Kluender, 2003;
Mueller et al., 2007). P600 is characterized as a positive-going
deflection with an onset around 500ms after the onset of
several types of anomalies. It peaks around 600ms after the
presentation of the stimulus and lasts several 100ms. P600 is
not language-specific, but it can be elicited in non-linguistic
(but rule-governed) sequences [e.g., musical chords; (Patel
et al., 1998)]. There are few P600 studies on Japanese syntactic
violations in auditory modality (e.g., Mueller et al., 2005). To
the best of our knowledge, no studies have addressed semantic
violations in auditory modality in the Japanese language, which
resemble our goal.

Based on our survey, despite the importance of real
speech communication, only one study investigated the single-
trial detection of semantic anomalies. Geuze et al. (2013)
addressed the single-trial detection of semantic priming and
the classification of visually presented related and unrelated
words with an L2 regularized logistic regression algorithm as a
classifier. For more practical applications with such technology,
the work-detection keyboard autocorrection of possible semantic
and syntactic errors from only EEGs identified the accuracy
of the single-trial error detection of around 70% (Putze and
Stuerzlinger, 2017). They used linear discriminant analysis
as a classifier. Although these two studies detected semantic
anomalies in single-trial levels, they did not detect them in
spoken sentences.

In this paper, we propose the single-trial detection (from
subjects who listened to spoken sentences) of semantic and
syntactic anomalies that can be applied to Japanese spoken
communication error evaluations. Such linguistic errors might
be common across languages. Although we evaluated language
expectation violations in Japanese, our approaches may be
generalizable to other languages that include semantic (reflecting
context expectation) and syntactic (reflecting rule-governed)
errors. Understandably, when languages differ, the onset (starting
points) of the time-locked ERPs will also be different.

This paper examined the following three research questions:

1. Do semantic violations while listening to spoken Japanese
sentences elicit ERPs?

2. How does machine learning contribute to single-trial
detection for language expectation violations, including
semantic and syntactic errors?

3. Which classification model more proficiently distinguishes
semantic and syntactic violations?

We recorded EEG data while Japanese participants listened to
sentences that contained semantic and syntactic anomalies and
analyzed the ERP effects. We also detected both anomalies
from single-trial EEGs with a technique that classified them
from multielectrodes and by integrating the time and spectral
information with multiple machine learning algorithms.

This paper is an extension of conference proceedings (Tanaka
et al., 2018b) in which we reported the overall single-trial
detection of semantically incorrect sentences. We added the
analysis of syntactic anomalies as well as participant-independent
models with more participants.

METHODS

Our first aim is to confirm whether not only syntactic but also
semantic violations in listening to Japanese sentences elicit ERPs.
We hypothesized that semantic violations will elicit N400-/P600-
related ERP components and syntactic violations will elicit P600-
related ERP components. We also attempted to detect such
violations from single-trial EEGs. We proposed several machine
learning classifiers and confirmed classification above chance
levels. In this section, we explain how we performed the EEG
experiment and the classification.
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Participants
This study was carried out in accordance with the
recommendations of the research ethical committee of the
Nara Institute of Science and Technology. The protocol was
approved by the research ethical committee of the Nara
Institute of Science and Technology. All participants gave
written informed consent in accordance with the Declaration
of Helsinki.

Nineteen graduate students (16 males and 3 females) between
22 and 41 years of age (mean: 24.2) from the Nara Institute of
Science and Technology participated. All were native Japanese
speakers with no history of psychiatric problems or hearing
disabilities; 18 were right-handed.

Materials
In this study, we prepared two types of violations to elicit
language expectation violations: a selectional restriction (as a
semantic condition) and a double-nominative case (as a syntactic
condition). Semantic violations very often also elicit biphasic
N400 and P600 patterns, particularly when judging linguistic
deviancy tasks (Sassenhagen et al., 2014). Note also that the
double-nominative case violation that we chose for our syntactic
manipulation has elicited N400 effects, including in Japanese
(Mueller et al., 2005).

Japanese semantic and syntactic anomalies were manually
created by referring to Takazawa et al. (2002) and Mueller
et al. (2007). For the semantic condition, we defined error as
a selectional restriction between a verb and its arguments. For
the syntactic condition, error was defined a double-nominative
case of the second phrase. We created an identical number of
semantically and syntactically correct and incorrect sentences.
We separated these sentences, which means that no two parts of
the violated sentences are found in the stimuli.

The following is an example of twomatched types of sentences
(available on the Supplementary Material):

(Semantic)

a. Hanako-ga nikki-o tsuzu-ta
Hanako-NOM a diary-DAT write-PAST
Hanako wrote in her diary .

b. ∗Hanako-ga beer-o tsuzu-ta
Hanako-NOM a beer-DAT write-PAST
Hanako wrote a beer.

NOM: nominative case marker;
DAT: dative case marker;
PAST: past tense morpheme.

(Syntactic)

c. Gakusei-ga kenchikuka-o tasuke-ta
Student-NOM architect-DAT help-PAST
The student helped the architect.

d. ∗Gakusei-ga kenchikuka-ga tasuke-ta
Taro-NOM architect-NOM help-PAST

NOM: nominative case marker;
DAT: dative case marker;
PAST: past tense morpheme.

Here, an asterisk indicates semantically (b) and syntactically
(d) incorrect sentences. Matched sentences corresponded in the
first and third phrases. Due to the speech stimulus, we controlled
the phonemes following Hagoort and Brown (2000b) in the
third phrase to begin with plosive sounds:/t/,/k/,/d/, and/g/.
Since such plosive sounds are in the onset position of the ERPs
marked by human annotators, a consistent pattern is required in
the spectrogram.

A group composed of the first author (A), the second author
(B), and a graduate student who did not join our experiment (C)
confirmed and corrected each sentence and reached a consensus
about whether a semantic anomaly occurred. We selected the
following 200 types of sentence from a total of 360 sentences: 40
semantically correct, 40 semantically incorrect, 40 syntactically
correct, 40 syntactically incorrect, and 40 fillers sentences. Fillers
were correct sentences that were used as dummies.

We transcribed them into text and recorded speech that was
naturally spoken by a professional female narrator whom we
instructed to avoid inserting pauses between phrases. The length
of the audio files ranged from 1.8 to 3.0 s.

For the semantic case, the syntactic structure of the sentences
was matched between the two conditions. We used the same
target words in the third phrases. The experiment member A
confirmed that the mean frequency of the third phrases was 1.02
in both conditions. Here, a mora is a unit in phonology that
determines the syllable weight. Themean number of the moras of
the third phrases was 4.25 (SD= 1.35). The difference of the two
conditions was the second phrases with a mean number of moras
of 4.15 (SD= 0.86) in the correct condition and 4.63 (SD= 0.93)
in the incorrect condition.

For the syntactic case, the difference of the two conditions was
the nominative case marker of the second phrases. The mean
frequency of the second phrase was 1 in both conditions. The
mean number of moras in the second phrases was 4.1 (SD= 0.98)
in both conditions.

Moreover, we investigated the predictability of subsequent
words (cloze probability) that affect the N400 amplitudes
(Borovsky et al., 2010). One hundred crowdsourcing workers
were given a list of 40 semantically incorrect sentences from
which the final word had been removed. They read the sentences
and filled in the blanks at the position of the hidden sentence-final
words with the first word that popped into their heads. After that,
we manually changed the present tense to the past tense, revised
minor typing mistakes, and calculated the cloze probability of the
most frequently selected words. The following is the distribution
of the cloze probability: mean, 41%, SD, 16%, range, 14–85%. We
confirmed that no words appeared as semantically incorrect in
our stimuli, whichmeans the cloze probability to the word is zero.

Synchronization
Since ERPs are the time-locked brain response, we explain details
with regard to synchronization between the auditory stimuli and
EEG. Experiment members A and C marked the synchronized
onset (t = 0). For the semantic case, ERP onset is the speech’s
start position of the third phrases. The onset starts with plosive
sounds. The precise beginning position was marked by observing
spectrogram of the speech. For the syntactic case, ERP onset
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is the speech’s start position of the nominative case marker of
the second phrases. The onset also begins with plosive sounds
(only/g/) and was marked by observing spectrogram of the
speech. We used the Wavesurfer (TMH, Speech, Music, and
Hearing) in order to visualize spectrogram of the speech.

Design
The participants entered a soundproof room, sat down, and
were instructed to look at the attention point on the monitor
and to refrain from blinking and moving as much as possible.
The following was the experimental procedure: (1) watch the
“+” mark for 1 s on the screen; (2) listen to one randomly
presented speech sound for 4 s; and (3) press a key and
determine within 2 s whether each speech contains grammatical
or semantic errors. We conducted subjective evaluations and
prepared practice trials before the EEG recordings. All these
steps were completed within 25min. For speech listening, we
used earphones (ER1). This series of experiments was created
using presentation software provided by Neurobehavioral
Systems (Version 18.0, Neurobehavioral Systems, Inc., Berkeley,
CA, www.neurobs.com).

The correct answer rates from the behavioral results were
95.8% for semantically correct and incorrect and 96.7% for
syntactically correct and incorrect (error rate is <5%).

Electroencephalogram Recording
and Preprocessing
As an EEG cap, we used ActiCAP by Brain Products with 32 ch
active electrodes according to all the standard positions of the
international 10/20 system (see Figure 1). We used a BrainAmp
DC from the same company as an amplifier. As a recording
filter, we applied a high-pass filter of 0.016Hz and a low-pass
filter of 250Hz. The sampling rate was 1,000Hz, the reference
electrode was FCz, and the ground electrode was FPz. In order to
synchronize the speech signal with EEG, we generated a speech
timing signal and recorded it with the EEG amplifier.

For preprocessing the recorded EEGs, we used FieldTrip
software (Oostenveld et al., 2011) as follows: (1) Re-referencing
was performed on the average of the TP9 and TP10 electrodes.
(2) An FIRfilter was applied through a high-pass filter of 0.3Hz
(order: 6192), which is designed for DC suppression (−60 dB at
DC) to replace the baseline correction (Maess et al., 2006; Wolff
et al., 2008). (3) For each trial condition (excluding fillers), epochs
were extracted at−100 to 900ms of the synchronous onset. Here,
the onset is the speech’s start positions of the third phrases for
the semantic condition and of the nominative case marker of
the second phrases for the syntactic condition. (4) First artifact
rejection was performed on epochs that exceeded a threshold
of −350 and 350 µV in order to remove epochs contaminated
with large amplitude of artifacts. This threshold rejection did
not consider FP1 and FP2 electrodes where eye-related artifacts
mainly contaminated. This large amplitude threshold is to
preserve eye-blink artifact, which will be removed by later
independent component analysis (ICA). (5) We performed an
automatic approach and visual inspection to remove muscle
artifacts: automatically identifying artifacts at Z score = 15 by
considering amplitude distributions of band-pass-filtered epoch

data (110–140Hz), then rejecting epochs contaminated with
muscle artifacts based on visual inspection (Meyer et al., 2017).
(6) The recorded EEGs were downsampled to 250Hz. (7) The
logistic infomax ICA algorithm of Bell and Sejnowski (1995)
was performed to correct eye-related artifacts, and eye-related
components were removed. We identified the components by
calculating the correlations to the FP1 and FP2 electrodes and by
a visual inspection of the topographies and the waveforms. Four
was the maximum number of rejected components because we
only intended to remove as few horizontal and vertical ocular
artifacts as possible. The rejected components had a mean of
2.1 (SD: 1.2). (8) A second artifact rejection was performed on
epochs that exceeded the thresholds of −120 and 120 µV. As a
result of the above artifact rejection procedures, one participant
was removed because of the large number of rejected epochs
(more than 30% of the epochs were rejected). The average rate
of rejected trials across participants was 6.2%. We found no
effects of the number of rejected trials between the semantically
correct and incorrect and the syntactically correct and incorrect
by using paired t-test {semantic: [t(17) = 1.32, p= 0.20], syntactic:
[t(17) = 0.68, p= 0.51]}.

Event-Related Potential Analysis
For further improvement of the signal/noise ratio, we applied
another filtering procedure to the ERP data. Since the N400
components are around 6Hz and the activity in the alpha
frequency band tends to contaminate the EEG data, we used a
two-pass IIR Butterworth filter of order 8 at 8Hz to achieve a
steeper frequency response than the FIR filter and to preserve
the ERP components that also attenuate the alpha activity. Note
that this filter was applied for only visualizing and analyzing
ERPs, meaning that we did not use these filtered signals to the
single-trial analysis.

We computed the grand average of all the participants. Based
on a previous studies (Hagoort and Brown, 2000a,b; Mueller
et al., 2005; Wolff et al., 2008), we selected the following
electrodes in each time window: 100–300, 300–500, and 500–
800ms. These time windows were selected based on the previous
study that analyzed syntax- and semantic-related ERP effects
(Mueller et al., 2005). To assess the topographic differences in
the ERPs, electrodes were summed up in five regions of interest
(ROIs)—left anterior: F3, F7, FC1, FC5; right anterior: F4, F8,
FC2, FC6; left posterior: CP1, CP5, P3, P7; right posterior: CP2,
CP6, P4, P8; and midline: Fz, FCz, Cz, Pz. For the statistical
analyses, we calculated the mean amplitudes in the chosen time
windows (Wolff et al., 2008).

We used two-way repeated ANOVAs to examine the main
effects of the condition and its interaction by ROIs in each
time window. We performed a post hoc multiple comparison
of the interaction between conditions and regions using the
Tukey–Kramer method. Finally, we performed cluster-based
permutation tests (Maris and Oostenveld, 2007) on the ERPs
of the semantic and the syntactic conditions. Regarding the
cluster-based permutation tests, for each time step of interest, we
marked the electrodes that are members of significant clusters.
The significance probability can be calculated by means of the
Monte Carlo method. The Monte Carlo significance probability
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FIGURE 1 | All electrode labels: gray electrodes indicate reference and grand position.

is also called a p-value. If the p-value is smaller than the critical
alpha level (5% in this study), then we conclude that the data
in the two experimental conditions are significantly different.
Overall, we set the significance level to 5%.

Feature and Classifiers
Based on previous work (Hagoort and Brown, 2000b; Roehm
et al., 2004), we extracted the average values of the 100–300,
300–500, and 500–800ms amplitudes from all of the electrodes
(93 time domain features). To avoid overfitting to the training
data, we selected specific time domains (possibly important time
ranges) rather than using all time sampling points (simplifying
the model). We also considered all of the electrodes with
frequency domains for the single-trial detection of EEGs (Putze
and Stuerzlinger, 2017). The delta band has been associated with
N400 and P600 components in language (Correia et al., 2015).
Thus, we performed a fast Fourier transform on the waveform
between 0 and 900ms to the onset and calculated the average
values of the power spectra of δ (1–3Hz), θ (4–7Hz), α (8–12Hz),

and β (13–28Hz) (124 spectral domain features) by referring to
previous work (Hald et al., 2006; Mcmahon et al., 2015). We
concatenated time and spectral features (217 dimensions). The
feature vectors were normalized to a mean of zero and one
standard deviation.

For the classifiers, we used a linear kernel support vector
machine (L-SVM), a radial kernel support vector machine (R-
SVM), a random forest (RF), and multilayer perceptrons (MLPs).
The classifiers were trained on a dataset that combined 13
participants and subsequently tested on five different participants
without further training by following Vareka and Mautner
(2017). We observed how our detection models performed when
they dealt with data from previously unknown participants.

These models were trained using 5-fold cross-validation for
hyperparameter tuning on the training set to optimize the
accuracies. The hyperparameters included the kernel (linear or
radial basis function), C = {10–5, 10–4, . . . , 103}, γ = {0.00,
0.005, . . . , 1.00} (in the case of the RBFkernel) for the SVMs, the
number of variables tried at each split = {5, 10, 15, 20} for the
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FIGURE 2 | Grand average of nine representative electrodes of semantic and syntactic conditions. Vertical axis ranges between −4 and +4. Positivity is plotted up.

We plotted −100 to 900ms to the stimuli onset. Topographical map shows a difference wave between incorrect and correct conditions.

RF, and the number of hidden units {5, 10, 50, 100, 150, 200},
the number of hidden layers {1, 2, 3}, and activation function
(logistic, hyperbolic tangent, or rectified linear unit) in the MLP
by referring to Vail et al. (2018). After the parameters were
found, the models were trained on the whole training dataset and
subsequently tested.

By a binomial test, we compared the chance rate (50.4% for
the semantic sentences and 50.4% for the syntactic sentences in
the test set) and the model that achieved the highest accuracy
as well as precision, recall, and F1. We also calculated the
correlation between cloze probability and semantic accuracy
based on Pearson’s correlation coefficient.

RESULTS

Event-Related Potential Effects
Figure 2 plots the ground averages at representative electrodes
in the semantic and syntactic conditions. For the semantic
condition, a potential shift to the negative around 400ms can
be observed under the semantically incorrect condition over the
parietal region, and late positivity (P600) can also be seen.

Based on our assumption, for a time window of 300–
500ms, ANOVAs would show the main effects of the condition
[F(1, 17) = 4.69, p = 0.04]. No significant interaction was
shown between condition by region [F(4, 68) = 1.18, p = 0.32].
Regarding other time windows, for a mean amplitude of 100–
300ms, we found main effects of condition [F(1, 17) = 4.51,
p = 0.04] and also a significant interaction of condition by
region [F(4, 68) = 11.5, p < 0.001]. Since there were significant
interactions of the condition by region, multiple comparisons
were separately calculated for each region. Post hoc analysis by the
Tukey–Kramer method revealed that the left anterior [difference
(incorrect – correct): 0.66, p= 0.02, 95% CI= 0.09–1.23] and the
right posterior (difference: 0.45, p = 0.02, 95% CI = 0.06–0.83)
were significantly different between two conditions. For themean

amplitude of 500–800ms, we found no main effects of condition
[F(1, 17) = 0.82, p = 0.37]. However, we did identify a significant
interaction of condition by region [F(4, 68) = 5.39, p< 0.001]. Post
hoc analysis revealed that the left posterior (difference: 0.54, p =
0.008, 95% CI = 0.003–1.01) and the right anterior (difference:
0.88, p < 0.001, 95% CI = 0.51–1.2) were significantly different
between two conditions.

For the syntactic condition, we observed a potential shift to the
positive after 500ms under the syntactically incorrect condition
over the parietal region. Based on our assumption, for the
time window of 500–800ms, ANOVAs showed no main effects
of condition [F(1,17) = 1.00, p = 0.33]. ANOVAs showed the
interaction of the condition by region [F(4, 68) = 6.03, p < 0.001].
Post hoc analysis revealed that the left posterior (difference: 0.51
µV, p = 0.04, 95% CI = 0.003–1.01 µV) and the right posterior
(difference: 0.45 µV, p = 0.02, 95% CI = 0.06–0.83 µV) were
significantly different between two conditions. Regarding other
time windows, for the mean amplitude of 100–300ms, we found
no main effects of condition [F(1, 17) = 1.28, p = 0.27]. However,
we did find a significant interaction of the condition by region
[F(4, 68) = 6.86, p < 0.001]. Post hoc analysis revealed that the
left posterior (difference: −0.65 µV, p = 0.006, 95% CI = −1.08
to −0.21 µV) and the right anterior (difference: −0.49 µV, p =

0.02, 95% CI = −0.90 to −0.08 µV) were significantly different
between two conditions. For the mean amplitude of 300–500ms,
there were no main effects of condition [F(1, 17) = 0.05, p= 0.82]
and no interaction of the condition by region [F(4, 68) = 0.05,
p= 0.79].

Figures 3, 4 show the results of cluster-based permutation
tests on ERPs of the semantic and the syntactic conditions.

Single-Trial Detection
Table 1 indicates the accuracy of each classifier in the
test sets. For the semantic conditions, MLP achieved
the highest accuracy of 59.5%. Regarding this accuracy,
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FIGURE 3 | Cluster-based permutation tests on the event-related potentials (ERPs) of the semantic condition along with a difference wave between incorrect and

correct conditions. We plotted 0–900ms to the stimuli onset. For each time step of interest (time range: 0.05), we highlighted the electrodes that are members of

significant clusters (cluster alpha value: 0.05). A cluster is significant if its p-value is less than the critical alpha level.

we confirmed a statistical significance compared to the
chance rate (p < 0.05): 44.3% precision, 63.1% recall,
and 52.1% F1.

We found no significant correlation between the cloze
probability or the predicted accuracy in the semantic condition
(all classifiers, r < 0.15, p > 0.05).

For the syntactic conditions, the highest accuracy was also
found when using MLP (57.7%), and we confirmed a statistical
significance compared to the chance rate (p < 0.05): 58.8%
precision, 57.9% recall, and 58.4% F1.

DISCUSSION

The aim of the present study is to observe the time-locked
effects of semantic and syntactic anomalies in spoken Japanese
sentences and to detect them with single-trial EEGs. We
achieved this by focusing on the previous approach: ERPs. We
followed two previous studies that elicited the ERP components
of N400 and P600 in Japanese: Mueller et al. (2007) and
Takazawa et al. (2002). We hypothesized that semantic violations
will elicit N400-/P600-related ERP components and syntactic
violations will elicit P600-related ERP components. We also
attempted to use SVMs, RF, and MLP for single-trial EEGs and
confirmed classification that exceeded chance levels. We next
summarize our discussion regarding ERP analysis and single-
trial detection.

Event-Related Potential Analysis
For the semantic condition, we used such previously proposed
stimuli as selectional restriction (Takazawa et al., 2002). Although
the previous study was performed with visual stimuli, our
experiment confirmed that ERP components were elicited even
in an auditory experimental design.

One of our experiment’s drawbacks is that semantically
incorrect sentences were limited to the anomalies of the
selectional restrictions at the end of sentences. Our 40-filler
setting is limited to natural settings, and naturalistic sentence
processing is a major analysis challenge. We identified several
participants who did not indicate the strong effects of ERPs.
We need to control such related factors as social traits and the
attention of the participants as well as age (Constantino and
Gruber, 2012).

Onset is another critical aspect for analyzing ERPs. We
set the ERP onset to the speech’s start position of the
third phrases for the semantic condition and the speech’s
start position of the nominative case marker of the second
phrases for the syntactic condition. Because this study uses
auditory stimuli (speech sequences), we did not know the
actual timing when the participants perceived the violations.
In the future, we will measure the effects in the onset latency
of a representative range of ERPs and implement artificial
time shifting (Kiesel et al., 2008; Zoumpoulaki et al., 2013;
Sassenhagen et al., 2014).

Frontiers in Computational Neuroscience | www.frontiersin.org 7 March 2019 | Volume 13 | Article 15

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Tanaka et al. EEG-Based Single Trial Detection

FIGURE 4 | Cluster-based permutation tests on the ERPs of the syntactic condition along with a difference wave between incorrect and correct conditions. We

plotted 0 to 900ms to the stimuli onset. For each time step of interest (time range: 0.05), we highlighted the electrodes that are members of significant clusters (cluster

alpha value: 0.05). A cluster is significant if its p-value is less than the critical alpha level.

TABLE 1 | Unweighted accuracies (%) of classifiers.

Violations L-SVM R-SVM RF MLP

Semantic 58.2 56.0 58.2 59.5

Syntactic 54.7 54.7 55.3 57.7

The best model is indicated in bold.

Single-Trial Detection
Our classification model achieved 59.5% (semantic) and 57.7%
(syntactic) detection accuracies in the incorrect conditions and
outperformed the chance rate. MLP outperformed the other
classifiers: SVMs and RF. Such accuracies were similar or superior
to previous related works (Geuze et al., 2013; Higashi et al., 2015;
Putze and Stuerzlinger, 2017). The previous work that detected
semantic priming with 12 subjects showed accuracy between 51
and 63%, which is above chance in a cross-subject study (Geuze
et al., 2013). Although our evaluation was validated by previously
unseen participants, the MLP achieved a similar accuracy.

The N400 amplitude for incongruent words was also
modulated by the cloze probability of the expected congruent
word for that place. Generally, the best predictor of a word’s
N400 amplitude in a given sentence is its cloze probability
(Kutas and Hillyard, 1984). The N400 amplitude is largest for
items with low cloze probability and smallest for items with

high cloze probability. Semantic anomaly thus shows the end
point on a continuum of expectedness in a particular context
(Coulson, 2001). Thus, we hypothesized that detecting low
cloze probability items (large N400 amplitude) is easier because
of the relatively high signal/noise ratios (Hald et al., 2006;
Daubigney and Pietquin, 2011). However, we did not find a
relationship between accuracy and cloze probability. This is
because we did not control the cloze probability of the semantic
incorrect sentences or the semantic correct sentences prior to the
experiment (Borovsky et al., 2010).

This study did not consider the effects of the individuality

of the frequency band. We fixed the frequency bands rather
than individually adapting them based on individual alpha

frequencies. This idea needs to be considered due to the high

individual variability in this domain (Klimesch, 2012).
To improve classification accuracy, we need to increase the

sophistication of the machine learning models, although EEGs
have a low signal/noise ratio. We believe that a participant-
adaptive technique (e.g., maximum likelihood linear regression;
Gales and Woodland, 1996; Pan and Yang, 2010) is one possible
future direction. Due to a large amount of P300 data, such as
for a BCI competition, we applied several types of machine
learning approach to our collected data by transfer learning
(Pan et al., 2016).

Another possible direction to improve the classification
accuracy is to average several trials (not a single trial) whose
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usefulness has already been validated. Several approaches
achieved 100% accuracy using only four to eight averaged trials
on P300 data (Cashero, 2012). We can apply this approach to
detect the language expectation violations toward practical usage.

We will also improve our model using graph regularized
tensor factorization (Maki et al., 2018) as well as non-negative
matrix factorization, which we previously proposed. Automatic
onset detection and the techniques of artificial shifted trials are
also needed for completely automated anomaly detection (Kutas
and Hillyard, 1980).

CONCLUSIONS

This study aims to detect semantic and syntactic anomalies
from a one-shot EEG, using a machine learning technique. We
measured the EEGs of 18 participants while they listened to
semantically anomalous sentences and confirmed N400- and
P600-related ERP components. When using MLP, we achieved
detection accuracies of 59.5% (semantic) and 57.7% (syntactic)
with time and spectral domain inputs. From here, the results
suggest that machine learning might be able to detect semantic
and syntactic anomalies from correct sentences.
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