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Hiroki Tanaka *, Hiroki Watanabe, Hayato Maki, Sakti Sakriani and Satoshi N akamura

Division of Information Science, Nara Institute of Science anTechnology, Nara, Japan

We propose an approach for the detection of language expect@on violations
that occur in communication. We examined semantic and syntetic violations from
electroencephalogram (EEG) when participants listened tspoken sentences. Previous
studies have shown that such event-related potential (ERRJomponents as N400 and
the late positivity (P600) are evoked in the auditory whereesantic and syntactic
anomalies occur. We used this knowledge to detect language xpectation violation from
single-trial EEGs by machine learning techniques. We reated the brain activity of 18
participants while they listened to sentences that contaied semantic and syntactic
anomalies and identi ed the signi cant main effects of thee anomalies in the ERP
components. We also found that a multilayer perceptron aclkeived 59.5% (semantic)
and 57.7% (syntactic) accuracies.
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INTRODUCTION

In speech communication, we often face several types of |lgegergpectation violations, such as
prosodic, semantic, and syntactic errors, especially in emation through machine output (e.g.,
human—computer interactionKoponen, 201)) Questionnaire-based subjective judgments are
commonly used to rate such language expectation violatisrimguistic discrepancie®fbkjaer
et al., 200). For example, regarding errors in the responses of spokemgiial systems and
machine translation, human examiners in previous researdgéd each sentence on an error scale
from 1 to 5, unlike automatic evaluation metrics, e.g., wertbr rate Cippmann, 1997; Och et al.,
1999; Papineni et al., 200Even though this approach is quick and practical, it su ersiirseveral
problems. For instance, such subjective evaluations ofgigatits contain ambiguity and cannot
guarantee accurate answers. In this paper, we propose a newidpgzproach that automatically
detects such language expectation violations from physidbgignals laatéanen et al., 2004;
Morikawa et al., 2011; Honda et al., 2) b&écause participants face more obstacles when they are
manipulating physiological signals. Although our goal is &velop an online detection tool of the
language expectation violations of humans using physio&gignals, we simplify the problem by
detecting clear language expectation violations as ourstgp. We assume that this system can
also be used for assessing people who exhibit the anomalies ahBermontext sensitivity (e.g.,
autism spectrum, dementiglichney et al., 2008; Pijnacker et al., 2010; O'Connor22Uanaka
etal., 2012, 2015, 2017a,b, 2018a; Ujiro et al.,)2018

An electroencephalogram (EEG) is a non-invasive tool thabrés the electrical activity of
the human brain with electrodes placed on the scalp. Regardiabgapplications using EEGs, in
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the context of motor imagery, which is re ected in event- Based on our survey, despite the importance of real
related desynchronization [ERDY¢om and Sim, 20Q0R the  speech communication, only one study investigated the singl
automatic detection of mental states based on convolutiondrial detection of semantic anomaliesseuze et al. (2013)
neural networks (CNNs) has been proposédifg et al., 2007 addressed the single-trial detection of semantic priming and
Unlike ERD, an event-related potential (ERP) is a measurethe classi cation of visually presented related and unrelate
time-locked brain response that is a direct result of a speci avords with anL, regularized logistic regression algorithm as a
sensory, cognitive, or motor event. Since ERPs generally haskassi er. For more practical applications with such technglog
a low signal/noise ratio in individual trials, many conséea the work-detection keyboard autocorrection of possible astic
trials (e.g., 30 times) are usually averaged to diminishidhdom — and syntactic errors from only EEGs identi ed the accuracy
noise. Thus, single-trial detection of ERP components is vergf the single-trial error detection of around 70%\(ize and
challenging due to their low signal/noise ratiddldnkertz et al., Stuerzlinger, 200)7 They used linear discriminant analysis
2008; Lotte, 2015; Magee and Givigi, 200ne public dataset as a classi er. Although these two studies detected semanti
focused on the single-trial detection of P300 componehisld  anomalies in single-trial levels, they did not detect them in
et al., 2006; Daubigney and Pietquin, 2))Mhich were elicited spoken sentences.
with relatively high signal/noise ratios. Most previous weHhave In this paper, we propose the single-trial detection (from
shown that P300 components can be detected with around 50subjects who listened to spoken sentences) of semantic and
70% accuracy (exceeding the chance rate) using severalmaactsyntactic anomalies that can be applied to Japanese spoken
learning algorithms $tewart et al., 2014; Akram et al., 2015communication error evaluations. Such linguistic errors hiig
Higashi et al., 2015; Sharma, 2D1Several approaches reachedoe common across languages. Although we evaluated language
100% accuracy using four to eight averaged trials in the B@xpectation violations in Japanese, our approaches may be
Competition 2003Cashero, 200)2We also need to consider that generalizable to other languages that include semantie(ting
most works created subject-dependent models (within-sugjec context expectation) and syntactic (re ecting rule-govedh
because EEG signals are prone to being subject-dependerit, andrrors. Understandably, when languages di er, the onsetfisigar
remains challenging to generalize to subject-independesdets  points) of the time-locked ERPs will also be di erent.
(Terasawa et al., 201L7 This paper examined the following three research questions:
Even though P300-based single-trial detection is on
successful real application (P300-speller), it failed to alete
language expectation violations including semantic andasstic
errors. To achieve single-trial detection of such errors,facus
on other ERP components, e.g., N400 and P600. N400 is a
well-known ERP component that is evoked in auditory and
visual modalities where semantic anomalies occdadoort
and Brown, 2000p N400 is a phenomenon in which the
potential shift in the negative direction increases arouh& t We recorded EEG data while Japanese participants listened to
brain's parietal region at around 400ms from the onset okentences that contained semantic and syntactic anomeaties
semantic and syntactic anomalies. Because N400 is stronglsialyzed the ERP e ects. We also detected both anomalies
inuenced by background noise, artifacts, and variationsfrom single-trial EEGs with a technique that classi ed them
among trials, multiple times must be averaged. One studffom multielectrodes and by integrating the time and spectral
concluded that N40O is further in uenced by a mismatch ofinformation with multiple machine learning algorithms.
the syntactic case informatiori-(isch and Schlesewsky, 2001  This paper is an extension of conference proceedifigagka
P600 (Narumi, 2013, another well-known ERP component et al., 2018pin which we reported the overall single-trial
(Hagoort and Brown, 2000Qais evoked in auditory and visual detection of semantically incorrect sentences. We added th
modalities where rule-governed anomalies generally occuanalysis of syntactic anomalies as well as participant-indepgnde
P600 is a language-related ERP that is thought to be elicitedodels with more participants.
by grammatical errors and other syntactic anomalies. Sévera
works have been done in Japaneser{o and Kluender, 2003;
Mueller et al., 200)7 P600 is characterized as a positive-goind[ETHODS
de ection with an onset around 500ms after the onset of
several types of anomalies. It peaks around 600ms after ti@ur rst aim is to con rm whether not only syntactic but also
presentation of the stimulus and lasts several 100 ms. P600ssmantic violations in listening to Japanese sentencesERes.
not language-specic, but it can be elicited in non-linguisti We hypothesized that semantic violations will elicit N4GGB00-
(but rule-governed) sequences [e.g., musical chor@ste( related ERP components and syntactic violations will eli6R@
et al., 199). There are few P600 studies on Japanese syntactielated ERP components. We also attempted to detect such
violations in auditory modality (e.glMueller et al., 2006 To  violations from single-trial EEGs. We proposed several machine
the best of our knowledge, no studies have addressed semarigarning classi ers and conrmed classi cation above chanc
violations in auditory modality in the Japanese languageckvh levels. In this section, we explain how we performed the EEG
resemble our goal. experiment and the classi cation.

9. Do semantic violations while listening to spoken Japanese
sentences elicit ERPs?

2. How does machine learning contribute to single-trial

detection for language expectation violations, including

semantic and syntactic errors?

3. Which classi cation model more pro ciently distinguishes
semantic and syntactic violations?
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Participants Here, an asterisk indicates semantically (b) and syntaltyic
This study was carried out in accordance with the(d) incorrect sentences. Matched sentences correspondétein
recommendations of the research ethical committee of thestand third phrases. Due to the speech stimulus, we congal|
Nara Institute of Science and Technology. The protocol wathe phonemes followingHagoort and Brown (2000bjn the
approved by the research ethical committee of the Narghird phrase to begin with plosive sounds:/t/,/k/,/d/, and/g/
Institute of Science and Technology. All participants gaveéince such plosive sounds are in the onset position of the ERPs
written informed consent in accordance with the Declaratio marked by human annotators, a consistent pattern is required in
of Helsinki. the spectrogram.

Nineteen graduate students (16 males and 3 females) betweenA group composed of the rst author (A), the second author
22 and 41 years of age (mean: 24.2) from the Nara Institute ¢B), and a graduate student who did not join our experiment (C)
Science and Technology participated. All were native Japanesen rmed and corrected each sentence and reached a consensus
speakers with no history of psychiatric problems or hearingabout whether a semantic anomaly occurred. We selected the
disabilities; 18 were right-handed. following 200 types of sentence from a total of 360 sentenCes: 4

semantically correct, 40 semantically incorrect, 40 sytitally

. correct, 40 syntactically incorrect, and 40 llers sentend-illers
Materials were correct sentences that were used as dummies.
In this study, we prepared two types of violations to elicit e transcribed them into text and recorded speech that was
language expectation violations: a selectional restric{@s a naturally spoken by a professional female narrator whom we
semantic condition) and a double-nominative case (as a&fitt  jnstructed to avoid inserting pauses between phrases. Théhleng
condition). Semantic violations very often also elicit st  of the audio les ranged from 1.8t0 3.0 s.
N400 and P600 patterns, particularly when judging linguistic  For the semantic case, the syntactic structure of the seeten
deviancy tasksJassenhagen et al., 2l1Mote also that the \yas matched between the two conditions. We used the same
double-nominative case violation that we chose for our agtit target words in the third phrases. The experiment member A
manipulation has elicited N40O e ects, including in Japanes@on rmed that the mean frequency of the third phrases was 1.02
(Mueller etal., 2006 in both conditions. Here, a mora is a unit in phonology that

Japanese semantic and syntactic anomalies were manuaiytermines the syllable weight. The mean number of the mdras o
created by referring tolakazawa et al. (200Znd Mueller  the third phrases was 4.25DD 1.35). The di erence of the two
et al. (2007) For the semantic condition, we de ned error as conditions was the second phrases with a mean number of moras
a selectional restriction between a verb and its argumdfds. of4.15 GDD 0.86) in the correct condition and 4.63 (3D0.93)
the syntactic condition, error was de ned a double-nomivat  in the incorrect condition.
case of the second phrase. We created an identical number of For the syntactic case, the di erence of the two conditions wa
semantically and syntactically correct and incorrect eenes. the nominative case marker of the second phrases. The mean
We separated these sentences, which means that no two partsi@fquency of the second phrase was 1 in both conditions. The
the violated sentences are found in the stimuli. mean number of moras in the second phrases was 4.1(898)

The following is an example of two matched types of sentenceg poth conditions.

(available on th&upplementary Materia): Moreover, we investigated the predictability of subsequent

(Semantic) words (cloze probability) that aect the N400 amplitudes

a. Hanako-ga nikki-o tsuzu-ta (Borovsky et al., 20)0One hundred crowdsourcing workers
Hanako-NOM a diary-DAT write-PAST were given a list of 40 semantically incorrect sentences fro
Hanako wrote in her diary which the nal word had been removed. They read the sentences

b. Hanako-ga beer-o tsuzu-ta and lled inthe blanks at the position of the hidden sentencealn
Hanako-NOM a beer-DAT write-PAST words with the rstword that popped into their heads. After that
Hanako wrote a beer. we manually changed the present tense to the past tense, revised

minor typing mistakes, and calculated the cloze probabilitthef
g most frequently selected words. The following is the distiitn
DAT: dative case marker; of the cloze probability: mean, 41%, SD, 16%, range, 14-85%. We
PAST: past tense morpheme. con rmed that no words appeared as semantically incorrect in
(Syntactic) our stimuli, which means the cloze probability to the word isze

NOM: nominative case marker;

c. Gakusei-ga kenchikuka-o tasuke-ta
Student-NOM architect-DAT help-PAST
The student helped the architect.

d. Gakusei-ga kenchikuka-ga tasuke-ta
Taro-NOM architect-NOM help-PAST

Synchronization

Since ERPs are the time-locked brain response, we explainsdetail
with regard to synchronization between the auditory stimand

EEG. Experiment members A and C marked the synchronized
onset ¢ D 0). For the semantic case, ERP onset is the speech's

NOM: nominative case marker;
DAT: dative case marker;
PAST: past tense morpheme.

start position of the third phrases. The onset starts with plosive
sounds. The precise beginning position was marked by observing
spectrogram of the speech. For the syntactic case, ERP onset
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is the speech’s start position of the nominative case marker afata (110-140Hz), then rejecting epochs contaminated with
the second phrases. The onset also begins with plosive soundsiscle artifacts based on visual inspectidfeger et al., 2017
(only/g/) and was marked by observing spectrogram of th€6) The recorded EEGs were downsampled to 250 Hz. (7) The
speech. We used the Wavesurfer (TMH, Speech, Music, anagistic infomax ICA algorithm ofBell and Sejnowski (1995)

Hearing) in order to visualize spectrogram of the speech. was performed to correct eye-related artifacts, and easeae!
] components were removed. We identi ed the components by
Design calculating the correlations to the FP1 and FP2 electroddsg

The participants entered a soundproof room, sat down, ane visual inspection of the topographies and the waveforms. Four
were instructed to look at the attention point on the monitor was the maximum number of rejected components because we
and to refrain from blinking and moving as much as possibleonly intended to remove as few horizontal and vertical ocular
The following was the experimental procedure: (1) watch thertifacts as possible. The rejected components had a mean of
“C” mark for 1s on the screen; (2) listen to one randomly2.1 (SD: 1.2). (8) A second artifact rejection was performed o
presented speech sound for 4s; and (3) press a key ae@ochs that exceeded the thresholds 420 and 120mV. As a
determine within 2 s whether each speech contains grammaticgesult of the above artifact rejection procedures, one pipeitt
or semantic errors. We conducted subjective evaluations anyas removed because of the large number of rejected epochs
prepared practice trials before the EEG recordings. All thesgnore than 30% of the epochs were rejected). The average rate
steps were completed within 25min. For speech listening, wef rejected trials across participants was 6.2%. We found no
used earphones (ER1). This series of experiments was createdcts of the number of rejected trials between the semaliyica
using presentation software provided by Neurobehavioratorrect and incorrect and the syntactically correct ancbimect
Systems (Version 18.0, Neurobehavioral Systems, InkeB§r by using paired-test {semanticitf;7) D 1.32p D 0.20], syntactic:
CA, www.neurobs.com). [t17yD 0.68,p D 0.51]}.

The correct answer rates from the behavioral results were
95.8% for semantically correct and incorrect and 96.7% foEvent-Related Potential Analysis

syntactically correct and incorrect (error ratedi$%). For further improvement of the signal/noise ratio, we applied

. another ltering procedure to the ERP data. Since the N400
Electroencephalogram Recordmg components are around 6Hz and the activity in the alpha
and Preprocessing frequency band tends to contaminate the EEG data, we used a

As an EEG cap, we used ActiCAP by Brain Products with 32 ctwo-pass IIR Butterworth Iter of order 8 at 8 Hz to achieve a
active electrodes according to all the standard positionthef steeper frequency response than the FIR lIter and to preserve
international 10/20 system (s€&égure 1). We used a BrainAmp the ERP components that also attenuate the alpha activity. Note
DC from the same company as an amplier. As a recordingthat this Iter was applied for only visualizing and analyzing
Iter, we applied a high-pass lter of 0.016 Hz and a low-passERPs, meaning that we did not use these Itered signals to the
Iter of 250 Hz. The sampling rate was 1,000 Hz, the referencsingle-trial analysis.
electrode was FCz, and the ground electrode was FPz. Intwder We computed the grand average of all the participants. Based
synchronize the speech signal with EEG, we generated a speecha previous studiesHagoort and Brown, 2000a,b; Mueller
timing signal and recorded it with the EEG ampli er. et al., 2005; Wol et al., 2008 we selected the following
For preprocessing the recorded EEGs, we used FieldTriglectrodes in each time window: 100-300, 300-500, and 500—
software Qostenveld et al., 20} &s follows: (1) Re-referencing 800 ms. These time windows were selected based on the previous
was performed on the average of the TP9 and TP10 electrodestudy that analyzed syntax- and semantic-related ERP e ects
(2) An FIR lter was applied through a high-pass Iter of 0.3 Hz (Mueller et al., 2006 To assess the topographic di erences in
(order: 6192), which is designed for DC suppressio6Q dB at the ERPs, electrodes were summed up in ve regions of interest
DC) to replace the baseline correctioddess et al., 2006; Wol (ROIls)—left anterior: F3, F7, FC1, FC5; right anterior: F4, F8
etal., 2008 (3) For each trial condition (excluding llers), epochs FC2, FCB6; left posterior: CP1, CP5, P3, P7; right posterior: CP2,
were extracted at 100 to 900 ms of the synchronous onset. HereCP6, P4, P8; and midline: Fz, FCz, Cz, Pz. For the statistical
the onset is the speech's start positions of the third phrases fanalyses, we calculated the mean amplitudes in the chosen time
the semantic condition and of the nominative case marker ofvindows {(Vol etal., 2009.
the second phrases for the syntactic condition. (4) Firsifast We used two-way repeated ANOVAs to examine the main
rejection was performed on epochs that exceeded a threshoddects of the condition and its interaction by ROIs in each
of 350 and 350mV in order to remove epochs contaminated time window. We performed gost hocmultiple comparison
with large amplitude of artifacts. This threshold rejectidid  of the interaction between conditions and regions using the
not consider FP1 and FP2 electrodes where eye-relateddstif Tukey—Kramer method. Finally, we performed cluster-based
mainly contaminated. This large amplitude threshold is topermutation tests \(laris and Oostenveld, 20p0n the ERPs
preserve eye-blink artifact, which will be removed by lateof the semantic and the syntactic conditions. Regarding the
independent component analysis (ICA). (5) We performed arcluster-based permutation tests, for each time step of @sigfwe
automatic approach and visual inspection to remove musclenarked the electrodes that are members of signi cant clisster
artifacts: automatically identifying artifacts @tscoreD 15 by  The signi cance probability can be calculated by means of the
considering amplitude distributions of band-pass- Iteredaeh ~ Monte Carlo method. The Monte Carlo signi cance probability
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FIGURE 1 | All electrode labels: gray electrodes indicate referenceral grand position.

is also called @-value. If thep-value is smaller than the critical andb (13-28 Hz) (124 spectral domain features) by referring to
alpha level (5% in this study), then we conclude that the datarevious work Hald et al., 2006; Mcmahon et al., 201We
in the two experimental conditions are signi cantly di erent concatenated time and spectral features (217 dimension®. Th

Overall, we set the signi cance level to 5%. feature vectors were normalized to a mean of zero and one
standard deviation.
Feature and Classi ers For the classiers, we used a linear kernel support vector

Based on previous work-Hagoort and Brown, 2000b; Roehm machine (L-SVM), a radial kernel support vector machine (R-
et al., 200 we extracted the average values of the 100-306VM), arandom forest (RF), and multilayer perceptrons (MLPs).
300-500, and 500-800 ms amplitudes from all of the electrodd$ie classiers were trained on a dataset that combined 13
(93 time domain features). To avoid over tting to the traig ~ participants and subsequently tested on ve di erent particiggn
data, we selected speci ¢ time domains (possibly important timavithout further training by following Vareka and Mautner
ranges) rather than using all time sampling points (simplifyin (2017) We observed how our detection models performed when
the model). We also considered all of the electrodes withey dealt with data from previously unknown participants.
frequency domains for the single-trial detection of EEBGstge These models were trained using 5-fold cross-validation for
and Stuerzlinger, 20).7The delta band has been associated witlhyperparameter tuning on the training set to optimize the
N400 and P600 components in langua@(reia et al., 2005 accuracies. The hyperparameters included the kernel (linear o
Thus, we performed a fast Fourier transform on the waveforniadial basis function)C D {10°, 104, ..., 1¢%}, g D {0.00,
between 0 and 900 ms to the onset and calculated the avera@€05. .., 1.00} (in the case of the RBFkernel) for the SVMs, the
values of the power spectradfl—-3 Hz)," (4-7 Hz),a (8-12Hz), number of variables tried at each splt {5, 10, 15, 20} for the
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FIGURE 2 | Grand average of nine representative electrodes of semantand syntactic conditions. Vertical axis ranges between 4 and C4. Positivity is plotted up.
We plotted 100 to 900 ms to the stimuli onset. Topographical map shows a dference wave between incorrect and correct conditions.

RF, and the number of hidden units {5, 10, 50, 100, 150, 2004mplitude of 500—-800 ms, we found no main e ects of condition
the number of hidden layers {1, 2, 3}, and activation funatio [F 17D 0.82,p D 0.37]. However, we did identify a signi cant
(logistic, hyperbolic tangent, or recti ed linear unit) imé MLP  interaction of condition by regionff4 g)D 5.39p < 0.001]Post
by referring toVail et al. (2018) After the parameters were hocanalysis revealed that the left posterior (di erence: 05D,
found, the models were trained on the whole training dataset  0.008, 95% CD 0.003-1.01) and the right anterior (di erence:
subsequently tested. 0.88,p < 0.001, 95% CD 0.51-1.2) were signi cantly di erent
By a binomial test, we compared the chance rate (50.4% fdretween two conditions.
the semantic sentences and 50.4% for the syntactic sesténce For the syntactic condition, we observed a potential shifh®
the test set) and the model that achieved the highest acgurapositive after 500 ms under the syntactically incorrect dood
as well as precision, recall, and F1. We also calculated tlower the parietal region. Based on our assumption, for the
correlation between cloze probability and semantic acguracime window of 500—800 ms, ANOVAs showed no main e ects

based on Pearson’'s correlation coe cient. of condition [F(1,17y D 1.00,p D 0.33]. ANOVAs showed the
interaction of the condition by regiorf4, 6g)D 6.03,p< 0.001].
RESULTS Post ho@nalysis revealed that the left posterior (di erence: 0.51
i mV, p D 0.04, 95% CD 0.003-1.0InV) and the right posterior
Event-Related Potential Effects (di erence: 0.45mV, p D 0.02, 95% CD 0.06-0.831V) were

Figure 2 plots the ground averages at representative electrodgggni cantly di erent between two conditions. Regarding @th

in the semantic and syntactic conditions. For the semanti¢ime windows, for the mean amplitude of 100-300 ms, we found

condition, a potential shift to the negative around 400 ms carho main e ects of condition Fa 17D 1.28,p D 0.27]. However,

be observed under the semantically incorrect conditionrdie  we did nd a signi cant interaction of the condition by regio

parietal region, and late positivity (P600) can also be seen.  [F, 45D 6.86,p < 0.001].Post hoanalysis revealed that the
Based on our assumption, for a time window of 300-eft posterior (di erence: 0.65mV, p D 0.006, 95% CD 1.08

500 ms, ANOVAs would show the main e ects of the conditionto  0.21mV) and the right anterior (di erence: 0.49mV, p D

[F,17 D 4.69,p D 0.04]. No signicant interaction was (.02, 95% CD 0.90to 0.08mV) were signi cantly di erent

shown between condition by regiorir{, 63y D 1.18,p D 0.32].  petween two conditions. For the mean amplitude of 300-500 ms,

Regarding other time windows, for a mean amplitude of 100there were no main e ects of conditiorF{;, 17)D 0.05,p D 0.82]

300ms, we found main e ects of conditiorFf,17) D 4.51,  and no interaction of the condition by regiorFy gg) D 0.05,

p D 0.04] and also a signi cant interaction of condition by pD 0.79].

region [F4 6D 11.5,p < 0.001]. Since there were signicant  Figures 3 4 show the results of cluster-based permutation

interactions of the condition by region, multiple comparison tests on ERPs of the semantic and the syntactic conditions.

were separately calculated for each regRost hoanalysis by the

Tukey—Kramer method revealed that the left anterior [di e~ Single-Trial Detection

(incorrect —correct): 0.6 D 0.02, 95% CD 0.09-1.23] and the Table 1 indicates the accuracy of each classier in the

right posterior (di erence: 0.45p D 0.02, 95% CD 0.06-0.83) test sets. For the semantic conditions, MLP achieved

were signi cantly di erent between two conditions. Forthesan the highest accuracy of 59.5%. Regarding this accuracy,
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FIGURE 3 | Cluster-based permutation tests on the event-related potatials (ERPs) of the semantic condition along with a diffenee wave between incorrect and
correct conditions. We plotted 0-900 ms to the stimuli onsetFor each time step of interest (time range: 0.05), we higlglited the electrodes that are members of
signi cant clusters (cluster alpha value: 0.05). A clustesisigni cant if its p-value is less than the critical alpha level.

we conrmed a statistical signicance compared to theEEvent-Related Potential Analysis
chance rate @ < 0.05): 44.3% precision, 63.1% recallfFor the semantic condition, we used such previously proposed
and 52.1% F1. stimuli as selectional restrictiofgkazawa et al., 20pAlthough

We found no signi cant correlation between the clozethe previous study was performed with visual stimuli, our
probability or the predicted accuracy in the semantic coratfiti experiment con rmed that ERP components were elicited even
(all classi ersy < 0.15p> 0.05). in an auditory experimental design.

For the syntactic conditions, the highest accuracy was also One of our experiments drawbacks is that semantically
found when using MLP (57.7%), and we con rmed a statisticalncorrect sentences were limited to the anomalies of the
signi cance compared to the chance ratp € 0.05): 58.8% selectional restrictions at the end of sentences. Our #- |

precision, 57.9% recall, and 58.4% F1. setting is limited to natural settings, and naturalistimtnce
processing is a major analysis challenge. We identi ed sévera
DISCUSSION participants who did not indicate the strong e ects of ERPs.

We need to control such related factors as social traits dwed t
The aim of the present study is to observe the time-lockedttention of the participants as well as ageo(istantino and
e ects of semantic and syntactic anomalies in spoken JapaneSeuber, 201).
sentences and to detect them with single-trial EEGs. We Onset is another critical aspect for analyzing ERPs. We
achieved this by focusing on the previous approach: ERPs. Wet the ERP onset to the speechs start position of the
followed two previous studies that elicited the ERP componentthird phrases for the semantic condition and the speechs
of N400 and P600 in Japanesegueller et al. (2007)and start position of the nominative case marker of the second
Takazawa et al. (2002)Ve hypothesized that semantic violationsphrases for the syntactic condition. Because this study uses
will elicit N400-/P600-related ERP components and syntactiauditory stimuli (speech sequences), we did not know the
violations will elicit P600-related ERP components. We alsactual timing when the participants perceived the violations.
attempted to use SVMs, RF, and MLP for single-trial EEGs anbh the future, we will measure the e ects in the onset latency
con rmed classi cation that exceeded chance levels. Wet nexof a representative range of ERPs and implement arti cial
summarize our discussion regarding ERP analysis and singléme shifting Kiesel et al., 2008; Zoumpoulaki et al., 2013;
trial detection. Sassenhagen et al., 214
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FIGURE 4 | Cluster-based permutation tests on the ERPs of the syntaaticondition along with a difference wave between incorrect ad correct conditions. We
plotted 0 to 900 ms to the stimuli onset. For each time step oftiterest (time range: 0.05), we highlighted the electrodeshtit are members of signi cant clusters (cluster
alpha value: 0.05). A cluster is signi cant if itg-value is less than the critical alpha level.

TABLE 1 | Unweighted accuracies (%) of classi ers. high cloze probability. Semantic anomaly thus shows the end
point on a continuum of expectedness in a particular context

Violations LSvM R-SVM RF MLP (Coulson, 200)L Thus, we hypothesized that detecting low
Semantic 58.2 56.0 58.2 595  cloze probability items (large N400 amplitude) is easier bsea
Syntactic 54.7 54.7 553 577  Of the relatively high signal/noise ratiosigld et al., 2006;
Daubigney and Pietquin, 20).1However, we did not nd a
The best model is indicated in bold. relationship between accuracy and cloze probability. This is

because we did not control the cloze probability of the sencanti

incorrect sentences or the semantic correct sentencestoribe
Single-Trial Detection experiment Borovsky etal., 2030
Our classi cation model achieved 59.5% (semantic) and%7.7 ~ This study did not consider the e ects of the individuality
(syntactic) detection accuracies in the incorrect comditi and  Of the frequency band. We xed the frequency bands rather
outperformed the chance rate. MLP outperformed the othethan individually adapting them based on individual alpha
classi ers: SVMs and RF. Such accuracies were similar or superfrequencies. This idea needs to be considered due to the high
to previous related works3euze et al., 2013; Higashi et al., 2015individual variability in this domain Klimesch, 201p
Putze and Stuerzlinger, 201The previous work that detected ~ To improve classi cation accuracy, we need to increase the
semantic priming with 12 subjects showed accuracy between 5ophistication of the machine learning models, although EEGs
and 63%, which is above chance in a cross-subject stady{e have a low signal/noise ratio. We believe that a participant-
etal., 201} Although our evaluation was validated by previouslyadaptive technique (e.g., maximum likelihood linear regmess
unseen participants, the MLP achieved a similar accuracy. Gales and Woodland, 1996; Pan and Yang, »@&L.6ne possible

The N400 amplitude for incongruent words was alsofuture direction. Due to a large amount of P300 data, such as

modulated by the cloze probability of the expected congruenfior a BCl competition, we applied several types of machine
word for that place. Generally, the best predictor of a worddearning approach to our collected data by transfer learning
N400 amplitude in a given sentence is its cloze probabilityPan etal., 2006
(Kutas and Hillyard, 1984 The N400 amplitude is largest for ~ Another possible direction to improve the classication
items with low cloze probability and smallest for items withaccuracy is to average several trials (not a single triahssh
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usefulness has already been validated. Several approacBddd THOR CONTRIBUTIONS

achieved 100% accuracy using only four to eight averagald tri

on P300 dataGashero, 2092 We can apply this approach to HT, HW, and HM performed the experiments and data analysis

detect the language expectation violations toward pracdtisafje. and conceived the methodology and the machine learning
We will also improve our model using graph regularizedalgorithms. HT and HW performed EEG preprocessing. SS and

tensor factorization Iflaki et al., 201Bas well as non-negative SN conceived the entire experiment design and analyzed, and

matrix factorization, which we previously proposed. Autorsati discussed the results. HT wrote this manuscript. All of the

onset detection and the techniques of arti cial shiftecatsi are  authors reviewed the manuscript.

also needed for completely automated anomaly detectiorgs

and Hillyard, 198). FUNDING
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This study aims to detect semantic and syntactic anomalies

from a one-shot EEG, using a machine learning technique. W
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