
IEICE TRANS. INF. & SYST., VOL.Exx–??, NO.xx XXXX 200x
1

PAPER
Recurrent Neural Network Compression based on
Low-Rank Tensor Representation

Andros TJANDRA†,††a), Nonmember, Sakriani SAKTI†,††b), and Satoshi NAKAMURA†,††c),

SUMMARY Recurrent Neural Network (RNN) has achieved many
state-of-the-art performances on various complex tasks related to the tem-
poral and sequential data. But most of these RNNs require much com-
putational power and a huge number of parameters for both training and
inference stage. Several tensor decomposition methods are included such as
CANDECOMP/PARAFAC (CP), Tucker decomposition and Tensor Train
(TT) to re-parameterize the Gated Recurrent Unit (GRU) RNN. First, we
evaluate all tensor-based RNNs performance on sequence modeling tasks
with a various number of parameters. Based on our experiment results,
TT-GRU achieved the best results in a various number of parameters com-
pared to other decomposition methods. Later, we evaluate our proposed
TT-GRU with speech recognition task. We compressed the bidirectional
GRU layers inside DeepSpeech2 architecture. Based on our experiment
result, our proposed TT-format GRU are able to preserve the performance
while reducing the number of GRU parameters significantly compared to
the uncompressed GRU.
key words: recurrent neural network, model compression, tensor decom-
position, deep learning

1. Introduction

Modeling and predicting temporal sequential data are major
task in the machine learning field. In recent years, recurrent
neural network (RNN) has been a prominent choice for these
tasks. Despite it has been studied for about two decades [1,2],
the renaissance just arrived recently thanks to the significant
improvement of current computational power and the amount
of available data. There are many state-of-the-arts in several
applications such as speech recognition [3, 4] and machine
translation [5–7] had been achieved with RNN models.

Despite the fact that RNN produced impressive perfor-
mance, most RNN models are computationally expensive
and have a huge number of parameters. Inside an RNN, the
output are calculated by linear projection between matrices
and vectors, followed by nonlinear transformations, we need
multiple high-dimensional densematrices as parameters. In-
between two time-steps, we need to apply linear projection
between our dense matrix with high-dimensional input and
previous hidden states. Especially for state-of-the-art mod-
els on speech recognition [4] and machine translation [5],

Manuscript received January 1, 2015.
Manuscript revised January 1, 2015.
†The author are with the Augmented Human Communication

Lab, Nara Institute of Science and Technology, Ikoma-shi, 630-
0192 Japan.
†The authors are with the RIKEN, Center for Advanced Intel-

ligence Project AIP, Ikoma-shi, 630–0192 Japan.
a) E-mail: andros.tjandra.ai6@is.naist.jp
b) E-mail: ssakti@is.naist.jp
c) E-mail: s-nakamura@is.naist.jp
DOI: 10.1587/transinf.E0.D.1

such huge models can only be implemented in high-end
cluster environments because they need massive computa-
tion power and millions of parameters. These limitations
restrict the creation of efficient RNN models that are fast
enough for massive real-time inference or small enough to
be implemented in low-end devices like mobile phones [8]
or embedded systems with limited memory.

There is a trade-off between high accuracy model and
huge resources requirement with fast and smaller model with
low computational and memory costs. Some researchers
have done notable work to minimize the accuracy loss and
maximize the model efficiency. Hinton et al. [9] and Ba
et al. [10] successfully compressed a large deep neural net-
work into a smaller neural network by training the latter on
the transformed softmax outputs from the former. Distilling
knowledge from larger neural networks has also been suc-
cessfully applied to recurrent neural network architecture
by [11]. Denil et al. [12] utilized low-rank matrix decompo-
sition of the weight matrices. A recent study by Novikov et
al. [13] replaced the dense weight matrices with Tensor Train
(TT) format [14] inside convolutional neural network (CNN)
model. With the TT-format, they significantly compress the
number of parameters and kept the model accuracy degrada-
tion to a minimum. However, to the best of our knowledge,
no study has focused on compressing more complex neural
networks such as RNNs with tensor-based representation.

In this paper, we utilized several tensor decomposition
methods including CP-decomposition, Tucker decomposi-
tion and TT-decomposition for compressing RNN parame-
ters †. We represent GRU RNN weight matrices with these
tensor decomposition methods. First, we conduct extensive
experiments on sequence modeling with a polyphonic music
dataset. We compare the performances of uncompressed
GRU model and three different tensor-based compressed
RNN models: CP-GRU, Tucker-GRU and TT-GRU [15] on
various number of parameters. From our experiment re-
sults, we conclude that TT-GRU achieved the best result
in various number of parameters compared to other tensor-
decomposition method. Later, we conducted another exper-
iment on speech recognition task. We modified a popular
end-to-end speech recognition model (DeepSpeech2 [4]) by
replacing theGRUwith TT-GRU to reduce the number of pa-
rameters. We achieve high-compression ratio and maintain

†Parts of this work were previously presented in [15–17]. In
this paperwe summarized thoseworks and provided amore detailed
description and comparison between all tensor-based RNNs.

Copyright © 200x The Institute of Electronics, Information and Communication Engineers

2
IEICE TRANS. INF. & SYST., VOL.Exx–??, NO.xx XXXX 200x

the recognition accuracy from the compressed model.
In Section 2, we briefly review about RNN architectures

and their formulations. In Section 3, we explain about tensor
decomposition methods. In Section 4, we describe the de-
tails of our proposed tensor-based RNN model and how we
tensorized the weight parameters inside RNN. In Section 5,
we describe about polyphonic music modeling task, includ-
ing the dataset, model settings and experimental results. In
Section 6, we describe about speech recognition task, includ-
ing the dataset, model description and experimental result.
We present related works in Section 7. Finally, we conclude
our result in Section 8.

2. Recurrent Neural Network

2.1 Simple Recurrent Neural Network

An RNN is a kind of neural network architecture that mod-
els sequential and temporal dependencies [18]. Typically,
we define input sequence x = (x1, ..., xT), hidden vec-
tor sequence h = (h1, ..., hT) and output vector sequence
y = (y1, ..., yT). As illustrated in Figure 1, a simple RNN at
time t is can be formulated as:

ht = f (Wxhxt +Whhht−1 + bh) (1)
yt = g(Whyht + by). (2)

where Wxh represents the weight parameters between the
input and hidden layer, Whh represents the weight param-
eters between the hidden and hidden layer, Why represents
the weight parameters between the hidden and output layer,
and bh and by represent bias vectors for the hidden and out-
put layers. Functions f (·) and g(·) are nonlinear activation
functions, such as sigmoid or tanh.

Figure 1 Recurrent Neural Network

2.2 Gated Recurrent Neural Network

Simple RNNs cannot easily be used for modeling datasets
with long sequences and long-term dependency because the
gradient can easily vanish or explode [19, 20]. This prob-
lem is caused by the effect of bounded activation functions
and their derivatives. Therefore, training a simple RNN is
more complicated than training a feedforward neural net-
work. Some researches addressed the difficulties of training

simple RNNs. For example, Le et al. [21] replaced the ac-
tivation function that causes the vanishing gradient with a
rectifier linear (ReLU) function. With an unbounded acti-
vation function and identity weight initialization, they opti-
mized a simple RNN for long-term dependency modeling.
Martens et al. [22] used a second-order Hessian-free (HF)
optimization method rather than the first-order method such
as gradient descent. However, estimation of the second-order
gradient requires extra computational steps. Modifying the
internal structure from RNN by introducing gating mech-
anism also helps RNNs solve the vanishing and exploding
gradient problems. The additional gating layers control the
information flow from the previous states and the current in-
put [2]. Several versions of gated RNNs have been designed
to overcome the weakness of simple RNNs by introducing
gating units, such as Long-Short Term Memory (LSTM)
RNN and GRU RNN. In the following subsections, we ex-
plain both in more detail.

2.2.1 Long-Short Term Memory RNN

The LSTM RNN was proposed by Hochreiter et al. [2].
LSTM is a gated RNN with three gating layers and memory
cells, utilizes the gating layers to control the current memory
states by retaining the valuable information and forgetting the
unneeded information. The memory cells store the internal
information across time steps. As illustrated in Figure 2,
the LSTM hidden layer values at time t are defined by the
following equations [23]:

it = σ(Wxixt +Whiht−1 +Wcict−1 + bi)
ft = σ(Wx f xt +Wh f ht−1 +Wc f ct−1 + b f)
ct = ft � ct−1 + it � tanh(Wxcxt +Whcht−1 + bc)
ot = σ(Wxoxt +Whoht−1 +Wcoct + bo)
ht = ot � tanh(ct)

where σ(·) is sigmoid activation function and it, ft, ot and
ct are respectively the input gates, the forget gates, the out-
put gates and the memory cells. The input gates retain the
candidate memory cell values that are useful for the current
memory cell and the forget gates retain the previous memory
cell values that are useful for the current memory cell. The
output gates retain the memory cell values that are useful for
the output and the next time-step hidden layer computation.

2.2.2 Gated Recurrent Unit RNN

The GRU RNN was proposed by Cho et al. [24] as an al-
ternative to LSTM. There are several key differences be-
tween GRU and LSTM. First, a GRU does not have memory
cells [25]. Second, instead of three gating layers, it only has
two: reset gates and update gates. As illustrated in Figure 3,
the GRU hidden layer at time t is defined by the following
equations [24]:

rt = σ(Wxr xt +Whrht−1 + br) (3)
zt = σ(Wxzxt +Whzht−1 + bz) (4)

TJANDRA et al.: RECURRENT NEURAL NETWORK COMPRESSION BASED ON LOW-RANK TENSOR REPRESENTATION
3

Figure 2 Long Short Term Memory Unit.

h̃t = f (Wxhxt +Whh(rt � ht−1) + bh) (5)
ht = (1 − zt) � ht−1 + zt � h̃t (6)

where σ(·) is a sigmoid activation function, f (·) is a tanh
activation function, rt, zt are the reset and update gates, h̃t
is the candidate hidden layer values, and ht is the hidden
layer values at time-t. The reset gates control the previous
hidden layer values that are useful for the current candidate
hidden layer. The update gates decide whether to keep the
previous hidden layer values or replace the current hidden
layer values with the candidate hidden layer values. GRU
can match LSTM’s performance and its convergence speed
sometimes surpasses LSTM, despite having one fewer gating
layer [25].

Figure 3 Gated Recurrent Unit

In this section, we provided the formulation and the de-
tails for several RNNs. As we can see, most of the RNNs
consist of many dense matrices that represents a large num-
ber of weight parameters that are required to represent all of
the RNN models. In the next section, we present an alter-
native RNN model that significantly reduces the number of
parameters and simultaneously preserves the performance.

3. Tensor Decomposition

In this section, we explain our approaches to compress the

parameters in theRNN. First, we define the tensorization pro-
cess to transform the weight matrices inside the RNN model
into higher order tensors. Then, we describe three tensor de-
compositions method called asCANDECOMP/PARAFAC
(CP) decomposition, Tucker decomposition and Tensor
Train (TT) decomposition.

3.1 Vector, Matrix and Tensor

Before we start to explain any further, wewill define different
notations for vectors, matrices and tensors. Vector is an
one-dimensional array, matrix is a two-dimensional array
and tensor is a higher-order multidimensional array. In this
paper, bold lower case letters (e.g., b) represent vectors,
bold upper case letters (e.g., W) represent matrices and bold
calligraphic upper case letters (e.g., W) represent tensors.
For representing the element inside vectors, matrices and
tensors, we explicitly write the index in every dimension
without bold font. For example, b(i) is the i-th element in
vector b, W(p, q) is the element on p-th row and q-th column
from matrix W andW(i1, .., id) is the i1, .., id-th index from
tensor W .

3.2 Tensor decomposition method

Tensor decomposition is a method for generalizing low-
rank approximation from a multi-dimensional array. There
are several popular tensor decomposition methods, such as
Canonical polyadic (CP) decomposition, Tucker decompo-
sition and Tensor Train decomposition. The factorization
format differs across different decomposition methods. In
this section, we explain briefly about CP-decomposition and
Tucker decomposition.

3.2.1 CP-decomposition

Canonical polyadic (CANDECOMP/ PARAFAC) decompo-
sition [26–28] or usually referred to CP-decomposition fac-
torizes a tensor into the sum of outer products of vectors.
Assume we have a 3rd-order tensorW ∈ Rm1×m2×m3 , we can
approximate it with CP-decomposition:

W ≈

R∑
r=1

g1,r ⊗ g2,r ⊗ g3,r (7)

where ∀r ∈ [1..R], g1,r ∈ R
m1 , g2,r ∈ R

m2 , g3,r ∈ R
m3 , R ∈

Z+ is the number of factors combinations (CP-rank) and ⊗
denotes Kronecker product operation. Elementwise, we can
calculate the result by:

W(x, y, z) ≈
R∑

r=1

g1,r(x) g2,r(y) g3,r(z) (8)

In Figure 4, we provide an illustration for Eq. 7 in more
details.

4
IEICE TRANS. INF. & SYST., VOL.Exx–??, NO.xx XXXX 200x

Figure 4 CP-decomposition for 3rd-order tensor W

3.2.2 Tucker decomposition

Tucker decomposition [28,29] factorizes a tensor into a core
tensor multiplied by a matrix along each mode. Assume we
have a 3rd-order tensorW ∈ Rm1×m2×m3 , we can approximate
it with Tucker decomposition:

W ≈ G0 ×1 G1 ×2 G2 ×3 G3 (9)

where G0 ∈ R
r1×r2×r3 is the core tensor, G1 ∈ R

m1×r1 ,
G2 ∈ R

m2×r2 , G3 ∈ R
m3×r3 are the factor matrices and ×n is

the n-th mode product operator. The mode product between
a tensor G0 ∈ R

n1×n2×n3 and a matrix G1 ∈ R
m1×n1 is a tensor

Rm1×n2×n3 . By applying the mode products across all modes,
we can recover the originalW tensor. Elementwise, we can
calculate the element from tensorW by:

W(x, y, z) ≈
r1∑

s1=1

r2∑
s2=1

r3∑
s3=1

G0(s1, s2, s3)

G1(x, s1) G2(y, s2) G3(z, s3) (10)

where x ∈ [1, ..,m1], y ∈ [1, ..,m2], z ∈ [1, ..,m3]. Figure 5
gives an illustration for Eq. 9

Figure 5 Tucker decomposition for 3rd-order tensorW

3.2.3 Tensor Train decomposition

Tensor Train decomposition [14] factorizes a tensor into a
collection of lower order tensors called as TT-cores. All TT-
cores are connected through matrix multiplications across
all tensor order to calculate the element from original tensor.
Assume we have a 3rd-order tensorW ∈ Rm1×m2×m3 , we can
approximate the element at index x, y, z by:

W(x, y, z) ≈
r1∑

s1=1

r2∑
s2=1

G1(x, s1)G2(s1, y, s2)G3(s2, z)

(11)

where x ∈ [1, ..,m1], y ∈ [1, ..,m2], z ∈ [1, ..,m3] and
G1 ∈ R

m1×r1 ,G2 ∈ R
r1×m2×r2 ,G3 ∈ R

r2×m3 as the TT-cores.
Figure 6 gives an illustration for Eq. 11.

Figure 6 Tensor Train decomposition for 3rd-order tensorW

To generalized TT-decomposition for d-dimensional
tensor, TT-decomposition equation can be described as:

W(j1, j2, .., jd−1, jd) =
G1(j1) · G2(:, j2, :) · ... · Gd−1(:, jd−1, :) · Gd(:, jd).

(12)

where jk ∈ [1, ..,mk]. For all vectors or matrices sliced from
tensor Gk, if Gk(:, jk, :) related to the same dimension k, they
must be represented with size rk−1 × rk, where r0 and rd
must be equal to 1 to retain the final matrix multiplication
result as a scalar. In TT-format, we define a sequence of
rank {rk}

d
k=0 and we call them TT-rank from tensor W . The

set of matrices Gk = {Gk(:, jk, :)}
mk
jk=1 where the matrices are

spanned in the same index are called TT-core.
We can generalized the TT-format equation in detail by

enumerating the index qk−1 ∈ {1, .., rk−1} and qk ∈ {1, .., rk}

in matrix Gk(jk) across all k ∈ {1, .., d}:

W(j1, j2, .., jd−1, jd) =∑
q0,..,qd

G1(q0, j1, q1) ...Gd(qd−1, jd, qd). (13)

By factoring the original tensor W into multiple TT-
cores {Gk}

d
k=1, we can compress the number of elements

needed to represent the original tensor size from
∏d

k=1 mk to∑d
k=1 mkrk−1rk.

Lastly, to create an intuitive example on how to rep-
resent tensor using set of TT-cores, we illustrate how to
represent a tensorW element at (1, 0, 3) with 3 TT-cores in
Figure 7.

4. Proposed Tensor-based RNN

In this section, we describe our proposed approach to
compress RNN model using various tensor decomposition

TJANDRA et al.: RECURRENT NEURAL NETWORK COMPRESSION BASED ON LOW-RANK TENSOR REPRESENTATION
5

Figure 7 Representing a tensorW element at (1, 0, 3) using 3 TT-cores
G1,G2 and G3. Blue shaded vectors or matrices are used for chain multi-
plication

method that we have described above. First, we will explain
about linear layer tensorization. After that, we rewrite the
RNN equation based on the from the matrices weight format
into the tensorized weight format.

4.1 Representing Linear Transformation on Tensorized
Weight

Most of RNN equations are composed by multiplication be-
tween the input vector and their corresponding weight ma-
trix:

y =Wx + b (14)

where W ∈ RM×N is the weight matrix, b ∈ RM is the
bias vector and x ∈ RN is the input vector. Thus, most
of RNN parameters are used to represent the weight matri-
ces. To reduce the number of parameters significantly, we
need to represent the weight matrices with the factorization
of higher-order tensor. First, we apply tensorization on the
weight matrices. Tensorization is the process to transform
a lower-order dimensional array into a higher-order dimen-
sional array. In our case, we tensorize RNN weight matrices
into tensors. Given a weight matrix W ∈ RM×N , we can rep-
resent them as a tensorW ∈ Rm1×m2×..×md ×n1×n2×..×nd where
M =

∏d
k=1 mk and N =

∏d
k=1 nk. For mapping each element

in matrix W to tensorW , we define one-to-one mapping be-
tween row-column and tensor index with bijective functions
fi : Z+ → Zd

+ and f j : Z+ → Zd
+. Function fi transforms each

row p ∈ {1, ..,M} into fi(p) = [i1(p), .., id(p)] and f j trans-
forms each column q ∈ {1, ..,N} into f j(q) = [j1(q), .., jd(q)].
Following this, we can access the value from matrix W(p, q)
in the tensor W with the index vectors generated by fi(p)
and f j(q) with these bijective functions.

After we determine the shape of the weight ten-
sor, we choose one of the tensor decomposition methods
(e.g., CP-decomposition (Sec.3.2.1), Tucker decomposition
(Sec.3.2.2) or Tensor Train (Sec.3.2.3)) to represent and re-
duce the number of parameters from the tensorW . In order
to represent matrix-vector products inside RNN equations,
we need to reshape the input vector x ∈ RN into a tensor
X ∈ Rn1×..×nd and the bias vector b ∈ RM into a tensor
B ∈ Rm1×..×md . Therefore, we can reformulate the Eq. 14 to
calculate y(p) elementwise with:

Y(fi(p)) =
∑

j1,.., jd

W
(
fi(p), j1, .., jd

)
X(j1, .., jd)

+ B(fi(p)) (15)

by enumerating all columns q position with j1, .., jd and
fi(p) = [i1(p), .., id(p)].

Based on the Eq. 15, we rewrite the linear layer equation
differently depends on the the decomposition method:

1. CP-decomposition:
For CP-decomposition, we represent our tensorW with
multiple factors gmk,r, gnk,r where ∀k ∈ [1..d]∀r ∈
[1..R], (gmk,r ∈ R

mk , gnk,r ∈ R
nk). From here, we re-

place Eq. 15 with:

Y(fi(p)) =
∑

j1,.., jd

 R∑
r=1

d∏
k=1

gmk,r(ik(p))gnk,r(jk)

 X(j1, .., jd)

+ B(fi(p)).
(16)

By using CP-decomposition for representing the weight
matrix W, we reduce the number of parameters from
M × N into R ∗ (

∑d
k=1 mk + nk).

2. Tucker decomposition:
For Tucker decomposition, we represent our tensor W
with a tensor core G0 ∈ R

r1×...×rd×rd+1×...×r2d where
∀k ∈ [1..d], rk < mk and ∀k ∈ [1..d], rd+k < nk
and multiple factor matrices GMk,GNk, where ∀k ∈
[1..d], (GMk ∈ R

mk×rk ,GNk ∈ R
nk×rd+k). Generally,

the tensor core ranks r1, r2, .., rd are corresponding to
the row in tensor index and rd+1, rd+2, .., r2d are corre-
sponding to the column in tensor index. From here, we
replace Eq. 15 with:

Y(fi(p)) =
∑

j1,.., jd

r1,..,rd ,rd+1,..,r2d∑
s1,..sd ,sd+1,..,s2d

G0(s1, ..sd, sd+1, .., s2d)

d∏
k=1

GMk(ik(p), sk)GNk(jk, sd+k)

 X(j1, .., jd)

+ B(fi(p)).
(17)

By using Tucker decomposition for representing the
weight matrix W, we reduce the number of parameters
from M × N into

∑d
k=1(mk ∗ rk + nk ∗ rd+k) + (

∏2d
k=1 rk).

3. Tensor-train decomposition:
For Tensor-train decomposition, we represent our ten-
sor W with multiple TT-cores Gm1..md and Gn1..nd .
TT-cores Gk ∈ R

rk−1×mk×rk , ∀k ∈ [1..d] are corre-
sponding to the row in tensor index and TT-cores
Gd+k ∈ R

rd+k−1×nk×rd+k , ∀k ∈ [1..d] are corresponding
to the column in tensor index. rk−1..rd are the TT-ranks
for row TT-cores and rd+k−1..r2d are the TT-ranks for
column TT-cores. From here, we replace Eq. 15 with:

6
IEICE TRANS. INF. & SYST., VOL.Exx–??, NO.xx XXXX 200x

Y(fi(p)) =
∑

j1,.., jd

(G1(:, i1(p), :)..Gd(:, id(p), :)

·Gd+1(:, j1, :)..G2d(:, jd, :)
)
X(j1, .., jd)

+ B(fi(p)).
(18)

By using TT-decomposition for representing the weight
matrix W , we reduce the number of parameters from
M ×N into

∑d
k=1

(
(rk−1 ∗ mk ∗ rk) + (rd+k−1 ∗ nk ∗ r2d)

)
.

We can control the shape of TT-cores {Gk}
2d
i=1 by choos-

ing factor M as {mk}
d
k=1 and N as {nk}

d
k=1 as long as the

number of factors is equal between M and N. We can
also define TT-rank and treat them as a hyper-parameter.
In general, if we use a smaller TT-rank, wewill get more
efficient models but this action restricts our model to
learn more complex representation. If we use a larger
TT-rank, we get more flexibility to express our weight
parameters but we sacrifice model efficiency.

4.2 Compressing Simple RNN

We represent a simple RNN in tensor-based format. From
Section 2.1, we focus our attention on two dense weight
matrices: (Wxh,Whh). Previously, we defined Wxh ∈ R

M×N

as input-to-hidden parameters and Whh ∈ R
M×M as hidden-

to-hidden parameters and bh .
First, we factorize matrix shape M into

∏d
k=1 mk and

N into
∏d

k=1 nk. Next, we determine which tensor decom-
position method to represent the weight matrices. We will
substitute weight matrix Wxh with tensorWxh and Whh with
tensor Whh. We define bijective functions fx

i and fh
i to ac-

cess row p ∈ [1..M] from Wxh and Whh in the tensor-based
representation. We rewrite our simple RNN formulation to
calculate ht in Eq.1:

axh
t (p) =

∑
j1,.., jd

Wxh(fx
i (p), [j1, .., jd]) · Xt

(
j1, .., jd

)
ahh

t (p) =
∑

j1,.., jd

Whh(fh
i (p), [j1, .., jd]) · Ht−1

(
j1, .., jd

)
axh

t =
[
axh

t (1), .., axh
t (M)

]
ahh

t =
[
ahh

t (1), .., ahh
t (M)

]
ht = f (axh

t + ahh
t + bh),

whereX is the tensor representation of input xt andHt−1 is
the tensor representation of previous hidden states ht−1.

4.3 Compressing GRU RNN

In this section, we apply tensor-based format to represent a
gated RNN. Among several RNN architectures with gating
mechanism, we choose GRU to be reformulated in tensor-
based representation because it has less complex formulation
and similar performance as LSTM. For the rest of this paper,

we called Tucker-GRU if we used Tucker decomposition,
CP-GRU if we used CP-decomposition and TT-GRU if we
used TT-decomposition to replace the weight matrices in-
side GRU. In Section 2.2.2, we focus on the following six
dense weight matrices: (Wxr, Whr, Wxz, Whz, Wxh, and Whh).
Weight matrices Wxr, Wxz, Wxh ∈ R

M×N are parameters for
projecting the input layer to the reset gate, the update gate,
the candidate hidden layer, and Whr, Whz, Whh ∈ R

M×M are
respectively parameters for projecting previous hidden layer
into the reset gate, the update gate and candidate hidden
layer.

We factorize matrix shape M into
∏d

k=1 mk and N into∏d
k=1 nk. All weight matrices (Wxr, Whr, Wxz, Whz, Wxh,

Whh) are substituted with tensors (Wxr, Whr, Wxz, Whz,
Wxh, Whh) in tensor-based weight representation. We de-
fine bijective function fx

i to access row p from Wxr,Wxz,Wxh

and function fh
i to access row p fromWhr,Whz,Whh in tensor-

based weight representation. We rewrite the GRU formula-
tion to calculate rt in Eq.3:

axr
t (p) =

∑
j1,.., jd

Wxr(fx
i (p), [j1, .., jd]) · Xt

(
j1, .., jd

)
ahr

t (p) =
∑

j1,.., jd

Whr(fh
i (p), [j1, .., jd]) · Ht−1

(
j1, .., jd

)
axr

t =
[
axr

t (1), .., axr
t (M)

]
ahr

t =
[
ahr

t (1), .., ahr
t (M)

]
rt = σ(axr

t + ahr
t + br). (19)

Next, we rewrite the GRU formulation to calculate zt in Eq.4:

axz
t (p) =

∑
j1,.., jd

Wxz(fx
i (p), [j1, .., jd]) · Xt

(
j1, .., jd

)
ahz

t (p) =
∑

j1,.., jd

Whz(fh
i (p), [j1, .., jd]) · Ht−1

(
j1, .., jd

)
axz

t =
[
axz

t (1), .., axz
t (M)

]
ahz

t =
[
ahz

t (1), .., ahz
t (M)

]
zt = σ(axz

t + ahz
t + bz). (20)

Finally, we rewrite the GRU formulation to calculate h̃t in
Eq.5:

axh
t (p) =

∑
j1,.., jd

Wxh(fx
i (p), [j1, .., jd]) · Xt

(
j1, .., jd

)
ahh

t (p) =
∑

j1,.., jd

Whh(fh
i (p), [j1, .., jd]) ·

(
Rt

(
j1, .., jd

)
· Ht−1

(
j1, .., jd

))
axh

t =
[
axh

t (1), .., axh
t (M)

]
ahh

t =
[
ahh

t (1), .., ahh
t (M)

]
h̃t = f (axh

t + ahh
t + bh). (21)

After rt, zt and h̃t are calculated, we calculate ht on Eq.6 with
standard operations like element-wise sum and multiplica-
tion.

TJANDRA et al.: RECURRENT NEURAL NETWORK COMPRESSION BASED ON LOW-RANK TENSOR REPRESENTATION
7

In practice, we could assign a different d for eachweight
tensor as long as the input data dimension can also be factor-
ized into the d values. The choice of tensor decomposition
method, ranks, and factors shape are determined by the user
and treated as hyperparameter. However, to simplify our im-
plementation we use the same d for both the input and hidden
factorization size. For TT-GRU, we also use the same fac-
torizations M =

∏d
k=1 mk and N =

∏d
k=1 nk for all weight

tensors.
We do not substitute bias vector b into tensorB because

the number of bias parameters is insignificant compared to
the number of parameters in matrix W. In terms of per-
formance, the element-wise sum operation for bias vector b
is also insignificant compared to the matrix multiplication
between a weight matrix and the input layer or the previous
hidden layer.

4.4 Tensor Core and Factors Initialization Trick

Because of the large number of recursive matrix multipli-
cations, followed by some nonlinearity (e.g, sigmoid, tanh),
the gradient from the hidden layer will diminish after sev-
eral time-step [30]. Consequently, training recurrent neural
networks is much harder compared to standard feedforward
neural networks.

Even worse, we decompose the weight matrix into mul-
tiple smaller tensors or matrices, thus the number of mul-
tiplications needed for each calculation increases multiple
times. Therefore, we need a better initialization trick on the
tensor cores and factors to help our model convergences in
the early training stage.

In this work, we follow Glorot et al. [31] by initializing
the weight matrix with a certain variance. We assume that
our original weight matrix W has a mean 0 and the variance
σ2

W . We utilize the basic properties from a sum and a product
variance between two independent random variables.

Definition 4.1. Let X and Y be independent random vari-
ables with the mean 0, then the variance from the sum of X
and Y is Var(X + Y) = Var(X) + Var(Y)

Definition 4.2. Let X and Y be independent random vari-
ables with the mean 0, then the variance from the product of
X and Y is Var(X ∗ Y) = Var(X) ∗ Var(Y)

After we decided the target variance σ2
w for our original

weight matrix, now we need to derive the proper initializa-
tion rules for the tensor core and factors. We calculate the
variance for tensor core and factors by observing the num-
ber of sum and product operations and utilize the variance
properties from Def. 4.1 and 4.2. Here, we listed different
initialization strategies for each tensor decomposition meth-
ods:

1. CP-decomposition:
For weight tensor W based on the CP-decomposition,
we can calculate σg as the standard deviation for all
factors gmk,r, gnk,r with:

σg =
4d

√
σ2
w

R
(22)

and initialize gmk,r, gnk,r ∼ N(0, σ2
g).

Proof. Define 1) a dense matrix W and each element
are initialized with independent random variable w, 2)
all tensor factors gm, gn element are initialized with
independent random variable g. We approximate vari-
able w by series of summation and multiplication from
elements of tensor factors random variable g (Eq. 16).

W(p, q) =
R∑

r=1

d∏
k=1

gmk,r(ik(p))gnk,r(jk(q)) (23)

We replace W(p, q) with random variable w and
gmk,r(ik(p)), gnk,r(jk(q)) with random variable g.

w =

R∑
r=1

d∏
k=1

g ∗ g (24)

w =

R∑
r=1

g2d (25)

w = Rg2d (26)
(27)

Apply variance for both sides.

Var(w) = Var
(
Rg2d

)
(28)

Var(w) = RVar
(
g2d

)
(29)

Var(w) = RVar
(
g
)2d (30)

σ2
w = Var(w) (31)
σ2
g = Var(g) (32)

σ2
w

R
= (σ2

g)
2d (33)

2d

√
σ2
w

R
= σ2

g (34)

4d

√
σ2
w

R
= σg (35)

∗ Notes: g between different factors and positions are
not a same random variable (we just write as g for sake
of simplicity). Therefore, for the case where multiple
sum of g, we use Definition 4.1, not of Var(aX) =
a2Var(X). For the case of multiple multiplication of g,
we use Definition 4.2, not based on Chi-Square random
variable and their variance calculation.

2. Tucker decomposition:
For weight tensor W based on the Tucker decomposi-
tion, we can calculate σg as the standard deviation for

8
IEICE TRANS. INF. & SYST., VOL.Exx–??, NO.xx XXXX 200x

the core tensor G0 and the factor matrices GMk,GNk
with:

σg =
(4d+2)

√
σ2
w∏2d

k=1 rk
(36)

and initialize G0,GMk,GNk ∼ N(0, σ2
g).

Proof. Define 1) a densematrixW and each element are
initialized with independent random variable w, 2) all
tensor factors G0,GM,GN element are initialized with
independent random variable g. We approximate vari-
able w by series of summation and multiplication from
elements of tensor factors random variable g (Eq. 17).

W(p, q) =
r1,..,rd ,rd+1,..,r2d∑
s1,..,sd ,sd+1,.,s2d

G0(s1, ..sd, sd+1, .., s2d)

d∏
k=1

GMk(ik(p), sk)GNk(jk(q), sd+k) (37)

We replace W(p, q) with random variable w and
G0,GM,GN with random variable g.

w =

r1,..,rd ,rd+1,..,r2d∑
s1,..,sd ,sd+1,.,s2d

g

d∏
k=1

g ∗ g (38)

w =

r1,..,rd ,rd+1,..,r2d∑
s1,..,sd ,sd+1,.,s2d

g ∗ g2d (39)

w =

r1,..,rd ,rd+1,..,r2d∑
s1,..,sd ,sd+1,.,s2d

g2d+1 (40)

w =

2d∏
k=1

rkg
2d+1 (41)

Apply variance for both sides.

Var(w) = Var

 2d∏
k=1

rkg
2d+1

 (42)

Var(w) =
2d∏

k=1

rkVar
(
g2d+1

)
(43)

Var(w) =
2d∏

k=1

rkVar(g)2d+1 (44)

σ2
w = Var(w) (45)
σ2
g = Var(g) (46)

σ2
w∏2d

k=1 rk
= (σ2

g)
2d+1 (47)

2d+1

√
σ2
w∏2d

k=1 rk
= σ2

g (48)

4d+2

√
σ2
w∏2d

k=1 rk
= σg (49)

3. Tensor-train decomposition:
For weight tensorW based on the Tensor Train decom-
position, we can calculate σg as the standard deviation
for all the TT-cores Gk with:

σg =
(4d−2)

√
σ2
w∏2d

k=0 rk
(50)

and initialize Gk ∼ N(0, σ2
g).

Proof. Define 1) a dense matrix W and each element
are initialized with independent random variable w, 2)
all tensor cores Gm1,..,md ,Gn1,..,nd element are initial-
ized with independent random variable g. We approx-
imate variable w by series of summation and multipli-
cation from elements of tensor factors random variable
g (Eq. 18).

W(p, q) = G1(:, i1(p), :)Gd(:, id(p), :)
Gd+1(:, j1(q), :)G2d(:, jd(q), :) (51)

We replace W(p, q) with random variable w and
Gm1,..,md ,Gn1,..,nd with random variable g.

w =

2d∏
k=0

rkg
(2d−1) (52)

(53)

Apply variance for both sides.

Var(w) = Var

 2d∏
k=0

rkg
(2d−1)

 (54)

Var(w) =
2d∏

k=0

rkVar
(
g(2d−1)

)
(55)

Var(w) =
2d∏

k=0

rkVar
(
g
)(2d−1) (56)

σ2
w = Var(w) (57)
σ2
g = Var(g) (58)

σ2
w =

2d∏
k=0

rkσ
2(2d−1)
g (59)

σ2
w =

2d∏
k=0

rkσ
4d−2
g (60)

σ2
w∏2d

k=0 rk
= σ4d−2

g (61)

4d−2

√
σ2
w∏2d

k=0 rk
= σg (62)

TJANDRA et al.: RECURRENT NEURAL NETWORK COMPRESSION BASED ON LOW-RANK TENSOR REPRESENTATION
9

By choosing a good initialization, our neural network
will converge faster and obtain better local minima. Based
on our preliminary experiments, we get better starting loss at
the first several epochs compared to the randomly initialized
model with the same σk on Gaussian distribution for all set
of factors or cores.

5. Experiments 1: Polyphonic Music Modeling

In this section, we describe our dataset and all model con-
figurations. We performed experiments with three different
tensor-decompositions (CP decomposition, Tucker decom-
position and TT decomposition) to compress our GRU and
also the baseline GRU. In the end, we report our experiment
results and compare various tensor decomposition method
with different settings and number of parameters. Our
codes are available at https://github.com/androstj/
tensor_rnn.

5.1 Dataset

We evaluated our models with sequential modeling tasks.
We used a polyphonic music dataset [32] which contains 4
different datasets†: Nottingham, MuseData, PianoMidi and
JSB Chorales. For each active note in all time-step, we set
the value as 1, otherwise 0. Each dataset consists of at least
7 hours of polyphonic music and the total is ± 67 hours.
In Figure 8, we visualize the dataset and the task for this
experiment.

Figure 8 A simple illustration for polyphonic music dataset. For each
time-step, we have a vector of binary number. The colored circle denotes
the active note and the blank circle denotes the non-active note. The main
objective in this task is to predict which notes will be active at time-step t
given the information from previous active notes at time-step t − 1, t − 2, ...,
etc.

†Dataset are downloaded from: http://www-etud.iro.
umontreal.ca/~boulanni/icml2012

5.2 Models

We evaluate several models in this paper: GRU-RNN (no
compression), CP-GRU (weight compression via CP decom-
position), Tucker-GRU (weight compression via Tucker de-
composition), TT-GRU [15] (compressed weight with TT-
decomposition). For each timestep, the input and output
targets are vectors of 88 binary value. The input vector is
projected by a linear layer with 256 hidden units, followed by
LeakyReLU [33] activation function. For the RNN model
configurations, we enumerate all the details in the following
list:

1. GRU

• Input size (N): 256
• Hidden size (M): 512

2. Tensor-based GRU

• Input size (N): 256
• Tensor input shape (n1..4): 4 × 4 × 4 × 4
• Hidden size (M): 512
• Tensor hidden shape (m1..4): 8 × 4 × 4 × 4

a. CP-GRU

• CP-Rank (R): [10, 30, 50, 80, 110]

b. Tucker-GRU

• Core (G0) shape:

– (2 × 2 × 2 × 2) × (2 × 2 × 2 × 2)
– (2 × 3 × 2 × 3) × (2 × 3 × 2 × 3)
– (2 × 3 × 2 × 4) × (2 × 3 × 2 × 4)
– (2 × 4 × 2 × 4) × (2 × 4 × 2 × 4)
– (2 × 3 × 3 × 4) × (2 × 3 × 3 × 4)

c. TT-GRU

• TT-ranks:

– (1 × 3 × 3 × 3 × 1)
– (1 × 5 × 5 × 5 × 1)
– (1 × 7 × 7 × 7 × 1)
– (1 × 9 × 9 × 9 × 1)
– (1 × 9 × 9 × 9 × 1)

In this task, the training criterion is tominimize the neg-
ative log-likelihood (NLL). In evaluation, we measured two
different scores: NLL and accuracy (ACC). For calculating
the accuracy, we follow Bay et al. [34] formulation:

ACC =
∑T

t=1 T P(t)∑T
t=1

(
T P(t) + FP(t) + FN(t)

) (63)

where T P(t), FP(t), FN(t) is the true positive, false positive
and false negative at time-t. We only used true positive (TP),
false positive (FP), false negative (FN) and ignored the true
negative (TN) because most of the notes were turned off or

10
IEICE TRANS. INF. & SYST., VOL.Exx–??, NO.xx XXXX 200x

zero in the dataset.
For training models, we use Adam [35] algorithm for

our optimizer. To stabilize our training process, we clip our
gradient when the norm ||∇w|| > 5. For fair comparisons,
we performed a grid search over learning rates (1e − 2, 5e −
3, 1e − 3) and dropout probabilities (0.2, 0.3, 0.4, 0.5). The
best model based on loss in validation set will be used for
the test set evaluation.

5.3 Result and Discussion

Figure 9 NLLcomparison betweenTT-GRU,Tucker-GRU, andCP-GRU
on Nottingham test set

Figure 10 NLL comparison between TT-GRU, Tucker-GRU, and CP-
GRU on JSB Chorales test set

We report results of our experiments in Table. 1. For
the baseline model, we choose standard GRU-RNN without
any compression on the weight matrices. For the compari-
son between compressedmodels (CP-GRU,Tucker-GRUand
TT-GRU), we run each model with 5 different configurations
and varied the number of parameters ranged from 2232 up to
12184. In Figure 9-12, we plot the negative log-likelihood
(NLL) score corresponding to the number of parameters for
each model. From our results, we observe that TT-GRU per-
formed better than Tucker-GRU in every experiments with

Figure 11 NLL comparison between TT-GRU, Tucker-GRU, and CP-
GRU on PianoMidi test set

Figure 12 NLL comparison between TT-GRU, Tucker-GRU, and CP-
GRU on MuseData test set

similar number of parameters. In some datasets (e.g., Piano-
Midi, MuseData, Nottingham), CP-GRU has better results
compared to Tucker-GRU and achieves similar performance
(albeit slightly worse) as TT-GRU when the number of pa-
rameters are greater than 6000. Overall, TT-GRU performed
the best in most of the settings. Therefore, for the next ex-
periment, we will apply TT-GRU as our main compression
method.

6. Experiment II: Speech Recognition

In this task, we will evaluate our proposed TT-GRU model
on speech recognition task. We describe our dataset for
speech recognition task and our end-to-end ASR model for
this task. In the end, we report our experiment results by
comparing the performance of uncompressed model with
TT-GRU compressed model.

6.1 Dataset

For the dataset, we used English speech corpus LibriSpeech
corpus [36] as a task to evaluate our proposed model model.
Due to time and resource constraints, we only used the small-
est “train-clean-100” subset for training data, “dev-clean”

TJANDRA et al.: RECURRENT NEURAL NETWORK COMPRESSION BASED ON LOW-RANK TENSOR REPRESENTATION
11

Table 1 Comparison between all models and their configurations based on the number of parameters,
negative log-likelihood and accuracy of polyphonic test set

Dataset
Nottingham JSB PianoMidi MuseDataModel Config Param
NLL ACC NLL ACC NLL ACC NLL ACC

GRU
IN:256
OUT:512

1181184 3.369 71.1 8.32 30.24 7.53 27.19 7.12 36.30

Rank
10 2456 3.79 67.51 8.60 27.29 8.15 19.03 7.87 27.32
30 4296 3.48 69.85 8.49 28.33 7.68 25.03 7.27 36.19
50 6136 3.46 69.56 8.40 28.47 7.66 26.18 7.23 36.34
80 8896 3.43 69.73 8.41 27.88 7.61 28.28 7.19 36.57

CP-GRU
IN: 4,4,4,4
OUT: 8,4,4,4

110 11656 3.34 70.42 8.41 29.45 7.60 27.36 7.18 36.89
Cores
2,2,2,2 2232 3.71 68.30 8.57 27.28 7.98 20.79 7.81 29.94
2,3,2,3 4360 3.64 68.63 8.48 28.10 7.75 24.92 7.38 34.20
2,3,2,4 6408 3.55 69.10 8.44 28.06 7.73 25.66 7.69 32.50
2,4,2,4 10008 3.52 69.18 8.41 27.70 7.75 24.46 7.38 35.58

TUCKER-GRU
IN: 4,4,4,4
OUT: 8,4,4,4

2,3,3,4 12184 3.41 70.23 8.43 29.03 7.69 25.26 7.43 33.63
TT-rank
1,3,3,3,1 2688 3.49 69.49 8.37 28.41 7.60 26.95 7.49 34.99
1,5,5,5,1 4096 3.45 69.81 8.38 28.86 7.58 27.46 7.50 33.37
1,7,7,7,1 6016 3.40 70.72 8.37 28.83 7.57 27.58 7.23 36.53
1,9,9,9,1 8448 3.35 70.82 8.36 29.32 7.58 27.62 7.20 37.81

TT-GRU
IN: 4,4,4,4
OUT: 8,4,4,4

1,11,11,11,1 11392 3.38 70.51 8.37 29.55 7.58 28.07 7.16 36.54

Table 2 Librispeech dataset information

Subset hours speakers per-spk minutes
train-clean-100 100 251 25
dev-clean 5 40 10
test-clean 5 40 10

subset for validation data, and “test-clean” subset for test
data as shown in Table 2. The speech utterances were seg-
mented into multiple frames with a 25-ms window size and a
10-ms step size. Then we extracted 23-dimension filter bank
features using Kaldi’s feature extractor [37] and normalized
them to have zero mean and unit variance.

6.2 Model

First, we will briefly introduce the ASR system that we use in
this experiment. Our baseline ASRmodel is based on “Deep
Speech 2” architecture [38]. DeepSpeech2 model consists
multiple different type of layers, including convolutional
layer, recurrent bidirectional GRU layer, and fully connected
layer. Given an input speech X(i) and transcription Y (i) sam-
pled from the training setD = {(X(1),Y (1)), (X(2),Y (2)), ...}, a
single speech utterance is represented as amatrixX(i) ∈ RS×D

where T is the length of speech utterance and D is the feature
dimension. A transcription output Y (i) = [y1, y2, ..., yS] is a
sequence of phoneme or grapheme plus a blank character
with length T .

We illustrated the model architecture on the left side of
Figure 13. First, the speech features X are projected by one or
more 1D convolution (convolution over the time dimension)
and transformed by a nonlinear activation function ReLU:

hl
s = f (Wl ~ hl−1

s−c:s+c) (64)

whereWl is a convolution filter weight at layer-l, c is the
context window size and f (x) = max(0, x) is a rectifier linear
unit (ReLU) activation function. After that, the output from
convolutional layers hl

1:S is fed into multiple bidirectional
GRU layers:

−→
hl

t = GRU(hl−1
t ,
−−→
hl

t−1) (65)
←−
hl

t = GRU(hl−1
t ,
←−−
hl

t+1). (66)

The result from left-to-right GRU
−→
hl

t is combined with the
←−
hl

t by sum between two hidden states hl
t =
−→
hl

t +
←−
hl

t . Next, the
result from bidirectional GRU are fed into one or more fully
connected layers, followed by nonlinear activation function
ReLU:

hl
t = f (W lhl−1

t + bl). (67)

The last output from our model hL
t are used to represent

the label probability:

P(yt = c|X) =
exp(wL

c ∗ hL−1
t + bc)∑

k exp(wL
k ∗ hL−1

t + bk)
. (68)

To train this model, we use Connectionist Temporal Classi-
fication (CTC) loss function [39].

We perform the TT-format representation on the bidi-
rectional GRU layers in the middle of DeepSpeech2 archi-
tecture. In Figure. 13, wemark the layer that we change from
GRU to TT-GRU.

The setting of the model parameters of the GRU base-
line is based on the paper of Deep Speech 2 [3], and the
configuration of the parameters of TT-GRU is determined
based on the tensor decomposition. For baseline GRU, we

12
IEICE TRANS. INF. & SYST., VOL.Exx–??, NO.xx XXXX 200x

Figure 13 We replacemultiple layers of bidirectionalGRUwith TT-GRU

Table 3 Parameters, Compression Rate, Validation CER and Test CER
on Librispeech dataset

Model Params Compr. Val CER Test CER
GRU-H1510 13M 100 20.03% 20.62%
TTGRU
H4x8x6x8-R3 11K 0.08 27.57% 27.21%
H4x8x6x8-R5 22K 0.16 23.76% 23.40%
H4x8x6x8-R7 37K 0.27 22.68% 23.73%

used the SGD optimizer. However, our TT-GRU could not
converge with SGD, and thus we used the Adam algorithm to
optimize the TT-GRU model parameters. We evaluate ASR
performance by calculating the normalized edit-distance be-
tween the generated transcription and the ground truth. Here,
we use character error-rate (CER) because our output token
are set of alphabet letters (a-z) and space character.

6.3 Result and Discussion

Table 3 shows the performance of the proposed TT-GRU
in comparison with the baseline (uncompressed) GRU. The
baseline model is a GRU with 1510 hidden units. Our pro-
posed model has a 4x8x6x8 output shape and TT-GRU of
tensor train rank (3, 5, 7). No language model was applied,

and thus a character error rate (CER) was used for the evalu-
ation function. The best system of our proposedmodel could
drastically reduce the parameters from 13millions to 37,000.
Overall, this reduction was about 99% in the converted GRU
layer and about 60% in the entire model. This reveals that the
performance could bemaintainedwhile reducing the number
of parameters. Importantly, unlike several published systems
using these benchmarks, our proposed system does not in-
volve a language model. Therefore, the results reported in
the paper could not reach state-of-the-art performance. Nev-
ertheless, the results are still convincing as evidence of the
proposed framework’s effectiveness.

7. Related Work

Compressing parameters on neural network architecture has
become an interesting topic over the past several years due
to the increased complexity of neural networks. The number
of parameters and processing times has also grown tremen-
dously along with their performance. A number of re-
searchers comes up with many different ways to tackle this
problem.

Ba et al. [10] and Hinton et al. [9] “distilled" the knowl-
edge from a deep neural network into a shallow neural net-
work. First, they trained a state-of-the-art model with a deep
and complex neural network using the original dataset and
hard label as the target. After that, they reused the trained
deep neural network by extracting output from the softmax
layer and used them as the output target for a shallow neural
network. By training the shallow network with a soft target,
they achieved a better performance than the model trained
using hard target labels. Recently, Tang et al. [11] utilized
a similar approach for training RNN with a trained DNN.
However, they had to train two different neural networks
and built different structures to transfer the knowledge from
bigger models.

From the probabilistic perspective, Graves et al. [40]
proposed a variational inference method for learning the
mean and variance of Gaussian distribution for each weight
parameter. They reformulated the variational inference as
the optimization of a Minimum Description Length [41].
By modeling each weight parameter, they learned the im-
portance of each weight in regard to the model. After the
training process was finished, they pruned the parameters by
removing the weight that has a high probability to be zero.
However, they still needed large matrix multiplication and
represented their model in dense weight matrix, and thus the
algorithmic and memory complexity remained the same as
in the original model. LeCun et al. [42] proposed a method
to prune the weight with low-saliency based on their second
derivatives.

Another approach to tackle the compression problem
by a technical perspective is to limit the precision for weight
parameters. Gupta et al. [43] and Courbariaux et al. [44]
minimized the performance loss while using fewer bits (e.g.,
16 bits) to represent floating points. Courbariaux et al. [45]
proposed BinaryConnect to constrain the weight possible

TJANDRA et al.: RECURRENT NEURAL NETWORK COMPRESSION BASED ON LOW-RANK TENSOR REPRESENTATION
13

values to -1 or +1. Han et al. [46] utilized a combination
between pruning, quantization and compression by Huffman
coding. Most of these ideas can be easily applied with
our proposed model since several deep-learning frameworks
have built-in low-precision floating point options [47, 48].

Model compression using low-rank matrix has also
been reported [12, 49]. Both of these works showed that
many weight parameters are significantly redundant, and by
representing them as low-rank matrices, they reduced the
number of parameters with only a small drop in accuracy.
Recently, Lu et al. [50] used low-rank matrix ideas to reduce
the number of parameters in an RNN. Novikov et al. [13] uti-
lized TT-format to represent weight matrices on feedforward
neural networks. From their empirical evaluation on DNN-
based architecture, the feedforward layer represented by the
TT-format has a far better compression ratio and smaller
accuracy loss compared to the low-rank matrix approach.
Tjandra et al. [15] and Yang et al. [51] utilized the TT-format
to represent the RNN weight matrices. Based on the em-
pirical results, TT-format are able to reduce the number of
parameters significantly and retain the model performance
at the same time. Recent work from [52] used block decom-
positions to represent the RNN weight matrices.

To the best of our knowledge, there are only a few re-
search about compression on RNNmodels. In this work, we
presented anRNNmodel by usingCPdecomposition, Tucker
decomposition and TT-decomposition to re-parameterize the
weight matrices into a low-rank tensor format. We also com-
pared the performance to standard uncompressed RNNswith
a greater number of parameters. We expect our model could
minimize the number of parameters and preserved the per-
formance simultaneously.

8. Conclusion

In this paper, we presented an efficient and compact RNN
model based on tensor decomposition method. In this work,
we presented some alternatives for compressing RNN pa-
rameters with tensor decomposition methods. Specifically,
we utilized CP-decomposition and Tucker decomposition to
represent the weight matrices. For the experiment, first,
we run our experiment on polyphonic music dataset with un-
compressedGRUmodel and three tensor-basedRNNmodels
(CP-GRU, Tucker-GRU and TT-GRU). We compare the per-
formance of between all tensor-based RNNs under various
number of parameters. Based on our experiment results, we
conclude that TT-GRU has better performances compared to
other methods under the same number of parameters. To ex-
tend our result, we run another experiment which is speech
recognition task. We modified DeepSpeech2 architecture
and we were able to represent dense weight matrices inside
the RNN layer with multiple low-rank tensors based on TT-
format. We evaluated our proposed model on LibriSpeech
data. Our proposed TT-GRU is able to compress the num-
ber of parameters significantly while retaining high model
performance and accuracy at the same time.

Acknowledgment

Part of this work was supported by JSPS KAKENHI Grant
Numbers JP17H06101 and JP17K00237. We also thank
Takuma Mori for his supports and insightful discussions.

References

[1] J.L. Elman, “Finding structure in time,” Cognitive science, vol.14,
no.2, pp.179–211, 1990.

[2] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neu-
ral computation, vol.9, no.8, pp.1735–1780, 1997.

[3] A. Hannun, C. Case, J. Casper, B. Catanzaro, G. Diamos, E. Elsen,
R. Prenger, S. Satheesh, S. Sengupta, A. Coates, et al., “Deep
speech: Scaling up end-to-end speech recognition,” arXiv preprint
arXiv:1412.5567, 2014.

[4] D. Amodei, R. Anubhai, E. Battenberg, C. Case, J. Casper, B. Catan-
zaro, J. Chen, M. Chrzanowski, A. Coates, G. Diamos, et al., “Deep
speech 2: End-to-end speech recognition in English and Mandarin,”
arXiv preprint arXiv:1512.02595, 2015.

[5] Y. Wu, M. Schuster, Z. Chen, Q.V. Le, M. Norouzi, W. Macherey,
M. Krikun, Y. Cao, Q. Gao, K. Macherey, et al., “Google’s neural
machine translation system: Bridging the gap between human and
machine translation,” arXiv preprint arXiv:1609.08144, 2016.

[6] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine trans-
lation by jointly learning to align and translate,” arXiv preprint
arXiv:1409.0473, 2014.

[7] I. Sutskever, O.Vinyals, andQ.V. Le, “Sequence to sequence learning
with neural networks,” Advances in neural information processing
systems, pp.3104–3112, 2014.

[8] M. Schuster, “Speech recognition for mobile devices at Google,”
PacificRim International Conference onArtificial Intelligence, pp.8–
10, Springer, 2010.

[9] G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a
neural network,” arXiv preprint arXiv:1503.02531, 2015.

[10] J. Ba and R. Caruana, “Do deep nets really need to be deep?,”
Advances in neural information processing systems, pp.2654–2662,
2014.

[11] Z. Tang, D. Wang, and Z. Zhang, “Recurrent neural network training
with dark knowledge transfer,” 2016 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), pp.5900–
5904, IEEE, 2016.

[12] M. Denil, B. Shakibi, L. Dinh, N. de Freitas, et al., “Predicting
parameters in deep learning,” Advances in Neural Information Pro-
cessing Systems, pp.2148–2156, 2013.

[13] A. Novikov, D. Podoprikhin, A. Osokin, and D.P. Vetrov, “Tensoriz-
ing neural networks,” Advances in Neural Information Processing
Systems, pp.442–450, 2015.

[14] I.V. Oseledets, “Tensor-train decomposition,” SIAM Journal on Sci-
entific Computing, vol.33, no.5, pp.2295–2317, 2011.

[15] A. Tjandra, S. Sakti, and S. Nakamura, “Compressing recurrent
neural network with tensor train,” Neural Networks (IJCNN), 2017
International Joint Conference on, pp.4451–4458, IEEE, 2017.

[16] A. Tjandra, S. Sakti, and S. Nakamura, “Tensor decomposition
for compressing recurrent neural network,” 2018 International Joint
Conference on Neural Networks (IJCNN), pp.1–8, July 2018.

[17] T. Mori, A. Tjandra, S. Sakti, and S. Nakamura, “Compressing end-
to-end ASR networks by tensor-train decomposition,” Interspeech
2018, 19th Annual Conference of the International Speech Com-
munication Association, Hyderabad, India, 2-6 September 2018.,

14
IEICE TRANS. INF. & SYST., VOL.Exx–??, NO.xx XXXX 200x

pp.806–810, 2018.
[18] A. Graves, A.r. Mohamed, and G. Hinton, “Speech recognition

with deep recurrent neural networks,” Acoustics, Speech and Sig-
nal Processing (ICASSP), 2013 IEEE International Conference on,
pp.6645–6649, IEEE, 2013.

[19] Y. Bengio, P. Simard, and P. Frasconi, “Learning long-term depen-
dencies with gradient descent is difficult,” Neural Networks, IEEE
Transactions on, vol.5, no.2, pp.157–166, 1994.

[20] S. Hochreiter, Y. Bengio, P. Frasconi, and J. Schmidhuber, “Gradient
flow in recurrent nets: the difficulty of learning long-term dependen-
cies,” 2001.

[21] Q.V. Le, N. Jaitly, and G.E. Hinton, “A simple way to initial-
ize recurrent networks of rectified linear units,” arXiv preprint
arXiv:1504.00941, 2015.

[22] J.Martens and I. Sutskever, “Learning recurrent neural networkswith
Hessian-free optimization,” Proceedings of the 28th International
Conference on Machine Learning (ICML-11), pp.1033–1040, 2011.

[23] A. Graves, N. Jaitly, and A.r. Mohamed, “Hybrid speech recogni-
tion with deep bidirectional LSTM,” Automatic Speech Recognition
and Understanding (ASRU), 2013 IEEE Workshop on, pp.273–278,
IEEE, 2013.

[24] K. Cho, B.VanMerriënboer, C.Gulcehre, D. Bahdanau, F. Bougares,
H. Schwenk, and Y. Bengio, “Learning phrase representations us-
ing RNN encoder-decoder for statistical machine translation,” arXiv
preprint arXiv:1406.1078, 2014.

[25] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, “Empirical evaluation
of gated recurrent neural networks on sequence modeling,” arXiv
preprint arXiv:1412.3555, 2014.

[26] R.A. Harshman, “Foundations of the parafac procedure: Models and
conditions for an" explanatory" multimodal factor analysis,” 1970.

[27] H.A. Kiers, “Towards a standardized notation and terminology in
multiway analysis,” Journal of chemometrics, vol.14, no.3, pp.105–
122, 2000.

[28] T.G. Kolda and B.W. Bader, “Tensor decompositions and applica-
tions,” SIAM review, vol.51, no.3, pp.455–500, 2009.

[29] L.R. Tucker, “Some mathematical notes on three-mode factor analy-
sis,” Psychometrika, vol.31, no.3, pp.279–311, 1966.

[30] R. Pascanu, T. Mikolov, and Y. Bengio, “On the difficulty of training
recurrent neural networks,” International Conference on Machine
Learning, pp.1310–1318, 2013.

[31] X. Glorot and Y. Bengio, “Understanding the difficulty of train-
ing deep feedforward neural networks,” In Proceedings of the In-
ternational Conference on Artificial Intelligence and Statistics (AIS-
TATS’10). Society for Artificial Intelligence and Statistics, 2010.

[32] N. Boulanger-lewandowski, Y. Bengio, and P. Vincent, “Modeling
temporal dependencies in high-dimensional sequences: Application
to polyphonic music generation and transcription,” Proceedings of
the 29th International Conference on Machine Learning (ICML-12),
ed. J. Langford and J. Pineau, New York, NY, USA, pp.1159–1166,
ACM, 2012.

[33] A.L. Maas, A.Y. Hannun, and A.Y. Ng, “Rectifier nonlinearities
improve neural network acoustic models,” Proceedings of the 30th
International Conference on Machine Learning (ICML-13).

[34] M. Bay, A.F. Ehmann, and J.S. Downie, “Evaluation of multiple-f0
estimation and tracking systems.,” 2009 International Society forMu-
sic Information Retrieval Conference (ISMIR), pp.315–320, 2009.

[35] D. Kingma and J. Ba, “Adam: Amethod for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

[36] V. Panayotov, G.Chen, D. Povey, and S.Khudanpur, “Librispeech: an
asr corpus based on public domain audio books,” Acoustics, Speech
and Signal Processing (ICASSP), 2015 IEEE International Confer-
ence on, pp.5206–5210, IEEE, 2015.

[37] D. Povey, A.Ghoshal, G. Boulianne, L. Burget, O.Glembek, N.Goel,
M. Hannemann, P. Motlicek, Y. Qian, P. Schwarz, J. Silovsky,
G. Stemmer, and K. Vesely, “The kaldi speech recognition toolkit,”
IEEE 2011Workshop on Automatic Speech Recognition and Under-
standing, IEEE Signal Processing Society, Dec. 2011. IEEE Catalog

No.: CFP11SRW-USB.
[38] D. Amodei, S. Ananthanarayanan, R. Anubhai, J. Bai, E. Battenberg,

C. Case, J. Casper, B. Catanzaro, Q. Cheng, G. Chen, et al., “Deep
speech 2: End-to-end speech recognition in english and mandarin,”
International Conference on Machine Learning, pp.173–182, 2016.

[39] A. Graves, S. Fernández, F. Gomez, and J. Schmidhuber, “Connec-
tionist temporal classification: labelling unsegmented sequence data
with recurrent neural networks,” Proceedings of the 23rd interna-
tional conference on Machine learning, pp.369–376, ACM, 2006.

[40] A. Graves, “Practical variational inference for neural networks,” Ad-
vances in Neural Information Processing Systems, pp.2348–2356,
2011.

[41] G.E. Hinton and D. Van Camp, “Keeping the neural networks simple
by minimizing the description length of the weights,” Proceedings
of the sixth annual conference on Computational learning theory,
pp.5–13, ACM, 1993.

[42] Y. LeCun, J.S. Denker, and S.A. Solla, “Optimal brain damage,”
Advances in neural information processing systems, pp.598–605,
1990.

[43] S. Gupta, A. Agrawal, K. Gopalakrishnan, and P. Narayanan, “Deep
learning with limited numerical precision,” Proceedings of the 32nd
International Conference on Machine Learning, ICML 2015, Lille,
France, 6-11 July 2015, pp.1737–1746, 2015.

[44] M. Courbariaux, J.P. David, and Y. Bengio, “Training deep neu-
ral networks with low precision multiplications,” arXiv preprint
arXiv:1412.7024, 2014.

[45] M. Courbariaux, Y. Bengio, and J.P. David, “BinaryConnect: Train-
ing deep neural networks with binary weights during propagations,”
Advances in Neural Information Processing Systems, pp.3123–3131,
2015.

[46] S. Han, H. Mao, and W.J. Dally, “Deep compression: Compressing
deep neural networks with pruning, trained quantization and huffman
coding,” arXiv preprint arXiv:1510.00149, 2015.

[47] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro,
G.S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Good-
fellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser,
M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray,
C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Tal-
war, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals,
P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, “Ten-
sorFlow: Large-scale machine learning on heterogeneous systems,”
2015. Software available from tensorflow.org.

[48] Theano Development Team, “Theano: A Python framework for
fast computation of mathematical expressions,” arXiv e-prints,
vol.abs/1605.02688, May 2016.

[49] T.N. Sainath, B. Kingsbury, V. Sindhwani, E. Arisoy, and B. Ram-
abhadran, “Low-rank matrix factorization for deep neural network
training with high-dimensional output targets,” 2013 IEEE Inter-
national Conference on Acoustics, Speech and Signal Processing,
pp.6655–6659, IEEE, 2013.

[50] Z. Lu, V. Sindhwani, and T.N. Sainath, “Learning compact recurrent
neural networks,” 2016 IEEE International Conference on Acous-
tics, Speech and Signal Processing (ICASSP), pp.5960–5964, IEEE,
2016.

[51] Y. Yang, D. Krompass, and V. Tresp, “Tensor-train recurrent neu-
ral networks for video classification,” International Conference on
Machine Learning, pp.3891–3900, 2017.

[52] J. Ye, L.Wang, G. Li, D. Chen, S. Zhe, X. Chu, and Z. Xu, “Learning
compact recurrent neural networks with block-term tensor decom-
position,” Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pp.9378–9387, 2018.

TJANDRA et al.: RECURRENT NEURAL NETWORK COMPRESSION BASED ON LOW-RANK TENSOR REPRESENTATION
15

Andros Tjandra received his B.E degree
in Computer Science (cum laude) from Faculty
of Computer Science, Universitas Indonesia, In-
donesia in 2014. Later, he continued his study
and obtained M.S (cum laude) in 2015 from the
same faculty and university. At the moment,
he is currently taking doctoral course in Grad-
uate School of Information Science, Nara In-
stitute of Technology, Japan. He is a student
member of ASJ. His research interests include
machine learning (deep learning), speech recog-

nition, speech synthesis and natural language processing.

Sakriani Sakti received her B.E. degree
in Informatics (cum laude) from Bandung In-
stitute of Technology, Indonesia, in 1999. In
2000, she received DAAD-Siemens Program
Asia 21st Century Award to study in Communi-
cation Technology, University of Ulm, Germany,
and received her MSc degree in 2002. During
her thesis work, she worked with Speech Un-
derstanding Department, DaimlerChrysler Re-
search Center, Ulm, Germany. Between 2003-
2009, she worked as a researcher at ATR SLC

Labs, Japan, and during 2006-2011, she worked as an expert researcher
at NICT SLC Groups, Japan. While working with ATR-NICT, Japan, she
continued her study (2005-2008) with Dialog Systems Group University of
Ulm, Germany, and received her PhD degree in 2008. She was actively
involved in collaboration activities such as Asian Pacific Telecommunity
Project (2003-2007), A-STAR and U-STAR (2006-2011). In 2009-2011,
she served as a visiting professor of Computer Science Department, Uni-
versity of Indonesia (UI), Indonesia. From 2011, she has been an assistant
professor at the Augmented Human Communication Laboratory, NAIST,
Japan. She served also as a visiting scientific researcher of INRIA Paris-
Rocquencourt, France, in 2015-2016, under "JSPS Strategic Young Re-
searcher Overseas Visits Program for Accelerating Brain Circulation". She
is a member of JNS, SFN, ASJ, ISCA, IEICE and IEEE. Her research in-
terests include statistical pattern recognition, speech recognition, spoken
language translation, cognitive communication, and graphical modeling
framework.

Satoshi Nakamura is Director of Data
Science Center and Professor at the Graduate
School of Science and Technology, Nara Insti-
tute of Science and Technology, Japan, Team
Leader of Riken AIP Tourism Information Ana-
lytics Team, and Honorarprofessor of Karlsruhe
Institute of Technology, Germany. He received
his B.S. from Kyoto Institute of Technology in
1981 and Ph.D. from Kyoto University in 1992.
He was Associate Professor of Graduate School
of Information Science at Nara Institute of Sci-

ence and Technology in 1994-2000. He was Director of ATR Spoken
Language Communication Research Laboratories in 2000-2008 and Vice
president of ATR in 2007-2008. He was Director General of Keihanna
Research Laboratories and the Executive Director of Knowledge Creat-
ing Communication Research Center, National Institute of Information and
Communications Technology, Japan in 2009-2010. He is currently Direc-
tor of Augmented Human Communication laboratory and a full professor
Nara Institute of Science and Technology, Japan. He is interested in mod-
eling and systems of speech-to-speech translation and speech recognition.
He is one of the leaders of speech-to-speech translation research and has
been serving for various speech-to-speech translation research projects in

the world including C-STAR, IWSLT and A-STAR. He received Yamashita
Research Award, Kiyasu Award from the Information Processing Society
of Japan, Telecom System Award, AAMT Nagao Award, Docomo Mobile
Science Award in 2007, ASJ Award for Distinguished Achievements in
Acoustics. He received the Commendation for Science and Technology by
the Minister of Education, Science and Technology, and the Commendation
for Science and Technology by the Minister of Internal Affairs and Com-
munications. He also received LREC Antonio Zampolli Award 2012. He
has been Elected Board Member of International Speech Communication
Association, ISCA, since June 2011, IEEE Signal ProcessingMagazine Ed-
itorial Board Member since April 2012, IEEE SPS Speech and Language
Technical Committee Member since 2013. He is ATR Fellow, IPSJ Fellow
and IEEE Fellow.

