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Abstract

The dialog state tracker is one of the most important modules on task-
oriented dialog systems, its accuracy strongly affects the quality of the system
response. The architecture of the tracker has been changed from pipeline pro-
cessing to an end-to-end approach that directly estimates a user’s intention
from each current utterance and a dialog history because of the growth in
the use of the neural-network-based classifier. However, tracking appropri-
ate slot-value pairs of dialog states that are not explicitly mentioned in user
utterances is still a difficult problem. In this research, we propose creating
feature vectors by using inference results on an external knowledge base. This
inference process predicts associative entities in the knowledge base, which
contribute to the dialog state tracker for unseen entities of utterances. We
extracted a part of a graph structure from an external knowledge base (Wiki-
data). Label propagation was used for inferring associative nodes (entities)
on the graph structure to produce feature vectors. We used the vectors for
the input of a fully connected neural network (FCNN) based tracker. We
also introduce a convolutional neural network (CNN) tracker as a state-of-
the-art tracker and ensemble models of FCNN and CNN trackers. We used
a common test bed, Dialog State Tracking Challenge 4 for experiments. We
confirmed the effectiveness of the associative knowledge feature vector, and
one ensemble model outperformed other models.

Keywords: Dialog State Tracking, Knowledge Base, Knowledge Graph,
Associative Knowledge Inference

Preprint submitted to Computer Speech and Language August 16, 2018



1. Introduction1

Dialog state tracking (DST) is known as an important component of task-2

oriented dialog systems [1, 2, 3]. DST is a task of tracking user intentions3

(dialog frame) from input utterances and dialog history. Dialog state tracking4

challenges (DSTCs) have been held to provide a common test bed for DST [4].5

DSTC, DSTC2, and DSTC3 provide human-computer dialog corpora for6

estimating a user’s dialog states [4, 5, 6]. DSTC4 and DSTC5 provide human-7

human dialog corpora for estimating the states. The difficulties of estimating8

human-human conversation are the large intentional space and collecting9

enough data for covering the space.10

Throughout the previous DSTCs, discriminative methods, which directly11

predict dialog frames, performed well [7]. Recurrent neural network (RNN)12

based approaches competitively performed well on DSTC2 [8]. RNN ap-13

proaches were also competitive to other approaches for DSTC4 and 5 [9,14

10]; however, convolutional neural network (CNN) based approaches outper-15

formed RNN-based approaches and were reported as being the state-of-the-16

art for DSTC5 [11, 12]. These approaches used distributed word representa-17

tion such as word2vec or GloVe [13, 14] for their input features. However, the18

lack of information obtained from input features is still a problem from two19

viewpoints. The first is that it is challenging to find any unseen slot-values20

of dialog state frames that are not observed in a user utterance. The second21

is data size; the number of annotated dialog data is limited, and the number22

of output states is explosively large.23

External knowledge such as ontology is a pivotal component for solving24

the problem of a lack of information in inputs. However, handcrafted on-25

tologies are not capable of being extended without professionals. Due to the26

growth of the world wide web (WWW), a variety of knowledge bases (KBs) is27

publicly available [15, 16]. In Ma et al. [17], a method of ontology extension28

was proposed uses external KBs. These KBs contain entities and properties29

that are transformed into a graphical model. It is possible to find associative30

entities by using the structure of KBs to fill a lack of input information.31

In this paper, we propose a method of creating an associative knowledge32

feature vectors (AKFVs) highly capable of expressing the meaning of an ut-33

terance by using unobservable information in utterances. The feature vectors34

include information obtained from global associative entities. A fully con-35

nected neural network (FCNN) with the proposed feature vectors comparably36

performed the state-of-the-art CNN-based dialog state tracker. Moreover, an37
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ensemble of the proposed method and the CNN-based tracker outperformed38

the CNN-based tracker and achieved the best score for neural-network-based39

trackers for DSTC4.40

2. Related Works41

2.1. Dialog State Tracking Challenge 442

Dialog State Tracking Challenge 4 (DSTC4) is a common test bed for di-43

alog state tracking and is aimed at achieving more human-like dialog systems44

by using a human-human conversation corpus for a sightseeing domain. The45

corpus is a collection that a total of 21 hours of conversation between 3 tour46

guides and 35 tourists on Skype. It is divided into training, development,47

and test set, which respectively contain 14, 6, and 15 dialog sessions. Each48

dialog session has been manually transcribed, and dialog frames have been49

annotated for each sub-dialog level. A sub-dialog means any turns of the50

dialog session.51

The total number of utterances within sub-dialog segments is 20,641.52

The challenge of DSTC4 is a task of tracking dialog frames for sub-dialog53

segments, where a frame contains a topic and slot-value pairs. An ontology54

is also given data, and it contains all possible slot-value pairs under each55

topic. The slot-values represents intention in the human conversation, and56

the ontology indicates the knowledge of possible human intentions for this57

domain.58

Annotations are given to each sub-dialog segment. The topics are sub-59

domains under the sightseeing domain, and topics are annotated to the all60

sub-dialog segments. Topics are categorized into five classes: accommodation,61

attraction, food, shopping, and transportation. A state frame is given for62

all sub-dialog segments. The frames contain several slot-value pairs, which63

represent intentions in conversation within each sub-dialog. For example,64

the slot-value annotation at the accommodation topic frame might have a65

slot called “type” that represents “What kind of accommodation style?”, and66

corresponding values could be filled with hotel, hostel, etc.67

The ontology is given to ensure estimation of slot-value pairs since it con-68

tains all topics and possible pairs in a hierarchical structure. The structure69

has three layers. The top layer has five topics, and the middle layer has mul-70

tiple slots that are each dependent on a topic. The bottom layer has values,71

which depend on a slot. Therefore, a higher layer has more abstract infor-72

mation, and a lower layer has more specific information as shown in Table 1.73
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Table 1: Example of Ontology’s Hierarchical Structure

Topic Slot Value

Accommodation

INFO ...

Name
InnCrowd Backpackers Hostel
...

Type
Hotel
Hostel
...

... ...

Food
INFO ...
... ...

...
... INFO ...

The number of all slot-value pairs is 5,608, so the task requires estimation74

within a large intentional space.75

2.2. Dialog State Tracker with External Knowledge Base76

A related approach tried to estimate a user’s goals (dialog states) by infer-77

ence on a large-scale knowledge base (KB) instead of searching on look-up Ta-78

bles [17]. This framework indicates the possibility of estimating unobserved79

states by using an inference method on an external KB. In other words, the80

inference method makes it possible to associate any observed words and un-81

observable entities. This approach transforms a KB into a graphical model,82

and a Markov random field (MRF) is applied to any inference method on the83

graph. This graph contains two different types of nodes: named-entity nodes84

and attribute nodes.85

This method utilizes top-n results, the local results from inferring unob-86

served information on a knowledge graph. However, inferred results contain87

more associative knowledge information even if the inference scores are low.88

Instead, we try to use information, the combination of scores, to create more89

expressive feature vectors of utterances that represents global associative90

knowledge by using the whole knowledge space.91

2.3. External Knowledge in Neural-network Approaches92

The way to use external knowledge bases in neural-networks is widely re-93

searched. Using graph embedding and memory networks are efficient ways to94
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Figure 1: Overview of CNN model

carry information from knowledge bases [18, 19, 20]. Graph convolution can95

automatically infers related features from the knowledge graph. However,96

these approaches have a disadvantage on interpretability, it is hard to inter-97

pret the effective feature from the trained neural network model. In contrast,98

our inferring method on a knowledge graph based has an advantage to find99

how a external knowledge worked for the task.100

2.4. Convolutional Neural Network-based Dialog State Trackers101

The convolutional-neural-network-based tracker (CNN-based tracker) is102

the state-of-the-art dialog state tracker for DSTC5 [12]. In Shi et al. [11] a103

CNN-based tracker was also applied to estimate the ’INFO’ slot for DSTC4,104

and this model performed well within neural network approaches. These105

approaches are based on CNN sentence classification models [21, 22] that106

can consider the meanings of words and word orders in an utterance.107

The CNN classifier lists embedding vectors of words in an utterance as108

shown in “Convolutional Layer” in Figure 1. Word vectors are drawn up109

with the order in the sentence to construct a matrix. The pre-trained word110

embedding model is used to convert words into embedding vectors according111

to the distributional hypothesis. Local features are extracted by the filter of112

a convolutional layer, and thus, local connections of words in an utterance113

can be captured in this architecture to express the meaning of the utterance.114

3. Associative Knowledge Feature Inference on Knowledge Graph115

Our approach is creating an associative knowledge feature vector from the116

external knowledge, and the vector is represented by inference on a knowledge117
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graph. This approach takes the observed words (entities) for an utterance118

as the input and produces a feature vector that contains information on119

associative entities. The produced feature vector contains whole information120

that can be inferred on a knowledge graph, and thus, we can utilize the global121

associative knowledge information.122

3.1. Graph Transformation of Knowledge Base123

KBs contain entities (subjects and objects) and relations (predicates)124

such as the triplet form of subject-predicate-object. A knowledge graph125

can be created from these triplets by connecting the entities with relations.126

We extract these triplets from Wikidata, a knowledge base with multiple-127

languages, to create a graph. In this research, only English entities are used128

to create a graph. We remind the reader that Wikidata can be applied to129

any language. We use entities as nodes and relations as edges to transform130

a KB into a graph.131

3.2. Subgraph Creation from Wikidata132

The remaining problem is that Wikidata is too large for working with133

any inference method on a graph; thus, we selected a part of the entities134

and relations to utilize a KB for feature inference. We take a subgraph that135

suits the domain, that is, the DSTC4 training/development dataset. We used136

entities observed in the training set and other entities that have any relations137

to the observed entities. Additionally, NLTK stopwords are removed from138

the candidates of entities.139

The named entities, which match observed words, are added as nodes of140

the subgraph. We call these nodes core nodes. Entities related to core nodes141

are also added to the subgraph. We call these nodes neighboring nodes. In142

addition, 1-hop away nodes that are related to neighboring nodes in Wikidata143

are added to the subgraph to enlarge the knowledge space. We use the defined144

relations in Wikidata to find the neighboring nodes and the 1-hop away nodes.145

These additional nodes give more meaningful information through inference.146

Edges are added for all related entities to complete subgraph creation no147

matter what the kinds of relations.148

An example of a subgraph creation is shown in Figure 2 and consists149

of core nodes of “Singapore.” The “Singapore” node is added on the sub-150

graph with its neighboring nodes (“Asia”, “City”, “Island Nation”, “Coun-151

try” and “Malaysia”). Nodes with a 1-hop relation are also added: (“Area”152

and “Continent”). In addition, we assume that Malaysia is also observed153
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Figure 2: Example of graph creation: blue node is core node, green nodes are neighboring
nodes, and red nodes are 1-hop away nodes.

in utterances, and related nodes in Wikidata are connected to the nodes of154

“Malaysia” (“Country” and “Asia”).155

3.3. Inference Method: Label Propagation on Subgraph156

Label propagation is a method of updating values of nodes in a graph,157

given the values of each node by minimizing two objective functions: dif-158

ferences between a given value and updated value and differences between159

neighboring nodes. We exploit this method for representing the knowledge160

states that contain associative knowledge information. Our proposed method161

sets observed-class and unobserved-class labels from observations of utter-162

ances (observed=1, unobserved=0). The value of each node is updated by163

propagating observed class labels.164

In the label propagation algorithm that we use, edges are represented as165

W. W is an N × N matrix, where N is the number of nodes in a graph.166

Each element in W represents the existence of a link. An input vector y167

contains class labels for each node. In our case, y expresses the observation168

of an entity in the current utterance. In other words, y=1 expresses that an169

entity is observed in an utterance, and y=0 expresses unobserved entities in170

an utterance. f is a vector of the predicted class label of each node. The171

objective function of label propagation to be minimized is defined as,172

J(f) =
n∑

i=1

(yi − fi)2 + λ
∑
i<j

wi,j(fi − fj)2. (1)
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The first term in Equation (1) approximates predicted values to get close173

to the input values of the same node. The second term approximates closer174

values for predicted values of neighboring nodes. λ is a constant value for175

keeping balance between the first and second terms.176

The formula deformation of Equation (1) with the Laplacian matrix is,177

J(f) = ‖y − f‖22 + λfTLf . (2)

L ≡ D−W is a Laplacian matrix, and D is the summation of each row into178

diagonal components. This minimization problem is solved with,179

(I + λL)f = y, (3)

as defined in [23].180

We implemented Equation (3), where observed entities (=nodes) in ut-181

terances are vectorized as y, and f is a vector of predicted values of relaxed182

class nodes inferred on a subgraph. Then, we calculate f by,183

f = y(I + λL)−1. (4)

An example of label propagation executed on a created subgraph is shown184

in Figure 3. We assume that “Singapore” and “Malaysia” are observed. The185

input values of these nodes are 1’s, and the others are 0’s, as shown on the186

left side of the arrows on each node. The values on the right side are out-187

puts of the label propagation executed on the subgraph. As a result, the188

“Country” node gets the highest value among the unobserved nodes because189

the relations with observed nodes are stronger than the other nodes. Con-190

cretely, the “Country” and “Asia” nodes have relations to the observed nodes;191

however, the “Country” node has a 1-hop away relation to the “Singapore”192

node through redirection with the “Island Nation” node; thus, “Country”193

has higher value than “Asia”.194

3.4. Discounts on Dialog History195

We consider a dialog history at the input of label propagation because196

the dialog state gradually changes while the dialog continues. At the current197

observed values, the previous values of y are also added with a discount value198

γ, which is a value between 0 ≤ d ≤ 1 , during a sub-dialog segment. Once199

the discount value is factored on the previous y, the current y is replaced200

with the addition of the factored values and current values. The process201

including the propagation is shown in Algorithm 1.202
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Figure 3: Example of label propagation on created subgraph

3.5. Dimension Reduction for Computational Efficiency203

Dimension reduction based on principal contribution analysis (PCA) is204

applied to our feature vectors since they consume space and time complexity205

while tuning the tracker models. A subgraph created from the DSTC4 corpus206

contained more than 55,000 nodes, and the inferred feature vectors have the207

same dimension. Using this feature vector as is on neural networks causes208

there to be numerous parameters and a long calculation time. Thus, we209

applied PCA to the feature vector by keeping the cumulative contribution210

rate at 1. As a result, the size of the feature vectors was reduced to 2,500.211

4. Neural-network-based Dialog State Trackers212

In this section, we introduce several dialog state tracker models based on213

neural networks, which have been widely used in recent years. The first214

model is based on the fully connected neural network (FCNN) with our215

proposed feature vectors. The second model is based on the convolutional216

neural network (CNN), which achieved the highest score for DST among217

neural network models. We apply the ensemble methods based on the FCNN218

and CNN models in two different ways. One is the linear interpolation of219

outputs, and the other is the concatenation of the middle layers of neural220

networks.221
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Algorithm 1 Label Propagation with Discount Factor

Require: λ > 0, 0 ≤ d ≤ 1, i = index and t = time
if Initial Utterance in Sessions then
for yi,t in the word list do
yi,t = 1

end for
else
From second utterance do:
for yi,t do
if yi,t in the word list then
yi,t = 1 + γyi ,t−1

else
yi,t = γyi ,t−1

end if
end for

end if
f = y(I + λL)−1

return f

4.1. Fully Connected Neural Network with Inference on Knowledge Graph222

Feature Vectors223

Our proposed feature vectors are used as inputs of the model of dialog224

state tracking. Recurrent or convolutional neural networks that can consider225

a sequence of words are widely used as dialogue state trackers; however, the226

meanings of sequences at each dimension of our inferred features vanish in227

the inference process. Thus, we use the FCNN as the classifier. This model228

consists of three-layers: an input layer, hidden layer, and output layer. The229

input layer size is 2,500 as the size of the compressed feature vectors. The230

hidden layer is also the same size as the input layer. The output layer size is231

5,608 since all slot-value pairs are estimated at the same time. Sigmoid cross232

entropy is used as the loss function for multi-label classification.233

4.2. Convolutional Neural-network-based Dialog State Tracker234

A CNN-based dialog state tracker with word2vec is the state-of-the-art235

method for DSTC5 [12]. We exploit this model with a change in the output236

layer. This model takes the concatenation of the word vectors S to represent237
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a sentence, and it obtains features for each sentence.238

S = (word1, word2, ..., wordn). (5)

S contains the concatenation of word vectors wordi ∈ Rk. Each wordi rep-239

resents words in a sentence. i is the order of word occurrence in a sentence,240

and k is the dimension of the word vectors. Words are converted into word241

vectors by word2vec [13] by using a pretrained model of all Wikipedia ar-242

ticles. At the convolutional layer, the model contains a filter w ∈ Rd×k for243

creating a feature hi ∈ Rn−d+1, where d is the filter height.244

hi = f(w ∗ wordi : wordi+d−1 + b). (6)

b is a bias term, and f is a non-linear function. A feature map h is produced245

by using the filter on each possible word in a sentence.246

h = [h1, h2, ..., hn−d+1]. (7)

A max-over-time pooling is applied over the feature map to obtain the max-247

imum value ĥ = max{h} as the most important feature. The model may248

use multiple filters to obtain multiple features by changing the filter height.249

After the max-over-time pooling, the features connect to the output layer250

through a fully connected layer. Sigmoid cross entropy is also used as the251

loss function of this model.252

Our change from the CNN model, the best model for DSTC5, is the253

output layer. The CNN for DSTC5 is trained for each topic, and five models254

are produced as the number of topics. However, our model estimates all255

slot-value pairs at the same time. The data size of DSTC4 and DSTC5 is256

different; DSTC4 is smaller than DSTC5. Thus, we trained the model for all257

slot-value pairs at the same time to train an efficient model.258

4.3. Ensemble of Inference-knowledge-feature-based Tracker and Convolutional259

Neural-network-based Trackers260

We propose two ensemble models of the fully connected neural network261

with the proposed feature vectors and the convolutional neural network since262

these models take different features, which may cause estimation results to263

differ.264

One ensemble model (Ensemble-1) combines FCNN and CNN outputs265

by linear interpolation. Additional weights (wfcnn and wcnn) are factored266
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on both outputs (yfcnn and ycnn) because the trained FCNN and CNN have267

weights in different ranges.268

yensemble1 = yfcnn × wfcnn + ycnn × wcnn (8)

wfcnn and wcnn satisfy 0 ≤ wfcnn, wcnn ≤ 1, and wfcnn +wcnn = 1 to balance269

their different outputs. By using these weights, we are able to know which270

model has more factors for correct estimation.271

The other model combines the hidden layers of both models, and the272

weights are simultaneously trained. We concatenate the hidden layer of273

FCNN and non-linear function on CNN feature ĥ as,274

hensemble2 = hfcnn ⊗ReLU(ĉcnn ∗ w + b). (9)

This model ideally updates the weights between these features and the output275

layer at the training step. Intuitively, the model considers both features to276

estimates the slot-value pairs. The outputs of the model produced with a277

sigmoid function are,278

yensemble2 = σ(hensemble2 ∗ w + b). (10)

4.4. Other Details on Neural Network Models279

All introduced models use some common techniques for the convenience280

of model implementation. The output layer is a sigmoid function, so their281

loss function is sigmoid cross entropy. This is because our models estimate282

multiple slot-value pairs at the same time for multi-label classification. We283

utilize the Adam optimizer. Weight decay is used for all of the models.284

Dropout and batch normalization are used for each layer of all of the models.285

5. Experiments286

We conducted experiments on our proposed models with the DSTC4287

dataset. Two different experimental settings were performed for each pur-288

pose. The first experiment was conducted to find the contribution of our289

proposed feature vectors on dialog state tracking. The second experiment290

was conducted to find the best model from the introduced models, including291

ensemble models with the state-of-the-art CNN model.292
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Figure 4: Calculating Accuracy Figure 5: Calculating F-measure

5.1. Evaluation metrics293

DSTC4 prepared two metrics and two schedules for calculating scores: Ac-294

curacy and F-measure. Accuracy calculates perfect matches of state frames.295

In other words, it recognizes that the state frame is incorrect when there296

are any extra or missing slot-value pairs. F-measure is the harmonic mean297

of Precision and Recall, which are calculated for each slot-value pair. Score298

matching examples of Accuracy and F-measure are illustrated in Figures 4299

and 5. There are two different schedules prepared for calculating these met-300

rics. One is called Schedule1, which calculates these metrics at each utterance,301

and the other is called Schedule2, which calculates these metrics only at the302

end of sub-dialog segments.303

5.2. Experiment Based on Inference on Knowledge Graph304

The first experiment was conducted to show the performance of our pro-305

posed method on dialog state tracking. The experiment consists of 2 steps:306

determining the best hyper-parameter combination and comparing our pro-307

posed feature with other features.308

We explored the best hyper-parameter setting for the proposed method309

with the development data-set. To find the best hyper-parameter combina-310

tions, all combinations of Table 2 were examined for the experiment. The311

proposed method requires three hyper-parameters, which are λ in label prop-312

agation, γ as the weight of dialog history, and τ as the threshold of the output313

layer. λ is a parameter in label propagation that balances the first and sec-314

ond terms of Eqn. 1. γ is a discount rate of the input of label propagation.315

0 means that there is no consideration of dialog history, and 1 means that316

a whole dialog history is considered. τ is a threshold at the output of the317

neural network model. It is set in strides of 0.1 from 0.1 to 0.9.318
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Table 2: List of Parameters for Proposed Method

λ γ τ
0.5 0 0.1
1 0.125 0.2

1.5 0.25 0.3
2 0.5 0.4
3 0.7 0.5
8 0.8 0.6

0.9 0.7
1 0.8

0.9

Table 3: Top-5 Accuracy of FCNN-
AKFV for Schedule1

λ γ τ Accuracy
0.5 1.0 0.3 0.0490
0.5 1.0 0.2 0.0481
0.5 1.0 0.4 0.0456
1 1.0 0.3 0.0452
3 1.0 0.3 0.0427

Baseline 0.0374

Table 4: Top-5 Accuracy of FCNN-
AKFV for Schedule2

λ γ τ Accuracy
0.5 1.0 0.3 0.0559
0.5 1.0 0.2 0.0559
0.5 1.0 0.4 0.0549
0.5 1.0 0.5 0.0521
3 1.0 0.3 0.0502

Baseline 0.0488

Table 5: Top-5 F-measure of FCNN-
AKFV for Schedule1

λ γ τ F-measure
0.5 1.0 0.2 0.3444
3 1.0 0.2 0.3397
1 1.0 0.2 0.3391
8 1.0 0.2 0.3381
2 1.0 0.2 0.3371

Baseline 0.2506

Table 6: Top-5 F-measure of FCNN-
AKFV for Schedule2

λ γ τ F-measure
1 1.0 0.2 0.3759
3 1.0 0.2 0.3763
8 1.0 0.2 0.3754

0.5 1.0 0.2 0.3750
2 1.0 0.2 0.3727

Baseline 0.3014

Tables 3-6 shows the top-5 results from all parameter combinations. “Base-319

line” is the baseline system of DSTC4, which is implemented by fuzzy string320

matching by using only observable information in utterances. Specifically,321

Tables 3 and 4 show Accuracies, and Tables 5 and 6 show F-measures for322
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Figure 6: Changes on F-measure with dis-
count rate on schedule1

Figure 7: Changes on F-measure with dis-
count rate on schedule2

each schedule. Our proposed method outperformed the baseline method for323

all comparisons. In accordance with the results, we set parameters: discount324

factor γ=1, weight λ=0.5, and threshold τ=0.2. According to the result325

tables, discount factor γ=1 achieves the highest results, and thus we could326

conclude that all histories without discounting contributed to the better re-327

sults. Figure 6 and 7 respectively show changes of F-measures on schedule1328

and schedule2 according to the changes of discount factor γ, and each curve329

represents the relation between the F-measure and the threshold. Accord-330

ing to the figures, the impact of considering all histories are obvious since331

the increasing rate is over 0.1 from γ=0.0 to γ=1.0 on F-measures of both332

schedules.333

To investigate the effectiveness of our proposed method, we compared334

the results of the associative knowledge graph feature vector (AKFV), con-335

ventional bag-of-words feature vector (BoW), and embedding feature vector336

based on word2vec (W2V). BoW is the most basic and simplest feature vector337

for natural language processing tasks. This feature only has simple informa-338

tion on sentences that represents the occurrences of words. W2V provides a339

fixed-length continuous feature vector. The training data used for the W2V340

model is external data from Wikipedia that we utilize as external data for341

our proposed method. It is linearly interpolated for all words appearing in a342

sentence. After the interpolation, it is inputted with BoW.343

We compared three feature vectors by using the FCNN based dialog state344
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Table 7: Scores for Schedule1
BoW W2V AKFV

Accuracy 0.004 0.010 0.039
Precision 0.010 0.285 0.445

Recall 0.044 0.066 0.275
F-measure 0.016 0.107 0.340

Table 8: Scores for Schedule2
BoW W2V AKFV

Accuracy 0.007 0.013 0.050
Precision 0.009 0.2563 0.4596

Recall 0.534 0.074 0.319
F-measure 0.016 0.114 0.376

tracker. All scores of the vectors for on Schedule1 and Schedule2 are shown in345

Tables 7 and 8. Our proposed model, which is FCNN-AKFV, outperformed346

BoW and BoW with W2V, as shown in the tables. FCNN-AKFV was 36%347

higher than BoW and 26% higher than W2V scores for F-measure. In accor-348

dance with this score comparison, we investigated to find whether associative349

knowledge from observed words gains more features of sentences and more350

meaningful features for dialog state tracking.351

5.3. Comparison with Other Neural-network-based Models352

In this section, we discuss an experiment conducted to compare the353

neural-network-based models. We compared FCNN-AKFV, CNN, and two354

different ensemble models (Ensemble-1 and Ensemble-2). We also compared355

the score results of the neural network-based approaches reported in DSTC4,356

which were the RNN [9] and CNN [11] trackers. Due to the score of the CNN357

tracker, it is the-state-of-the-art neural network model for DST; however, a358

W2V model for the CNN [11] tracker is trained by using Tripadvisor data,359

which cannot be currently used for research. Thus, we also show the score of360

the CNN-model with our implementation, which uses a W2V model trained361

from Wikipedia.362

All of the models’ hyper-parameters were tuned to the development set,363

and we applied top-4 models to the test set. The models had common hyper-364
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parameters and their own hyper-parameters. The common hyper parameters365

were dropout ratio (DR), threshold (τ), weight decay (WD), α in Adam366

optimizer, and batch size (BS). DR and τ were set between 0.1 to 0.5 in367

increments of 0.1 for all models. WD was also set to be 0.000001. α in368

Adam optimizer and BS were uniquely set for all models. FCNN-AKFV369

required only these common hyper-parameters. α in Adam optimizer was370

0.000025, and BS for FCNN was set between 20 to 110 in increment of371

10. CNN required extra hyper-parameters, which were filter hight (FH) and372

output channel (OC). FH was 1, 2, or both, and OC was between 500 to373

1,500 in increment of 500. α in Adam optimizer was 0.000001, and BS was374

set between 50 to 100 in increment of 25.375

The ensemble models were implemented in different ways. Ensemble-1376

combined outputs of FCNN-AKFV and CNN, and all of the trained mod-377

els were utilized weights. The weights were wfcnn and wcnn, which re-378

spectively factored on FCNN-AKFV and CNN. Ensemble-2 simultaneously379

trained FCNN and CNN by concatenating hidden layers. We reduced the380

FH setting to be only 1 since all of the FHs, which were set to 2, had low381

scores from the overview of the CNN results on the development set. All382

of the other hyper-parameters were set with the same setting as the CNN,383

except BS. BS was set to be 25, 50, and 100.384

Tables 9 and 10 show the scores for Schedule1 and Schedule2 for the test385

set. The Ensemble-1 model outperformed all implemented models, RNN [9]386

and CNN [11]. The best sores of the implemented models are shown in the387

tables and were chosen by looking at F-measure for Schedule2.388

The Ensemble-1 model outperformed the other scores of the F-measure389

for Schedule1. It was 2.4% higher than the state-of-the-art CNN model [11]390

and 8.4% higher than the score of RNN [9]. Ensemble-1 maintained Precision391

from the FCNN-AKFV model, and the score was 8.0% higher than the CNN392

model [11]. According to these score differences, the FCNN-AKFV and CNN393

models predicted different slot-value pairs from each feature vector. In other394

words, each feature vector contained different information for dialog state395

tracking. For Schedule2, Ensemble1 had a similar tendency compared with396

the other results. Combining results estimated from different features caused397

a higher score for Recall.398

FCNN-AKFV and Ensemble-1 achieved significantly higher Accuracy than399

CNN [11] for Schedule1 (p < 0.01). Ensemble-2 also achieved significantly400

higher Accuracy than CNN [11] for Schedule 1 (p < 0.05). The results for401

Schedule2 were not significant; however, the proposed models achieved com-402
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Table 9: Results of 4 models for Schedule1
FCNN-AKFV CNN Ensemble-1

Accuracy 0.046 0.033 0.045
Precision 0.492 0.415 0.495

Recall 0.259 0.254 0.283
F-measure 0.339 0.315 0.360

Ensemble-2 CNN [11] RNN [9]
Accuracy 0.044 0.037 0.026
Precision 0.422 0.418 0.364

Recall 0.346 0.280 0.222
F-measure 0.338 0.336 0.276

Table 10: Results of 4 models for Schedule2
FCNN-AKFV CNN Ensemble-1

Accuracy 0.050 0.041 0.056
Precision 0.508 0.437 0.516

Recall 0.306 0.298 0.334
F-measure 0.382 0.354 0.405

Ensemble-2 CNN [11] RNN [9]
Accuracy 0.044 0.058 0.042
Precision 0.422 0.438 0.373

Recall 0.348 0.343 0.292
F-measure 0.380 0.385 0.328

parable scores to CNN [11]. Ensemble-1 outperformed the CNN model, which403

used resources comparable to the proposed FCNN-AKFV and ensemble mod-404

els. It also outperformed RNN [9] for all metrics defined in DSTC4.405

6. Analysis between Proposed Features and Results406

In this section, we conducted two analysis: case analysis and correlation407

analysis. In the case analysis, we compared the state frame results of both408

experiments: section 5.2 and section 5.3. In the correlation analysis, cor-409

relation coefficients were provided by using all of the combinations between410

input features and slot-value pairs.411
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Table 11: Frame States of Baseline, Proposed Method, and Gold Standard

Transcription Baseline FCNN−AKFV GoldStandard
Uh National Museum,
you may even get free
entry because it’s a- if
it’s a public holiday.

’INFO’: [’Fee’] ’PLACE’: [’Na-
tional Museum
of Singapore’],
’INFO’: [’Fee’]

6.1. Case Analysis412

Table 11 and Table 12 respectively show examples of a state frame of sec-413

tion 5.2 and 5.3 by comparing with the gold standard. In Table 11, we com-414

pared the proposed method and the “Baseline” (fuzzystring matching) since415

it only estimates the slot-value pairs from observed information in utterances.416

We used the baseline system for the comparison instead of “Bag-of-Words”417

or “Word2Vec” because the score was higher than these method.418

Table 11 shows the slot-values pairs of “Baseline” and FCNN-AKFV.419

FCNN-AKFV estimated a correct slot-value pair which was not estimated420

by “Baseline”. The value was not observed in the utterance as a word. Con-421

cretely, the proposed method predicts the value ‘Fee’ for the slot ‘INFO’.422

The word ‘Fee’ is not observed in the utterance; however, the proposed423

tracker successfully predicted the slot-value pair by using the proposed fea-424

tures, which is probably inferred from ‘free entry’ in the user utterance.425

Table 12 shows examples that our ensemble models correctly estimated426

the state frame. We determined that there was a synergistic effect with the427

ensemble models. The state frame of ensemble models is exactly matched428

with gold standard for the utterance even though based models does not.429

Both single models only predict a correct slot-value pair; therefore, the syn-430

ergy of these models enable to capture additional states: ’ACTIVITY’ and431

’INFO’.432

6.2. Correlation Analysis433

Correlation analysis provides the correlation coefficients to clarify effec-434

tiveness of our proposed feature vector. We provided correlation analysis of435

the typical case we discussed in Table 11. The correlation coefficients are436

calculated between AKFV and predicted results of FCNN-AKFV.437

We firstly analyzed the general case of ’INFO’:[’Fee’] in Table 13. The438

table shows top 15 correlation coefficients to visualize the affect from the439

proposed features to the estimation results. The number at the end of each440
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Table 12: State Frames of neural network based models
Transcription Gold Standard FCNN-AKFV CNN

also for certain
rides in the

Universal Studio,
there’s a height

limit.

PLACE:
’Universal

Studios
Singapore’

ACTIVITY:
’Amusement

ride’
INFO:

’Restriction’

PLACE:
’Universal

Studios
Singapore’

PLACE:
’Universal

Studios
Singapore’

Ensemble-1 Ensemble-2
PLACE:
’Universal

Studios
Singapore’

ACTIVITY:
’Amusement

ride’
INFO:

’Restriction’

PLACE:
’Universal

Studios
Singapore’

ACTIVITY:
’Amusement

ride’
INFO:

’Restriction’

word is the unique ID for each entities in Wikidata. The names start with441

’Q’ is the entity-id of Wikidata, but they contain some entities that have442

the same word surface in Wikidata. The entities of ’fee0’-’fee4’ have higher443

correlation coefficients (0.481). It is not shown in the table, but similar entity444

’cost’ also has high correlation coefficients (0.276).445

Table 14 shows the top 15 feature weights and related correlation coeffi-446

cients between the AKFV and the FCNN-AKFV. We eliminated the input447

entities to show the easy overview of the related nodes affects. The most of448

the entities on the table were unobservable in the training set, and some fea-449

tures have high correlation coefficients to ’INFO’:[’Fee’]. Q6012465 has the450

highest weight and high correlation coefficient, this entity came from neighbor451

nodes of free. Q9099391, Q12221315, Q3960697, Q3053171 and Q6655391 are452

also related to free as neighbor nodes, which have high correlation coefficients.453

These results indicate that a lot of nodes, related to the ’free’, contributed454

to estimate ’INFO’:[’Fee’].455

20



7. Conclusion456

In this paper, we proposed feature vector creation with associative knowl-457

edge through inference on a knowledge graph. We conducted experiments to458

show the effectiveness of the proposed feature vectors on a neural-network-459

based DST. The case analysis showed that the vectors were an effective ap-460

proach for DST. We also proposed ensemble models based on FCNN-AKFV461

and the state-of-the-art CNN tracker. An ensemble model outperformed462

other neural network based DSTs. The correlation analysis indicated that463

the neighboring nodes inferred by the proposed method contributed to im-464

prove the result of trackers. As future work, we will analyze the creation465

and aspects of the graph for more effective graph creation. We will also466

approaches other inference methods acquiring associative knowledge. It is467

also considerable to jointly optimize the feature creation and the dialog state468

tracking. The proposed inference method to create associative feature will469

be helped on for other tasks of spoken language understanding, thus we plan470

to apply our method for a variety of tasks as future works.471
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Table 13: Top 15 correlation coefficients
of ’INFO’:[’Fee’]

’INFO’:[’Fee’]
entrance6 0.548
entrance7 0.546
entrance1 0.544
Q653475 0.544

(X display
manager)
entrance2 0.544
entrance0 0.544
entrance5 0.543
entrance4 0.542
Q739937 0.516

(Declan Quinn)
Q1968839 0.516

(Paul Weitz)
Q6170802 0.516

(Jean Hanff
Korelitz)
Q511731 0.516
(Imagine

Entertainment)
admission0 0.516

much0 0.484

Table 14: Top 15 correlation coefficients
of the case table 11

’INFO’:[’Fee’] feat. correl.
Q11972 0.432 -0.007

canton of Aargau
Q6012465 0.350 0.239

In the Meantime,
In Between Time

Q5215183 0.350 0.010
Dance Party

in the Balkans
b0 0.346 -0.043

Q9099391 0.346 0.239
Not Labeled
Q16334295 0.346 0.033

group of humans
Q16421734 0.307 -0.035

Maj
Q12221315 0.233 0.236
Not Labeled
Q18553401 0.231 0.239
Soul Eater
Q20880814 0.231 -0.046

The Groggers
Q3960697 0.231 0.239
Silver Rain

Q914012 0.231 0.239
Planetshakers
Q3053171 0.231 0.233
Emotional
Playground

Q507942 0.231 0.239
CTI Records
Q6655391 0.231 0.239
Live Over
Europe!
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[16] D. Vrandečić, M. Krötzsch, Wikidata: a free collaborative knowledge-522

base, Communications 57 (2014) 78–85.523

[17] Y. Ma, P. Crook, R. Sarikayu, E. Fosler-Lussier, Knoewledge graph524

inference for spoken dialog system, in: Proceedings of International525

Conference on Acoustics, Speech and Signal Processing 2015, pp. 5346–526

5305.527

[18] M. Defferrard, X. Bresson, P. Vandergheynst, Convolutional neural net-528

works on graphs with fast localized spectral filtering, in: Advances in529

Neural Information Processing Systems 2016, pp. 3844–3852.530

[19] Y.-N. Chen, D. Hakkani-Tür, G. Tür, J. Gao, L. Deng, End-to-end531

memory networks with knowledge carryover for multi-turn spoken lan-532

guage understanding., in: Proceedings of International Conference on533

Acoustics, Speech and Signal Processing 2016, pp. 3245–3249.534

24



[20] H. He, A. Balakrishnan, M. Eric, P. Liang, Learning symmetric collab-535

orative dialogue agents with dynamic knowledge graph embeddings, in:536

Proceedings of Association for Computational Linguistics 2017.537

[21] Y. Kim, Convolutional neural networks for sentence classification, in:538

Proceedings of Empirical Methods on Natural Language Processing539

2014, pp. 1746–1751.540

[22] Y. Zhang, B. Wallace, A sensitive analysis of (and practitioners’ guide541

to) convolutional neural networks for sentence classification, in: Pro-542

ceedings of International Joint Conference on Natural Language Pro-543

cessing 2017, pp. 253–263.544

[23] T. Kato, H. Kashima, M. Sugiyama, Robust label propagation on mul-545

tiple networks, IEEE Transactions on Neural Networks 20 (2009) 35–44.546

25


