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Abstract

Speech translation is a technology that help people communicate across dif-

ferent languages. The most commonly used speech translation model is com-

posed by Automatic Speech Recognition (ASR), Machine Translation (MT) and

Text-To-Speech synthesis (TTS) components, in which they are sharing infor-

mation only in text level. However, spoken communication is different from

written communication, as we use rich acoustic cues in order to transmit more

information. This paper is concerned with speech-to-speech translation that is

sensitive to paralinguistic information. Our long-term goal is to made a system

that allows user to speak a foreign language with the same expressiveness as

if they were speaking in their own language by reconstructing input acoustic

features (F0, duration, spectrum etc.) in the target language. From the many

different possible paralinguistic features to handle, in this paper we chose du-

ration and power as a first step, proposing a method that can translate these

features from input speech to the output speech in continuous space. This is

done in a simple and language-independent fashion by training an end-to-end

model that maps source language duration and power information into the tar-

get language. Two approaches are investigated including regression and Neural

Network (NN) model. We evaluate the proposed method and show that par-

alinguistic information in input speech of source language can appears in output

speech of target language.
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1. Introduction

We speak with many different varieties of acoustic and visual cues to convey

our thoughts and emotions. Many of those paralinguistic cues transmit addi-

tional information that cannot be expressed in words. It may not be a critical

factor in written communication, but in spoken communication it has great im-5

portance. Because even if the content of words is the same, if the intonation

and facial expression are different an utterance can take an entirely different

meaning. Therefore it is necessary to take into account paralinguistic factor in

any systems that are constructed to augment human-to-human communication.

Speech-to-speech translation system is one of technologies that help people10

communicate across different languages. However, standard speech translation

systems only convey linguistic content from source languages to target languages

without considering paralinguistic information. Although the input of ASR

contains rich prosody information, but the words output by ASR is in written

form that have lost all prosody information. The words output by TTS will15

then be given the canonical prosody for the input text, not reflecting these

traits. Thus, information sharing between the ASR, MT, and TTS modules is

weak, and after ASR source-side acoustic details are lost (for example: speech

rhythm, emphasis, or emotion).

This paper is concerned with speech-to-speech translation that is sensitive20

to paralinguistic information. Our long-term goal is to made a system that

allows user to speak a foreign language with the same expressiveness as if they

were speaking in their own language by reconstructing input acoustic features

(F0, duration, spectrum etc.) in the target language. From the many different

possible paralinguistic features to handle, in this paper we chose duration and25

power as a first step, proposing a method that can translate these features from

input speech to the output speech in continuous space.
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First, we extract features at the level of Hidden Markov Model (HMM)

states, and use linear regression to translate them to the duration and power of

HMM states of the output speech. Furthermore, we also expand the paralinguis-30

tic translation model to adapt to more general tasks by training a single model

that is applicable to all words using neural networks. There are two merits to

using neural networks. First, neural network possess sufficient power to express

difficult regression problems such as translation of acoustic features for multiple

words. Second, neural network can be expanded with features expressing addi-35

tional information such as the input word and translated word, the position of

both words, parts of speech, and so on. We perform experiments that use this

technique to translate paralinguistic features and reconstruct the input speech’s

paralinguistic information, particularly emphasis, in output speech.

2. Conventional Speech-to-Speech Translation40

In Conventional Speech-to-Speech, ASR module decode text of utterance

from input speech. Now acoustic feature represent as X = [x1, x2 . . . xT ] and

spoken word represent as E = [f1f2 . . . fN ] then the probability is P (E | X).

ASR system decode E that maximize P (E | X). P (E | X) can convert by

Bayes’ theorem as below

P (E | X) =
P (X | E)P (E)

P (X)
(1)

From point of E view P (X) is a constant value. We can covert equation as

P (E | X) ∝ P (X | E)P (E) (2)

Then P (X | E) is Acoustic Model(AM) and P (E) is Language Model(LM).

MT module decode target words sequence J that maximize probability

P (J |E) given E.

Ĵ = argmax P(J |E) (3)

As same as ASR we can convert P (J |E) as below.

Ĵ ∝ argmax
P (E|J)P (J)

P (E)
(4)
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Then P (E|J) is a translation model.

TTS module generate speech parameter O = o1, o2, . . . oT , T is the length

of O, given HMM AM λ = [λ1, λ2 . . . λN ] that represent J . The out put O =

o1, o2, . . . oT can be represent by

Ô = argmaxOP(O | λ,T) (5)

In these three module, they share information as E or J , so that the input

non-lexical information of E lost through ASR.

3. Speech translation considering paralinguistic information45

For achieve paralinguistic information translation, we need consider how to

handle paralinguistic features such as X. In ASR and TTS module, phoneme

is a smallest lexical unit that represent speech. And in MT module, a word is

a smallest unit of system. From point of speech processing phoneme is a good

segment to handle paralinguistic features but in human speaking we usually50

speak emotionally such as emphasis, surprise and sadness in word, phrase and

sentence level. So we consider word is better segment to learn these prosody

mapping rule between source to target speech. We make the word AM for

each word and perform ASR and TTS. Then we extract the acoustic features

X belong to each words and translate X through ASR and translate acoustic55

feature from source to target directory by regression model in MT part. Finally

we use translated acoustic features to generate output speech’s in TTS part.

3.1. Speech Recognition

The first step of the process uses ASR to recognize the lexical and paralin-

guistic features of the input speech. This can be represented formally as

Ê̂ÊE, X̂̂X̂X = argmax
EEE,XXX

P (EEE,XXX|S), (6)

where S indicates the input speech, EEE indicates the words included in the ut-

terance and XXX indicates paralinguistic features of the words in EEE. In order to60
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Figure 1: Overview of proposed method
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recognize this information, we construct a word-based HMM acoustic model.

The acoustic model is trained with audio recordings of speech and the corre-

sponding transcriptions E using the standard Baum-Welch algorithm. Once we

have created our model, we perform simple speech recognition using the HMM

acoustic model and a language model that assigns a uniform probability to all65

digits. Viterbi decoding can be used to find E. Finally we can decide the du-

ration vector xi of each word ei based on the time spent in each state of the

HMM acoustic model in the path found by the Viterbi algorithm. The power

component of the vector is chosen in a similar way, and by taking the mean

power value of each feature over frames that are aligned to the same state of the70

acoustic model. We express power as [power,∆power,∆∆power] and join these

features together as a super vector to control power in the translation step. In

ASR part, we don’t need labeling the prosody of speech we just segment each

words and extract observed acrostic feature.

3.2. Lexical Translation75

Lexical translation finds the best translation JJJ of sentence EEE.

Ĵ̂ĴJ = argmax
JJJ

P (JJJ |EEE), (7)

where JJJ indicates the target language sentence and EEE indicates the recognized

source language sentence. Generally we can use a statistical machine translation,

to obtain this translation in standard translation tasks, but for digit translation

we can simply write one-to-one lexical translation rules with no loss in accuracy.

3.3. Paralinguistic Translation80

Paralinguistic translation converts the source-side acoustic features vector

XXX into the target-side acoustic features vector YYY according to the following

equation

Ŷ̂ŶY = argmax
YYY

P (YYY |XXX). (8)

In particular, we control duration and power of each word using a source-side

duration and power super vector xixixi = [x1x1x1, · · · ,xNx
xNxxNx

]
⊤
and a target-side duration
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and power super vector yiyiyi =
[
y1y1y1, · · · , yNy

yNyyNy

]⊤
. In these vectors Nx represents

the number of HMM states on the source side and Ny represents the number

of HMM states on the target side. The sentence duration and power vector85

consists of the concatenation of the word duration and power vectors such that

YYY = [y1y1y1, · · · , yiyiyi, · · · , yIyIyI ] where I is the length of the sentence. We can assume

that duration and power translation of each word pair is independent from that

of other words, allowing us to find the optimal YYY using the following equation:

Ŷ̂ŶY = argmax
YYY

∏
i

P (yiyiyi|xixixi). (9)

The word-to-word acoustic translation probability P (yiyiyi|xixixi) is defined according90

to linear regression matrix that indicates that yiyiyi is distributed according to a

normal distribution

P (yiyiyi|xixixi) = N(yiyiyi;WWW ei,jix
′
ix
′
ix
′
i, S) (10)

where x′ is
[
1x⊤

]⊤
andWWW ei,ji is a regression matrix (including a bias) defining a

linear transformation expressing the relationship in duration and power between

ei and ji. An important point here is how to construct regression matrices

for each of the word pairs ⟨e, j⟩ we want to translate. In order to do so, we

optimize each regression matrix on the translation model training data for ⟨e, j⟩

by minimize root mean squared error (RMSE) with a regularization term

Ŵ̂ŴW e,j = argmin
WWW e,j

N∑
n=1

||y∗y∗y∗n − yyyn||2 + α||WWW e,j ||2, (11)

where N is the number of training samples for the word pair, n is the ID of each

training sample, y∗y∗y∗ is target language reference word duration and power vector,

and α is a hyper-parameter for the regularization term to prevent over-fitting.195

This maximization can be solved in closed form using simple matrix operations.

1We chose α to be 10 based on preliminary tests but the value had little effect on subjective

results.

7



3.4. Speech Synthesis

In the TTS part of the system we use an HMM-based speech synthesis

system [1], and reflect the duration and power information of the target word

paralinguistic information vector onto the output speech. The output speech100

parameter vector sequence CCC = [ccc1, · · · , cccT ]⊤ is determined by maximizing the

target HMM likelihood function given the target word duration and power vector

Ŷ̂ŶY and the target language sentence Ĵ̂ĴJ as follows:

Ĉ̂ĈC = argmax
CCC

P (OOO|Ĵ̂ĴJ, Ŷ̂ŶY ) (12)

subject to OOO =MMMCCC, (13)

where OOO is a joint static and dynamic feature vector sequence of the target

speech parameters and MMM is a transformation matrix from the static feature105

vector sequence into the joint static and dynamic feature vector sequence. While

TTS generally uses phoneme-based HMM models, we instead used a word based

HMM to maintain the consistency of feature extraction and translation. In this

task the vocabulary is small, so we construct an independent context model.

4. End to End models of Paralinguistic feature translation methods110

In this section we describe two ways to translate paralinguistic features of

the source words to target words. One is simple linear regression another is

Neural Network with word embed vector.

4.1. Linear regression models

Paralinguistic translation converts the source-side paralinguistic feature X

into the target-side paralinguistic feature Y flowing Voice Conversion ideas [2,

3, 4]

Ŷ = argmax
YYY

P (Y|X) (14)

In particular, we control duration and power using source-side word feature vec-115

tor xi = [x1, · · · , xNx
]
⊤
and target-side word feature vector yi =

[
y1, · · · , yNy

]⊤
.

In these vectors Nx represents the number of HMM states in source side and
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Ny represents the number of HMM states in target side. The sentence feature

vector consists of the concatenation of the word duration and power vectors such

as Y = [y1, · · · ,yi, · · · ,yI ] where I is the length of the sentence. We assume120

that duration and power translation of each word pair is independent, giving

the following equation:

Ŷ = argmax
YYY

∏
i

P (yi|xi). (15)

This can be defined with any function, but we choose to use linear regression,

which indicates that yi is distributed according to a normal distribution

P (yi|xi) = N(yi;Wei,jix
′
i, S) (16)

where, x′ is
[
1x⊤

]⊤
and Wei,ji is a regression matrix with bias defining a linear125

transformation expressing the relationship in duration and power between ei

and ji. An important point here is how to construct regression matrices for

each of the words we want to translate. In order to do so, we optimize each

regression matrix on the translation model training data by minimize root mean

squared error (RMSE) with a regularization term130

Ŵe,j = argmax
Wei,ji

N∑
n=1

||y∗
n − yn||2 + α||Wei,ji ||2, (17)

where N is the number of training samples, n is an id of a training sample,

y∗ is target language reference word duration and power vector, and α is a

hyper-parameter for the regularization term.2

Linear regression model need train a regression matrix for each word pair

⟨e, j⟩. The simplest way to generalize this model is by not training a separate135

model for each word, but a global model for all words in the vocabulary. This

can be done by changing the word-dependent regression matrix WWW e,j into a

single global regression matrix WWW and training the matrix over all samples in

2We chose α to be 10 based on preliminary tests.
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the corpus. However, this model can be expected to not be expressive enough

to perform paralinguistic translation properly. For example, the mapping of140

duration and power from a one-syllable word to another one-syllable word, and

from a one-syllable word to a two-syllable word would vary greatly, but the

linear regression model only has the power to perform the same mapping for

each word.

4.2. Global Neural Network Models145

As a solution to the problem of the lack of expressibility in linear regression,

we propose a global method for paralinguistic translation using neural networks.

Neural networks have higher expressive power due to their ability to handle

non-linear mappings, and are thus an ideal candidate for the task. In addition,

they allow for adding features for many different types of information following150

ASR, MT and TTS’s common practice, such as word ID vectors, word position,

left and right words of input and target words, part of speech, the number of

syllables, accent types, etc. This information is known to be useful in TTS [1],

so we can likely improve estimation of the output duration and power vector in

translation as well.155

In this research, we prepare a feed forward neural network that proposes the

best output word acoustic feature vector Ŷ̂ŶY given input word acoustic feature

vector XXX. As additional features, we also add a binary vector with the ID of

the present word set to 1, and the position of the output word. In this work,

because the task is simple we just use this simple feature set, but this could be160

expanded easily more for complicated tasks.

For the sake of simplicity in this formulation we show an example with the

word acoustic feature vector only. First, we set each input unit ιi equal to the

input vector value:

ιi = xi. (18)

The hidden units πj are calculated according to the input-hidden unit weight
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Figure 2: Neural Network for acoustic feature translation

matrix WhWhWh:

πj =
1

1 + exp(−α
∑

i w
h
ijιi)

, (19)

where α is gradient of sigmoid function. The output units ψk and final acoustic

feature output yk are set as

ψk =
∑
j

wo
jkπj (20)

yk = ψk, (21)

whereW oW oW o is hidden-output unit weight matrix. As an optimization criterion we

use minimization of RMSE, which is achieved through simple back propagation.165

5. Evaluation

5.1. Experimental Setting

We examine the effectiveness of the proposed method through English-

Japanese speech-to-speech translation experiments, summarized in Table 1. In

these experiments we assume the use of speech-to-speech translation in a situa-170

tion where the speaker is attempting to reserve a ticket by phone in a different

language. When the listener makes a mistake when listening to the ticket num-

ber, the speaker re-speaks, emphasizing the mistaken number. In this situation,

if we can translate the paralinguistic information, particularly emphasis, this

will provide useful information to the listener about where the mistake is. In175
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ASR

Tool HTK

Training sentences 8440

HMM states 16

MT

Tool Moses

Training utterances 445

Test utterances 55

Neural net structure 29/25/16

TTS

Tool HTS

Training utterances 445

HMM states 16

Table 1: Experimental Settings

order to simulate this situation, we recorded a bilingual speech corpus where

an English-Japanese bilingual speaker emphasizes one word during speech in a

string of digits. The lexical content to be spoken was 500 sentences from the

AURORA2 data set, chosen to be word balanced by greedy search [5]. The

training set is 445 utterances and the test set is 55 utterances.3180

We further used this data to build an English-Japanese speech translation

system that include our proposed paralinguistic translation model. We used the

AURORA2 8440 utterance bilingual speech corpus to train the ASR module.

Speech signals were sampled at 8kHz with utterances from 55 males and 55

females. We set the number of HMM states per word in the ASR acoustic185

model to 16, the shift length to 5ms, and other various settings for ASR to follow

[6][7]. The original Aurora2 has 8440 utterances for training and 4004 utterances

for testing. Here we don’t use the original testing part in our experiments.

3Freely available at http://www.phontron.com/pcbue
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Base line V.S. Linear Regression

None No translation of paralinguistic information

EachLR Linear regression with a model for each word

Table 2: Compare baseline against prosed linear regression for each words

Proposed LR V.S. NN model

AllLR A single linear regression model trained on all words

AllNN A single neural network model trained on all words

AllNN -ID The AllNN model without additional features

Table 3: Compare proposed Linear Regression against Neural Network model for all words

To simplify the problems, the experiments were done where the ASR has no

error. Therefore we selected 500 balanced sentence from the 8440 utterances of190

training data, and divide the utterances into 445 utts for training set and 55

utts of testing for the paralinguistic translation. So the achieve 100% accuracy

is because it is a closed test set. For TTS, we use the same 445 utterances

for training an independent context synthesis model. In this case, the speech

signals were sampled at 16kHz. The shift length and HMM states are identical195

to the setting for ASR.

In the evaluation, we compare the following two baselines Table 2 and pro-

posed three global models of paralinguistic translation each other Table 3.

In addition, we use naturally spoken speech as an oracle output.

5.2. Objective Evaluation200

We first perform an objective assessment of the translation accuracy of du-

ration and power, the results of which are found in Figure 3, 4, 5 and Figure

6. We compared the difference between the system duration and power and the

reference speech duration and power in terms of RMSE.

From these results, we can see that the AllLR model is not effective at205

mapping duration and power information, achieving results largely equal to the
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Figure 3: Root mean squared error rate (RMSE) between the reference target duration and

the system output for each digit

Figure 4: Root mean squared error rate (RMSE) between the reference target power and the

system output for each digit

baseline. The AllNN model without linguistic information does slightly better

but still falls well short of the EachNN baseline. Finally, we can see that AllNN

is able to effectively model translation of paralinguistic information, although

accuracy of power lags slightly behind that of duration.210
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Figure 5: RMSE between the reference and system duration

Figure 6: RMSE between the reference and system power

We also show the relationship between the number of NN hidden units and

RMSE of duration in 7 (the graph for power was similar). It can be seen that

RMSE continues to decrease as we add more units, but with diminishing returns

after 25 hidden units. When comparing the number of free parameters in the

EachLR model (17*16*11=2992) and the AllNN model with 25 hidden units215

(28*25+25*16=1100), it can be seen that we were able to significantly decrease
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Figure 7: RMSE of duration for each number of NN hidden units

Figure 8: Prediction rate

the number of parameters with little change in accuracy.

5.3. Subjective Evaluation

As a subjective evaluation we asked native speakers of Japanese to evalu-

ate how well emphasis was translated into the target language for the base-220

line, oracle, and EachLR and AllNN models when translating duration or du-

ration+power.

The first experiment asked the evaluators to attempt to recognize the identi-
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Figure 9: Subjective degree of emphasis

ties and positions of the emphasized words in the output speech. The overview

of the result for the word and emphasis recognition rates is shown in Figure225

8. We can see that all of the paralinguistic translation systems show a clear

improvement in the emphasis recognition rate over the baseline. There is no

significant difference between Linear Regression and Neural Network model, in-

dicating that the neural network learned a paralinguistic information mapping

that allows listeners to identify emphasis effectively.230

The second experiment asked the evaluators to subjectively judge the strength

of emphasis with the following three degrees:

1: not emphasized

2: slightly emphasized

3: emphasized235

The overview of the experiment regarding the strength of emphasis is shown in

Figure 9. This figure shows that all systems show a significant improvement

in the subjective perception of strength of emphasis. In this case, there seems

to be a slight subjective preference towards EachLR when power is considered,

reflecting the slightly larger RMSE found in the automatic evaluation. We240
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also performed emphasis translation only use power, but generated speech’s

naturalness is quiet low. There are the value of speech volume drastic changes

in short time. Because of our proposed method process we extract power feature

for each flames that given by duration information so that the power extraction

has high dependency on duration. In this method, if we try to handle other245

acoustic feature(example F0) then we need to modeling duration together.

6. Related Works

There have been several studies demonstrating improved speech translation

performance by translation source side speech non-lexical information to target

side speech non-lexical information. In previous work, [8, 9, 10] focus for input250

speech’s acoustic information and try to explores a tight coupling of ASR and

MT for speech translation with sharing information, they boost translation qual-

ity as measured by BLEU score. Other related works focus on speech intonation

recognizing using that to reduce translation ambiguity on target side[11, 12].

These methods consider non-lexical information to boost translation accuracy.255

However as we mentioned before, there is more to speech translation than just

accuracy. We should consider other features such as the speakers facial and

speech expressions. There is some research that considers translating these ex-

pressions and improves speech translation quality in other ways that cannot

be measured by BLEU. For example some work focuses on mouth shape and260

tries to translate speaker emotion from source to target.[13, 14]. On the other

hand, [15, 16] focus input speech’s prosody, extracting F0 from source speech at

the sentence level and clustering accent groups.These are then translated into

target side accent groups.consider the prosody encoded as factors in a factored

translation model [17] to convey prosody from source to target.265

In our work, we focus on source speech acoustic features and extract them

and translate to target acoustic features directly and continuously. In this

frame work, we need two translation models. One for word to word translation

model, another for acoustic translation model. We made acoustic translation
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model with linear regression for each translation pare. In this work our pro-270

posed method can translate acoustic feature with consider the similarity and

continuously. This method is very simple and we can translate acoustic fea-

ture(duration) without decline BLEU score.

After this work, there are published related work that modeling emphasis by

HMM acoustic model and calculate emphasis level and translation the emphasis275

level in word level[18, 19]. And this method can handle power and duration

value continuously but for make emphasis acoustic model they need to annotate

speech. We often have a different impression even we hear same speech. So

that annotate for various prosody and emotion sometime not stable because it

depends human feeling, In these related works, when they apply their method for280

multi-prosody and emotion their will be faced para-speech data collection issue.

But this work did not need any annotate for speech, in point of data preparation

view we can easily adapt our method for multi-prosody and emotion.

7. Conclusion

In this paper we proposed a generalized model to translate duration and285

power information for speech-to-speech translation. Experimental results showed

proposed method can modeling input speech emphasis more than baseline. But

we also see if we failed to regression target speech feature then we generate worth

quality of speech. This issue can be say machine translation error of paralin-

guistic information. We should care this issue by make threshold or modeling290

the naturalness of paralinguistic feature like lexical MT.

In future work we plan to expand beyond the digit translation task in the

current paper to a more general translation task using phrase-based SMT. The

difficulty here is the procurement of parallel corpora with similar paralinguistic

information for large-vocabulary translation tasks. We are currently consider-295

ing possibilities including simultaneous interpretation corpora and movie dubs.

Another avenue for future work is to expand to other acoustic features such as

F0, which play an important part in other language pairs.
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