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Abstract—Speech-to-speech translation (S2ST) systems are
capable of breaking language barriers in cross-lingual communi-
cation by translating speech across languages. Recent studies have
introduced many improvements that allow existing S2ST systems
to handle not only linguistic meaning but also paralinguistic
information such as emphasis by proposing additional emphasis
estimation and translation components. However, the approach
used for emphasis translation is not optimal for sequence trans-
lation tasks and fails to easily handle the long-term dependencies
of words and emphasis levels. It also requires the quantization
of emphasis levels and treats them as discrete labels instead
of continuous values. Moreover, the whole translation pipeline
is fairly complex and slow because all components are trained
separately without joint optimization. In this paper, we make
two contributions: (a) we propose an approach that can handle
continuous emphasis levels based on sequence-to-sequence mod-
els, and (b), we combine machine and emphasis translation into
a single model, which greatly simplifies the translation pipeline
and make it easier to perform joint optimization. Our results
on an emphasis translation task indicate that our translation
models outperform previous models by a large margin in both
objective and subjective tests. Experiments on a joint translation
model also show that our models can perform joint translation
of words and emphasis with one-word delays instead of full-
sentence delays while preserving the translation performance of
both tasks.

Index Terms—Emphasis estimation, emphasis translation,
speech-to-speech translation, joint optimization of words and
emphasis.

I. INTRODUCTION

PEECH is one of the world’s richest and most powerful

communication channels, allows speakers to express not
only the content that they want to convey but also paralin-
guistic information such as emotion and emphasis. Emphasis
is often used to distinguish between the focused and unfocused
parts of an utterance [1] and is particularly useful in misheard
situations where speakers need to repeat the most important
words or phrases of sentences. In speech-to-speech translation
tasks, Tsiartas et al. [2] has conducted a study on multi-
lingual speech corpora and argued that emphasis information
is a critical factor that contributes to the quality of speech-to-
speech translation performance.

Many studies have developed and improved automatic S2ST
translation systems [3] that help translate the content of
speech across languages. An S2ST system consists of 3 main
components: automatic speech recognition (ASR), machine
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Fig. 1. Existing emphasis speech translation model that consists of many sep-
arate components and dependencies and also requires emphasis quantization
(Q) before translation.
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Fig. 2. Proposed hard-attention emphasis speech translation model that can
translate continuous emphasis weights without quantization.
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Fig. 3. Proposed joint model simplifies translation pipeline and jointly
translates words and emphasis with one-word delay.

translation (MT), and text-to-speech synthesis (TTS). How-
ever, since most S2ST systems cannot translate emphasis con-
veyed in the source language speech, communication through
traditional S2ST systems is less engaging than natural speech
communication.

The difficulty in handling emphasis is that it can be man-
ifested by changing different types of acoustic features, such
as the duration, the power, or the Fj of the emphasized
words [4]. The challenge in developing an S2ST system that
can accurately translate emphasis is that we must consider
these acoustic features of emphasis in three components:
emphasis extraction, emphasis translation, and the synthesis
of emphasized speech. Kano et al. [5,6] proposed approaches
to translate emphasis in a limited domain of 10 digits. Since
their approach models speech differently for each word in the
vocabulary, they cannot generalize to unseen words, and they
also have difficulty modeling emphasis in large vocabulary
systems. Anumanchipalli et al. [7], Aguero et al. [8], and
Tsiartas et al. [9] proposed approaches for mapping Fj into
a discrete set of units and translating them across languages.
However, other acoustic features such as duration and power,
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were not taken into account.

The most recent work by Do et al. [10] attempts to translate
emphasis in an open domain. Their basic idea is to represent
emphasis as a continuous real-numbered value (emphasis
level) that is estimated using all of the acoustic features.
Then they use the conditional random fields to translate the
estimated emphasis levels to a target language. Using emphasis
levels makes the emphasis representation more intuitive and
easier to translate because emphasis translation can be viewed
as translating a sequence of numbers.

However, the following three problems remain: (1) Empha-
sis translation is based on conditional random fields (CRFs)
that require emphasis levels of quantization that are treated
as discrete labels instead of continuous values. This leads
to objective functions that cannot capture the “amount of
difference” between emphasis levels. For examples, the levels
of 0.7 and 0.6 are quite close if they are considered real-
numbered values, but they are completely different if we
treat them as discrete labels. (2) CRFs are not optimal for
sequence translation tasks and cannot easily handle the long-
term dependencies of words and emphasis levels. (3) Since
the entire translation pipeline is fairly complex and slow,
all downstream components have to wait for the complete
result of the upstream components, delaying full-sentence
translations (Fig. 1). Moreover, all of the components are
trained separately and glued together to perform decoding.
Joint optimization cannot be directly applied because of the
complexity of the translation pipeline.

In this paper, we make two contributions: (a) we propose
an approach that can handle continuous emphasis levels based
on sequence-to-sequence (seq-to-seq) models (Fig. 2). The
objective function is the mean square error that directly takes
into account the “amount of difference” of the emphasis levels.
(b) We combine both machine and emphasis translations into
a single joint translation model (Fig. 3) based on seq-to-seq
attention models that achieved the state-of-the-art performance
in machine translation tasks [11,12]. As the result, the trans-
lation pipeline is greatly simplified and we can perform joint
optimization. We can also avoid one-to-one word alignments,
which are a required component of previous works. This
mechanism not only reduces the complexity but also speeds
up the decoding process'.

II. CRF-BASED EMPHASIS SPEECH-TO-SPEECH
TRANSLATION

In this section, we describe the basic components of an
emphasis speech translation (E-S2ST) system and the most
recent state-of-the-art system based on CRF [10].

As described in the previous section, there are many works
on emphasis translation. Although they utilized different ap-
proaches, the translation pipeline is the same as illustrated in
Fig. 1. It combines 2 main sub-systems: an S2ST system that
translates the linguistic meaning of speech with ASR, MT,
and TTS modules; and an emphasis translation system that
estimates (ES) and translates the emphasis information (ET).

"Parts of this work were previously presented [13,14]. The current work
provides a more comprehensive and systematic description of our method and
a deeper analysis of our experiments.

A. Automatic Speech Recognition

The ASR component, which is the first element of the
S2ST translation pipeline, transcribes input speech signal x
into corresponding word sequence w. Input x is decomposed
into a sequence of feature frames o that only retain relevant
information for the ASR task. Word sequence w is then
predicted to maximize the conditional probability,

w = argmax P(w|o). (1)
w

For high accuracy, such speaker-dependent features as emo-
tion and emphasis are either removed or normalized. As a
result, emphasis information is lost after the ASR component.

B. Statistical Machine Translation

The MT component translates a word sequence from a
source language into the target language. Many methods can
be applied to the MT task, including phrase-based [15], tree-
based [16], and neural network [11] translation models.

In the S2ST system, the MT component is downstream of
the ASR component that takes ASR output w(*) and finds the
highest probability target language sentence w*):

w® = argmax P(w®|w®)). (2)
w(t)

Similar to the ASR component limitation, the MT is only
optimized to translate linguistic information and cannot handle
emphasis information.

C. Text-to-speech Synthesis

Text-to-speech, which is the last component in the S2ST
system, synthesizes the target audio given the translated text
from the MT component. Many approaches are also used in
TTS such as DNN-based or HMM-based. While DNN-based
approaches are recently getting more attention because of their
good synthetic speech, HMM-based approaches provide much
more flexibility for handling emotion or emphasis information.

The general idea of the HMM-based TTS approach is that
output speech parameter vector sequence v is determined by
maximizing the likelihood function where the state sequence
consists of T states ¢ = [¢1, -+ , gr] and HMM model set M

¥ = argmax P(Wv|q, M), 3)
v

where W is the weighting matrix for calculating the dynamic
features [17].

Unlike ASR and MT, the TTS component can be optimized
for synthesizing emphasis speech [1]. However, because the
MT component’s output only contains text, the output sound
cannot be emphasized in a way that reflects the original
emphasis of the source language.

D. Emphasis Estimation

To address ASR’s limitation, the ES component was pro-
posed to estimate emphasis information using emphasis fea-
tures including power, Fj, and duration. Do et al. [10] pro-
posed an approach based on a linear-regression hidden semi-
Markov model (LR-HSMM) [18] that models emphasis at
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the word-level (emphasis weight). The emphasis weight is a
real-numbered value that represents the intensity of a word’s
emphasis. As illustrated in Fig. 1, since the ES system take
emphasis features as inputs and the ASR outputs word se-
quences, each word from the ASR output has a corresponding
emphasis weight number.

The intuition of the emphasis weights is shown in Fig. 4.
Given a word sequence, 2 HSMM state sequences, normal
and emphasis, can be derived, both of which are respec-
tively trained from normal and emphasized speech. Emphasis
weights interpolate the mean component of these 2 HSMM
sequences to construct an LR-HSMM sequence. Note that the
emphasis weights are shared among all HSMM states that
belong to one word.

In the model training stage, only normal and emphasis
HSMM parameters are optimized. Inn the emphasis estima-
tion stage, emphasis weights A are optimized using the EM
algorithm to maximize the HSMM likelihood as follows:

A = argmax P(o|\, M), 4
A

where o is an observation speech feature sequence and M is
the LR-HSMM parameters.
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Fig. 4. Continuous emphasis modeling with linear-regression HSMM.
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E. Emphasis Translation (ET)

The ET component plays a similar role as the MT compo-
nent. The difference is that instead of translating a sequence of
words, it translates a sequence of estimated emphasis weights
described in II-D. As illustrated in Fig. 1, the ET component
takes 2 inputs, estimated source-language emphasis sequence
A®) and translated word sequence w(®), and predicts target-
language emphasis sequence A(*).

Do et al. [10] proposed an emphasis translation approach
based on conditional random fields (CRFs) [19] that treats
emphasis as discrete labels? A and A", Target emphasis
weights A®" are then modeled by the following likelihood

function:
il eXp{zekfk )
> H exp {Z O fe A A0 X<k>)}

)\(t)/ n=1
4)

2Estimated continuous emphasis weights are quantized into sets of buckets
(labels)

PAY x) =

where NNV is the number of training samples, K is the number
of feature functions f, and 6 is the weight parameter of
feature function k-th. Feature function fj, combines word-level
emphasis bi-gram )\ff i 1 )\(t) and input feature xﬁf’.

ITI. LIMITATIONS
A. CRF-based Emphasis Translation

Even though a CRF-based ET can preserve emphasis, its
major problem is that it must quantize continuous emphasis
levels into discrete labels. Although this mechanism increases
the ratio of the number of labels and their training samples,
the translation model is prone to make very bad predictions.
For instance, instead of predicting 0.9, it might predict 0.1.
Since those values are treated as separate discrete labels, it
cannot capture the difference between 0.9 and 0.1.

Another problem with the CRF-based approach is that
although it model local dependencies well (by adding more
feature functions), it has difficulty handling long-term de-
pendencies. One can use many feature functions to handle
this problem, but as they increase, more data are required.
And since emphasis translation requires parallel emphasized
speech, which is very hard to collect, this approach is not
practical.

B. Complex Translation Pipeline

To translate emphasis, the translation pipeline requires ES
and ET components in addition to the S2ST system, which is
now very complex: 5 components, and 6 internal dependencies
(represents by black arrows) (Fig. 1). All the downstream
components have to wait for the upstream outputs, resulting in
large translation delays. Moreover, each component uses very
different techniques, complicating joint training and decoding.

IV. SEQUENCE-TO-SEQUENCE APPROACHES FOR
EMPHASIS TRANSLATION

In this section, we describe our proposed approaches to
tackle the above limitations. We first propose a hard-attentional
seq-to-seq long short-term memory (LSTM) model that does
not require emphasis quantization while retaining the ablility
to capture the complex dependencies of emphasis and other
linguistic information such as words and part-of-speech (PoS)
tags. Then we propose a new emphasis speech translation
pipeline that combines MT and ET into a new single model,
which eliminates complex dependencies and makes the entire
translation faster.

We chose the seq-to-seq based approach because it has
achieved impressive results for many tasks, such as speech
recognition [20,21] and machine translation (MT) [11]. Par-
ticularly, attentional-based seq-to-seq [22,23] achieved state-
of-the-art performances for MT and ASR tasks and can model
long-term dependencies, overcoming the problems of local
dependencies in CRFs. In addition, models can be defined
that can simultaneously handle both continuous and discrete
variables, as well as cost functions that take into account label
distances, for example, mean squared errors.

Moreover, since the state-of-the-art MT is based on seq-
to-seq approaches and ET also resembles a translation task,
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better performance can probably be achieved utilizing seq-to-
seq for ET tasks. In addition, integrating MT and ET tasks
will become easier because similar techniques are applied for
both tasks.

A. Sequence-to-sequence LSTM Models

LSTM [24] is a special kind of recurrent neural network
model that can capture long-term dependencies by special
units called memory blocks and also manages the information
going through it using forget, input, and output gates. Given
input vector x; at time ¢ and hidden vector h;_; and cell state
C;_1 at time t — 1, the information flow can be described:

« Calculate forget gate f;:
fi =0(Wy x [hy_1,x] + by). (6)
o Calculate input gate i; and estimate cell state Cy:

o(W; x [hy_1,%¢] + by), @)
tanh(We X [hy_1,%x¢] + be), )

i, =
¢, -
o Update cell state Cy:
C,=f; x Ci_1 +1i; x Cy, 9)
« Calculate output vector hy:

vy = U(W1J X [ht—l,xt] +b1));
ht = V¢ X tanh(Ct)

(10)
(1)

Here W and b are the matrix and bias vectors of the neural
network layers. The core component of an LSTM is cell
state C,; (Eq. (9)), which is controlled by forget gate f;
that is multiplied by the previous cell state values to decide
which history information it should forget, and input gate iy,
which is multiplied to the estimated cell state to decide which
information is sent to the cell state.

An attention seq-to-seq LSTM model consists of an LSTM
encoder, which encodes the input information, an LSTM
decoder, which takes the encoded output to make a prediction,
and an attention layer, which calculates an attention vector.
The seq-to-seq translation model can be written as follows:

« Encode the input features to obtain hidden states h(*):

hl(s) = enc(hgi)l, X). (12)

)

o Compute the attention vector a; and context vector c;:

al = att(h{”, n{*), (13)

(®)

where j is the prediction time step, and h:;"” is the decoder

J
hidden state. Given a§.t) as weights, context vector c; is
computed as the weighted average over all source hidden
states h(*),

o Predicts target labels y;,

softmax(W, H;t) ),
tanh(W[c;;h!")]).

(14)
5)

P(yjly<;,x) =
()
h;

B. Hard-attentional Seq-to-seq Emphasis Translation

Our proposed hard-attentional model for emphasis transla-
tion is a modified version of the seq-to-seq model described
in the above section, based on an assumption that we have a
target language word sequence that was predicted from an
external MT model and word alignments from an external
word alignment model.

(6) | —— (t)
n

(LsT™ cell] || LSTM cell]
w!'-p!’ w-pY | Decoder
h1 hz Encoder
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Fig. 5. Unfolded hard-attentional encoder-decoder LSTM model for trans-
lating emphasis sequence A into target output sequence o(H) 1t considers
many linguistic features including word sequence wge

s

and part of speech
sequence pge’f ) from both source and target languages.

The entire encoder-decoder process can be written as a
function of input features:

A = f(x), (16)

where A is the target output emphasis sequence, x(*) is
the sequence of the source-language input features including
words w(®), PoS p(®), and emphasis weights AG) A previous
work [10] reported that both words and PoS tags play a crucial
role in good translation models.

1) The encoder: As illustrated in Fig. 5, the encoder is a
standard LSTM model that takes input vector xge), which con-
sists of words (wl(e)), part-of-speech tags (pge)), and emphasis
levels ()\Ee)), and encodes them into a single vector that is
suitable for predicting emphasis levels.

The input PoS tags are converted into one-hot vectors whose
size equals the PoS vocabulary size. Word embeddings [25] are
applied to map words onto vectors that capture the similarity
between words. All these input features are concatenated into
a single vector and fed to the encoder.

The encoder is pre-trained by appending a linear neural-
net layer on top of it with an output size of 1 to predict the
emphasis level that is fed into the input layer, similar to an
auto-encoder model [26] (Fig. 6 (a)). We want output hidden
layer h to represent the features that are the most useful to
predict the emphasis levels (called emphasis representations).

2) The decoder: The decoder is also a standard LSTM
model, and the input layer contains both linguistic information
(words, PoS) and vector representations calculated by the
encoder, based on a novel hard-attentional model.

The name hard-attentional reflects how the decoder cal-
culates the emphasis representation vectors used as input.
The example in Fig. 5 demonstrates this mechanism. Assume
that word pairs w{"”-w(* and w”-w{*) are aligned based on
word alignments. To generate output )\ét), linguistic features
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wét) and pgt), and previous output A

, the decoder takes
encoded h; from the encoder output, because word pair wgs)-
wgt) is aligned. For unaligned words, we use zero vectors as
emphasis representation vectors.

We propose 2 decoders as follows:

o LSTM_emph: The model directly predicts target empha-
sis sequence A(*).

o LSTM_diff: The model’s output is treated as the differ-
ence from the input emphasis level. The target emphasis
level of the j-th word is calculated by, )\S»t) = f(x®) +

(s)

/\Es), where the model gets “attention” from word w;,
The intuition behind LSTM_diff is an intention to put stronger
weight on the corresponding source-language emphasis when

predicting target emphasis.

Fig. 6. Training procedure for the hard-attentional model.

C. Joint Translation Model

Even though the hard-attention seq-to-seq model solves
the problems of the CRF-based approach, which requires
emphasis quantization and suffers from the long-term depen-
dency problem described in Section III-A, the problem with
a complex translation pipeline remains. In this section, we
propose a joint translation framework based on an attentional
NMT that simultaneously combines MT and ET to translate
words and emphasis. Our approach is also based on seq-to-seq
approaches, as is the hard-attention approach. The difference is
that we do not require external MT or word alignment models
anymore. All components are combined into a single joint
translation model, allowing us to perform joint optimization
and inference.

When integrating emphasis with word translation, the major
difficulty is that the amount of text data usually overwhelms
the amount of emphasis data, because the latter are derived
from parallel emphasized speech that is much harder to collect
than parallel text data, which can be massively collected by
crawling websites [27].

We define the joint translation model as follows. Given a
source language word and an emphasis sequence are denoted
as W) and e(®, respectively. The model predicts one target
word w(®) at a time followed by a prediction of its emphasis
weight e, Next, we detail how the encoder and decoder
handle both words and emphasis weights.

1) Encoder with emphasis weights: One way to embed
emphasis weights into the encoder is to concatenate them with
word representation to form input vector [w@ e(s)] of the

K2 k2

encoder (Emp-Enc) and compute the hidden unit:

hgs) = enc([wgs), ez(-s)]). (17)

By doing this, we ensure that the emphasis weights are also
encoded with words. However, since the effect of emphasis on
MT remains unknown, we need to explore alternative ways to
incorporate emphasis into the encoder to analyze this effect.
Therefore, we propose adding emphasis after encoding words
(SkipEnc) as follows:

hgs) = [enc(wgs)),egs)] (18)

The SkipEnc idea is that if emphasis weights negatively
affect machine translation, adding them after the encoder
might weaken the effect.

2) Decoder with emphasis weights: As illustrated in Fig. 7,
the decoder has two components. A word prediction layer
follows the standard NMT, and emphasis prediction layer W,
that takes input is the combined vector of the predicted word
and the decoder hidden activation as follows:

e = W (R w]). (19)

(s) ,(s) (s) (s) (s) ,(s) (t) (t)

woel wy e, w;e <s> w, w,

Fig. 7. Joint word-emphasis translation framework with word dependencies
and residual connection.

However, as described above, the lack of emphasis data
compared with the text data might saturate the effect of the
source emphasis when going through many hidden layers. To
overcome this problem, we utilize a residual connection in
the way that the source emphasis weight is also used when
predicting target emphasis weights (Fig. 7),

~(t S
egt) = We([hz(‘ )vw£t)]) + ez('dzai)’

(20)
where function id(a;) returns the index of the largest value
of weighted vector a, that indicates the source aligned word.

3) Training procedure: To train our model, we utilize two
objective functions, cross entropy (CE) for word prediction
and mean square error (MSE) for emphasis prediction, because
the CE function greatly outperforms MSE with discrete labels,
which is the case for word prediction. Since emphasis weights
are continuous, the CE function cannot be utilized as the
objective function for emphasis prediction.

The training algorithm is a standard back propagation
through time (BPTT) scheme in which the errors from the
machine and emphasis translations are sequentially back-—
propagated. Note that the errors are not joint because their
scales are different.
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V. EXPERIMENTS

In our experiment, we first evaluated the effectiveness of
using a continuous emphasis level in a translation model and
the ability to handle the long-term dependencies of our pro-
posed hard-attentional seq-to-seq model against the previous
CRF-based approach (Section V-B).

Regarding the evaluation of the joint translation model,
since our proposed model is our first attempt, to the best of
our knowledge, for integrating emphasis and word features in
a single model, analysis must be conducted on the effect of
emphasis on the standard MT translation model (Section V-D).
This critical step not only shows the effect of emphasis as a
feature, but also provides vital cues for optimally combining
ET and MT.

To further reduce the complexity of the input features and
the network structure, we also evaluated the effect of PoS
tags on the ET and MT models (Section V-E). Do et al. [10]
argued that PoS tags are crucial features that can boost the ET
performance by a 4% F'-measure. However, it creates another
dependency for the translation model. On the other hand, the
seq-to-seq translation model is capable not only of learning
how to translate but also learning the semantic meaning of
words, and since the semantic meaning are closely related to
syntactic meaning (PoS tags) [28], we expect that it can avoid
the need of PoS tag features.

Finally, based on the analysis result, we conduct experi-
ments with the joint translation model and compared both the
hard-attention and CRF-based approaches (Section V-F).

A. Experimental setup

1) Corpus: The corpus consists of emphasis and machine
translation data. The former contain 966 parallel English and
Japanese utterances [29]. In each language, at least one of the
content words in the sentence is emphasized, and the number
of emphasized words is identical between languages. The
number of speakers is 8, including 3 native English (En{1:2:3})
and 5 native Japanese (Jalh:2:3:4.5}) speakers.

To create training and testing data for our emphasis transla-
tion evaluation, we divided 966 utterances of each speaker into
2 sets of 866 and 100 samples such that the same sentences are
used for all speakers. We then paired the 866 utterances of each
English speaker with those of all 5 Japanese speakers, resulting
in 4330 (866 = 5) training, and 100 testing samples for each
English speaker. The testing data consist of 157 emphasized
words, in which 30 exist in the training data and 127 do not.

Regarding to the machine translation data, we utilized 2 sets,
the BTEC and BTEC+TED corpora, which contain ~450k and
~670k parallel sentences, respectively. We created 2 training
MT datasets to evaluate the effectiveness of the emphasis
information on the MT task with more varieties of testing
conditions.

2) Emphasis translation procedure & measurement: In this
paper, to evaluate the performance of the emphasis translation
in isolation, we assumed that the MT system produces 100%
correct translation outputs. Word alignments

To measure the emphasis translation accuracy, we first
performed emphasis translation to derive the target empha-
sis sequences and then measured its accuracy in the target

language both objectively or subjectively (Fig. 8). In the
objective evaluation, the target emphasis values are classified
as “emphasized” or “not emphasized” using a threshold of
0.5° and compared them with true values. In the subjective
evaluation, we first synthesized the audio from the translated
emphasis sequences, and gave the output audio to 7 Japanese
native listeners to predict the emphasized words*. In both
evaluations, we calculated the F-measure, which ranged from
0 to 100 representing how accurately the system preserved
emphasis in the target language.

Al Subjective evaluation

Objective evaluation
It is

HOT

e T—

lEmphasis translation I Speech synthesis

atsui desu ——— *" '
0.7 0.1 i
I
s
I
Predict: ATSUI desu : Predict: atsui DESU

I Human classification l

Label: ATSUI desu

(From the corpus)

Fig. 8. Example of the emphasis translation procedure and measurement
methods.

3) CRFs: We retained the identical configuration of the
CRF models as in previous work [30]. The word-level em-
phasis was quantized to the closest {0, 0.3, 0.6, 0.9}. The
input features are words, PoS tags, and PoS contexts in the
target language side. The model directly predicts the target side
emphasis sequence. This setting achieved the best performance
compared to other features combinations.

4) Hard-attentional Seq-to-seq model:

o The encoder: The encoder input consists of words,
PoS tags, and emphasis levels. The input layer has 138
dimensions including 100 word embeddings, 37 one-hot
PoS tags, and the emphasis levels. The hidden layer has
100 dimensions.

o The decoder: The input gate consists of 100 word
embedding dimensions and 17 one-hot PoS dimensions.
The attentional vector taken from the encoder was added
to the input gate’s output. The input words and PoS
are also respectively converted into word-embedding and
one-hot vectors.

The word embeddings for both the encoder and decoder
were pre-trained using the BTEC travel conversation corpus
[31] using word2vec toolkit [25].

5) Joint translation model: Our encoder and decoder mod-
els have 1 layer (unless stated otherwise), 512 cells, and 512-
dimensional word embeddings. We trained for a maximum

3This has been reported in the previous work [30] as having the best
performance to classify emphasized and normal words.

4There is no constraint on how emphasized words are expressed, it is up
to the listeners to make a binary decision on whether a word is emphasized.
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of 20 epochs using the RMSprop algorithm [20]. Emphasis
prediction layer W, was frozen when trained with fake
emphasis data to avoid learning from unrealistic emphasis
weights.

When trained with text data, the learning rate was set to le—
4 and 5e—>5 when trained with emphasis data. We employed an
early stop learning rate schedule and reduced the learning by
a factor of 2 whenever loss increased on the development set
and stopped the training when the learning rate fell below le-
5. Our mini-batches were 128 and 10 for the word translation
and the emphasis translation task, respectively. The batches
were shuffled before every training epoch.

B. Hard-attentional models: objective evaluation

We performed a preliminary experiment using the same
corpus as in a previous work [30] with 916 training samples
and 50 testing samples. The results showed that our proposed
method achieved a 92.6% F'-measure, which exceeds the
previous work by 1%. Although the dataset was too small
to conclude that the proposed method is better than CRFs
by such a small margin, it demonstrates that the proposed
method performs comparably with the previous work on the
same corpus. To make the result more reliable, we conducted
larger scale experiments with the dataset described in the
Section V-Al.
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Fig. 9. Objective emphasis prediction of hard-attentional enc-dec with

LSTM_diff and LSTM_emph architectures.

Fig. 9 shows the objective F-measure for emphasis pre-
diction on this larger amount of data. In all 3 test sets and
on average, the proposed methods outperformed the CRFs.
According to the bootstrap resampling significance test [32],
both results are significant at the p < 0.01 level. On the other
hand, the difference between LSTM_diff and LSTM_emph was
not significant, demonstrating that the LSTM model can learn
emphasis level differences between aligned words without
explicitly defining them in the equations.

Furthermore, we scrutinized the advantage of the proposed
model with respect to using continuous variables. If they are
useful, we expect that the emphasis values in the middle of
the range will be modeled better by the proposed method. To
test this hypothesis, we split the input emphasis levels into
3 sets based on the emphasis level of the word: < 0.3, 0.3-
0.6, > 0.6. Then we calculated F-measure for the CRFs and

LSTM_emph on individual sets’. The result in Table I indicates
that both systems have equivalent performance when a word is
considered normal or emphasized (emphasis levels below 0.3
or over 0.6), but when the emphasis levels fall between 0.3-
0.6, LSTM_emph outperformed the CRFs. This demonstrates
the limitation of the CRFs, which require emphasis level
quantization to handle continuous variables, but LSTMs do
not.

TABLE I
F-MEASURE FOR CRF AND LSTM_EMPH EMPHASIS TRANSLATION ON
DIFFERENT INPUT EMPHASIS LEVELS.

<03 03-0.6 >0.6
CRF | LSTM | CRF | LSTM | CRF | LSTM

[88.05 | 87.60 | 70.85 | 8141 | 92.53 | 92.75 |

C. Hard-attentional models: subjective evaluation

Finally, we performed a subjective evaluation to verify
whether human listeners can perceive the same improvement
between CRF's and LSTM_emph as in the objective evaluation.
We used the “Enl” test set for this evaluation.

We obtained a result of 83.0% for LSTM_emph and 81.0%
for CRF's indicating that humans perceived a slightly smaller
improvement compared to the objective result. Moreover, the
CRF system’s performance dropped with a smaller margin
(3.70%) than the proposed method (5.82%). The reason is
because in the LSTM_emph approach, 268 emphasized words
were recognized correctly in the objective evaluation, but 14
of them having emphasis levels fall between 0.5-0.8 are mis-
recognized by human listeners while this does not happen in
the CRF approach since these emphasis levels are just slightly
higher than the threshold, leading to slightly emphasized
synthetic speech that is hard to perceive by human listeners.
In the CRF approach, the emphasis levels are quantized into
buckets of {0, 0.3, 0.6, 0.9, ...}, so when a word is considered
as emphasized (larger than the threshold 0.5), the distance to
the threshold is usually large.

D. Effect of using emphasis as additional features on standard
NMT systems

Even though previous works translated emphasis weights
separately from NMT, no analysis has addressed whether
emphasis weights in NMT have a positive or negative effect.
Such analysis, however, is important before integrating em-
phasis translation into NMTs. To address this oversight, we
explored the effect of emphasis as an input feature on machine
translation performance.

We kept the same decoder structure like standard NMT
systems so that no emphasis prediction was performed and
evaluated two encoders with emphasis weights added in dif-
ferent positions as described in Section IV-C1. The baseline
is the standard NMT system without emphasis weights (Std.
NMT). Fig. 10 shows the result of the cross entropy loss of the
word prediction performance on the training and development

5Because the accuracies of LSTM_diff and LSTM_emph are similar, below
we only show the results of CRFs and LSTM_emph.
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Fig. 10. Effect of emphasis on standard NMT systems: Solid and dash lines
denote MT performance on development and the training sets, respectively.

sets. The loss is higher in both approaches (SkipEnc and
Emp-Enc) than in Std. NMT, indicating that emphasis did not
improve the NMT performance. We hypothesize that such a
negative effect is due to the fact that emphasis weights are
paralinguistic, but NMT is translating linguistic information.
Only using emphasis weights as an additional feature without
translating is insufficient for the model to learn anything useful
from emphasis.

Although the NMT performance was degraded when using
the emphasis weight features, SkipEnc has a minimal effect
compared with Emp-Enc. This is because in SkipEnc, the
encoder avoids excessive influence from the negative effect
of the faked emphasis weights; therefore, we can preserve the
performance of the standard NMT. The rest of our experiments
used the SkipEnc model.

E. Joint translation models: Effect of PoS tags on ET and MT
models

Figure 11 shows the performance of the ET model using the
EmpEnc joint translation approach with and without the PoS
tag feature. With PoS tags, the model converges faster and
provides better performance in the first 10 iterations. But both
systems eventually converge to a similar point when we train
them for 15 iterations. We also observed the same tendency
in the MT task (Fig. 12). The result indicates that PoS tags
still help the translation model, but if we train it on a sufficient
amount of iterations, such help is minimalized. We hypothesize
that this is because the model can learn semantic meaning of
a word that is similar to what the PoS tags represent.
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Fig. 11. ET performance in joint translation models on a development set
with/without PoS tags.
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Fig. 12. MT performance in joint translation models with/without PoS tags.

F. Joint translation models: Emphasis translation perfor-
mance

From the result of the above sections, we conducted the
following experiments using SkipEnc architecture without PoS
tag features and completely trained the model for both em-
phasis and word prediction. Fig. 13 shows the F'-measure,
the precision, and the recall for emphasis prediction using the
SkipEnc encoder with baseline and residual decoders.

Looking at the F'-measure, the residual decoder outper-
formed the baseline decoder by a 2.7% F-measure. The base-
line decoder’s precision, however, is higher than the residual
one, indicating that the residual connection mistakenly predicts
more high emphasis weights for normal words. Similarly, the
high score for the residual decoder’s recall indicates that it
preserves more emphasized words than the baseline system.

The contrastive precision and recall performance of the two
systems indicates that better performance is gained by com-
bining them. In the next section, we describe our combination
technique and compare its result with previous works.

90
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Fig. 13. Emphasis translation performance in joint translation model

G. Joint translation models: model combination for emphasis
translation

The model combination works as follows. First, we per-
formed emphasis translation on the development set and
calculated the precision and recall scores. Then, for content
words, we selected the emphasis weights predicted from the
system with higher recall, and for the non-content words, we
selected emphasis weights with lower recall.

We also performed emphasis translation using previous ap-
proaches based on conditional random fields (CRFs) [30] and
LSTM hard-attention models [13]. The input features for these
approaches are words and emphasis weights that resemble the
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proposed approach. The result is shown in Fig. 14. Compared
with CRFs, our proposed approaches perform bettered with
a ~5% F-measure and have a closed performance with the
LSTM hard-attention approach with a ~2% lower F-measure.

The result matches our expectation because both the CRFs
and LSTM hard-attention approaches use ground-truth one-
to-one word alignments and have independent words and
emphasis translation models. On the other hand, our proposed
approaches do not require word alignment models and can
translate words and emphasis twice as fast as hard-attention
models.

& 80.77
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o
575 73.8
%]
S 70
S
L 65
60
55
50
CRF hard-attention Combination
Arch. Separated Separated Joint
Align.  Required Required No
Delay Full sentence | Full sentence One word

Fig. 14. Comparison of emphasis translation performance of proposed and
previous approaches. Graph also shows differences in terms of translation
architecture (Arch.), word alignment requirement (Align.), and the translation
delay (Delay).

H. Joint translation models: machine translation performance

Next, we evaluated the machine translation performance
in joint translation models with 2 dataset, BTEC and
BTEC+TED. We are interested to see how the systems behave
when the number of parameters (model’s depth) increase. The
results are shown in Table II. The baseline system is the
standard NMT without the emphasis weights used in both the
encoder and decoder.

First, we can see that the performance on the BTEC +
TED set is lower than the BTEC set. It is because the TED
data covers a much more open domain, therefore harder to
translate, than the BTEC (only travel) domain. Second, when
the model’s depth is 1 and 2, the performance difference of the
proposed approaches and the baseline is negligible for both test
datasets, indicating that optimizing the model with emphasis
weights can compensate for the negative effect of emphasis
found in Section V-D.

With a hidden layer depth of 3, all of the models seem
over-fitted with the training samples, resulting in a loss of
performance. However, interestingly, the proposed approaches
have smaller performance drops. Specifically, the SkipEnc-
Residual approach only dropped ~1-2% of BLEU, and the
baseline system without emphasis weights dropped ~3-4%
of BLEU. We hypothesize that emphasis weights work as
regulation parameters that help preventing over-fitting.

VI. CONCLUSIONS

In this paper, we proposed methods to accurately translate
emphasis, and reduce translation complexity. Unlike previous

TABLE 11
MACHINE TRANSLATION PERFORMANCE (BLEU SCORE) IN JOINT
TRANSLATION MODELS. VARIOUS DEPTHS OF HIDDEN LAYERS DENOTED
AS d(1,2,3) WERE EVALUATED.

[ System [ BTEC | BTEC + TED |
Baseline (d1) 27.67 24.20
SkipEnc-Base (d1) 27.25 23.16
SkipEnc-Residual (d1) 27.19 -
Baseline (d2) 27.44 24.96
SkipEnc-Base (d2) 27.70 25.43
SkipEnc-Residual (d2) 27.72 25.14
Baseline (d3) 23.68 21.44
SkipEnc-Base (d3) 2541 22.24
SkipEnc-Residual (d3) 26.36 23.22

work where emphasis is considered to be discrete labels and
has difficulty handling long-term dependencies, our proposed
hard-attention seq-to-seq model can solve both problems in
a single model by utilizing the LSTM-based encoder-decoder
that can capture long-term dependencies and handle contin-
uous emphasis in its objective function. The evaluation on
emphasis translation task demonstrates that our model can
translate emphasis significantly better than previous work.

With regards to effect emphasis and PoS tags on a machine
translation task, we discovered that emphasis does not help
standard MT systems if it is simply used as an additional
feature. Experiments with PoS tags also showed that it helps
the model converge faster, but it does not help improve
the accuracy if the model is well-trained. Another important
outcome of our result is that our proposed model can learn
good features from words and emphasis without PoS tag
dependencies.

Our work on the joint translation of words and emphasis
demonstrated that our proposed joint translation model can
accurately translate emphasis and words with one-word delay,
but the previous work requires a full-sentence delay. The
model significantly reduced the complexity by removing word
alignments and PoS tag features. We also found that emphasis
can help MT performance prevent over-fitting.

However, some limitations remain. First, although the com-
plexity is already reduced, we still require an emphasis esti-
mation (ES) that works independently with the ASR compo-
nent. Although this architecture allows us to adopt any ASR
technique without interfering with the emphasis estimation
component, it creates a delay during which ET and MT models
have to wait for the ASR and ES output.

Future work will integrate ES and ASR to completely
remove any dependencies introduced by adding emphasis
translation to standard S2ST systems. Joint training the whole
system is another very interesting topic. Thanks to the seq-to-
seq model, we can apply it to all components to seamlessly
integrate them into a joint translation model. In addition, recent
works on speech recognition have shown that TDNN is compa-
rable (or even better in certain cases) with LSTM. Integrating
these models into emphasis estimation and translation will
further reduce the model complexity and potentially speed up
the translation pipeline.
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