
JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 1

Dirichlet Process Mixture of Mixtures Model
for Unsupervised Subword Modeling

Michael Heck, Member, IEEE, Sakriani Sakti, Member, IEEE, and Satoshi Nakamura, Fellow, IEEE

Abstract—We develop a parallelizable Markov chain Monte
Carlo sampler for a Dirichlet process mixture of mixtures model
(DPMoMM). Our sampler jointly infers a codebook and clusters.
The codebook is a global collection of components. Clusters are
mixtures, defined over the codebook. We combine a non-ergodic
Gibbs sampler with two layers of split and merge samplers on
codebook and mixture level to form a valid ergodic chain. We
design an additional switch sampler for components that supports
convergence in our experimental results. In the use case of
unsupervised subword modeling, we show that our method infers
complex classes from real speech feature vectors that consistently
show higher quality on several evaluation metrics. At the same
time we infer fewer classes that represent subword units more
consistently and show longer durations, compared to a standard
DPMM sampler.

Index Terms—acoustic unit discovery, Bayesian nonparamet-
rics, Dirichlet process, Gibbs sampling, mixture of mixtures,
unsupervised subword modeling

I. INTRODUCTION

D IRICHLET process mixture models (DPMMs) [1], [2]
are firmly established in pattern recognition and machine

learning. Also known as infinite mixture models [3], they ele-
gantly extend finite mixture models by the aspect of automatic
model selection. This property makes them a popular tool for
solving clustering tasks that are challenging with regards to
estimating model complexity a priori. Several extensions to
the original concept have been introduced over time, most
notably hierarchical models [4], [5] and Dirichlet processes
(DPs) with dependencies [6], [7].

DPMMs with Gaussian components gained increased inter-
est in the field of low resource automatic speech processing,
particularly as method for tackling the task of unsupervised
subword modeling. The task is to infer acoustic units from raw
audio data that are suitable to reliably represent human speech,
i.e., that show low discriminability errors. DPMM samplers
were used for subword model inference in an array of works
related to the zero resource speech challenge [8]–[11]. The
idea is that each Gaussian in a mixture model that was inferred
from speech data is considered a separate acoustic class. Pre-
vious work by the authors [12]–[14] improved unsupervised
subword modeling via DPMM sampling by unsupervisedly
transforming the sampler’s input.

A major impediment for producing better subword models
however is the simplicity of the inferred model. It is a long
standing modeling assumption that speech observations, i.e.,
feature vectors that belong to specific sound categories, are

M. Heck, S. Sakti and S. Nakamura are with Nara Institute of Science and
Technology.

Manuscript received xxx xx, 201x; revised xxx xx, 201x.

multimodally distributed [15]. In practice, Gaussian mixture
models (GMMs) are well established to model acoustic units
such as phones [16], [17], and methods such as continuous
hidden Markov models (HMMs) make use of state-dependent
GMMs as multimodal distributions to model emission prob-
abilities of speech observations [15], [18]. It seems therefore
an oversimplification to assume single unimodal distributions
to be a good model representation for individual sounds. This
assumption limits the inferred units to represent generally very
short stationary sound phenomena [19].

DPMMs work very well when the clusters in a data set
are unimodally distributed. But problems arise when clusters
follow more complex, e.g., multimodal, distributions. In such
cases, a model that fits unimodal distributions (e.g., single
Gaussians) to clusters tends to over-fragment the feature space
and to suggest more clusters than actually present. In other
words, real clusters tend to be represented by multiple com-
ponents, i.e., “sub-clusters”. However, without dependency
modeling in DPMMs, inferred “sub-clusters” are considered
independent and the relations between them are lost. The
consequence is that the inferred clusters do not reflect the
actual structure in the data. To more accurately approximate
multimodally distributed clusters, a model that assigns multi-
ple mixture components to each cluster would be required [20].

We consider unsupervised subword modeling to be such
a problem where the ability to infer multimodal clusters
from a data set can provide models that represent the real
underlying data distribution more accurately. The expectation
is that a mixture of clusters, where each cluster is a mixture
itself, should be a better representation of acoustic units with
favorable characteristics. Specifically, one would expect the
number of inferred classes to be lowered, the overall model
size therefore be reduced. At the same time, average durations
when classifying sequences of sounds should be longer. Sound
representations should also be more robust across data of
different speakers and show higher discriminability due to
more natural modeling.

We develop a sampler for a Dirichlet process mixture of
mixtures model (DPMoMM) to overcome the limitations of
DPMMs and to enable the inference of a mixture of multi-
modal clusters. In our proposed DPMoMM, each cluster is a
mixture of components, and the collection of clusters forms a
global mixture of mixtures. Throughout this paper, we will use
the following terms to describe our model. Each mixture in
the global mixture of mixtures is called a cluster. Each cluster
is a mixture of cluster components. Cluster components can
be shared across clusters, which is why they exist on a global
level. We borrow a term from automatic speech recognition
and call the global collection of components that can be part of

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TASLP.2018.2852500

Copyright (c) 2018 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 2

Mixture of Mixtures

Clusters

Codebook

Parameters:

Fig. 1. Illustration of the mixture of mixtures model. The codebook is a global
collection of components. Clusters are mixtures, defined over the codebook.

a cluster a codebook. When we speak of codebook components
or simply components, we refer to the global components that
make up the codebook. A codebook component is a cluster
component (i.e., a member) in at least one cluster, and each
cluster component is identical with exactly one codebook
component. The difference is that the same component has
different weights in different clusters (if it belongs to more
than one). Besides that, each codebook component has a global
weight. An intuitive illustration of this model is provided in
Fig. 1. The detailed description of the model and its parameters
is given in Section III.

We build on the idea of Chang et al. [21] and develop a split,
merge and switch sampler with the following characteristics:
(1) our sampler jointly infers a global codebook of compo-
nents, and clusters which are mixtures that are defined over
this codebook; (2) split and merge moves modify codebook
components; (3) split, merge and switch moves modify cluster
components; (4) all sampling steps can be parallelized across
clusters and components; (5) the jointly inferred codebook and
the mixture of mixtures provide two alternatives to model the
same underlying data.

We demonstrate in unsupervised subword modeling use case
experiments on real speech data that our DPMoMM sampler
is superior to a DPMM in terms of inferring models that
are better representations of the underlying data structure.
Specifically, with our method we infer mixtures of Gaussian
mixtures from real speech observations that consistently show
higher quality on several subword model evaluation metrics.
For that, we extract frame-wise speech feature vectors from a
data set and use our proposed sampler to cluster these speech
observations into classes. In a standard DPMM, each class is
represented by a single Gaussian, whereas with our proposed
DPMoMM, each class is represented with its own GMM. This
way we infer fewer clusters that represent subword units more
consistently across speakers and that show longer average
durations. We also show that an additional switch sampler
supports the convergence of the algorithm.

II. RELATED WORK

The hierarchical Dirichlet process (HDP) is a well-known
method for sampling mixture models that employ a hierar-
chy [4], [5]. The HDP can be used to infer topics that are
shared between multiple documents, i.e., groups of data. An
analogy between HDP and DPMoMM can be drawn to the
following extent. A document in the HDP is a mixture of
topics, just as a cluster in the DPMoMM is a mixture of
components. Documents in the HDP share topics from a global
set, just as clusters in the DPMoMM can share components
from the codebook. The similarities between the models end
at this point, however. The HDP differs greatly from the
DPMoMM by assuming that a particular grouping of data
into a finite set of documents is known a priori. Topics are
assumed to be shared across documents, and each document is
assumed to have its own particular distribution of these topics.
Topic mixtures that describe individual documents can heavily
overlap each other if they have many topics in common. In
contrast, our proposed model does not assume a pre-defined
grouping of data into document-like clusters. Instead, the
DPMoMM sampler infers an unknown number of clusters
within ungrouped data, comprised of an unknown number of
components each. Our method infers a mixture of mixtures,
i.e., a group of clusters which itself forms a mixture model
with explicit mixture weights. In the DPMoMM, clusters are
groups of neighboring components, and clusters do not tend
to occupy the same regions in the feature space.

More related to our DPMoMM is the infinite mixture of
infinite Gaussian mixtures (I2GMM) by Yerebakan et al. [20].
The I2GMM is a generative model that represents each cluster
within a data set with its own mixture model. Here, a top
layer DP defines meta-clusters, and lower layer DPs model
the cluster data as a mixture of components. The top layer
generates cluster parameters according to a base distribution
H and defines the number and local expansion of clusters.
The cluster parameters in turn define base distributions Hk

for the lower layer which control the number and local
expansion of cluster components. Covariance matrices are
shared across components within the same cluster, leaving
components to only differ in their means. In contrast to the
I2GMM, our proposed model does not define a prior over
cluster appearances in form of meta-clusters. Instead, DP-
MoMM clusters can take on any structure that the data might
inform. DPMoMM components also have their own covariance
matrix each, which allows more natural approximations to
the data. Further, unlike the I2GMM, the DPMoMM supports
the sharing of components across clusters, which enables the
sharing of statistical strength [4].

Dependent Dirichlet processes are suitable to capture time
dependencies between clusters or samples [22]–[24]. Temporal
dependencies might in certain cases be reflected by locality
in the feature space. With the DPMoMM, we propose a
new kind of model sampler that explicitly infers a mixture
of multimodal distributions to handle dependencies that are
reflected by locality in the feature space.

Split and merge samplers are thoroughly discussed in an
array of publications [25]–[27]. The DPMM sub-cluster al-

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TASLP.2018.2852500

Copyright (c) 2018 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 3

gorithm of Chang et al. [21] addresses several issues that
previous approaches coped with. Their sampler combines a
non-ergodic restricted Gibbs sampler and split and merge
samplers into a valid Markov chain. The Gibbs sampler is
restricted to non-empty clusters. Splits are proposed from sub-
clusters that are learned jointly by deferred sampling. Moves
are proposed with a Metropolis-Hastings (MH) algorithm. As
instantiated-weight (IW) sampler, cluster weights are explicitly
represented, as opposed to collapsed-weight (CW) samplers.
Like in [28], [29], no finite approximations are used for the
Dirichlet process, contrary to [29], [30]. The authors see the
advantage of IW samplers in the possibility to parallelize
across data points (which they refer to “inter-cluster paral-
lelizable”) and propose to use global split and merge moves to
counter convergence issues. Inspired by these works, Chang et
al. [21] propose moves that rely on jointly learned sub-clusters
to reduce computational overhead during the MH steps.

This algorithm was used with success for unsupervised
subword modeling in the scope of the zero resource chal-
lenge [8]. Chen et al. [10] inferred a DPMM from raw
speech, with Gaussians as components, and used the Gaus-
sian posteriorgrams extracted after sampling as new speech
representation. In our own work, we extended this approach
by developing a framework that unsupervisedly learns feature
transformations from inferred classes [12]–[14]. We showed
that these transformations in turn improve the input to the
DPMM sampler so that even better classes can be inferred,
according to a sound class discriminability measure. We
further demonstrated that the inferred classes can be used to
model sounds for speech recognition purposes [19]. However,
we found there is need for a method to find more complex
classes that are generalizing across speakers and that cover
consistent sequences with longer durations. We show in this
work how we enhance the DPMM to be a DPMoMM that
jointly learns components and mixtures of components and
how we successfully use our model to improve unsupervised
subword modeling.

Discriminative (as alternative to generative) non-parametric
models such as infinite (structured) support vector machines
(i(S)SVMs) [31], [32] have also been successfully applied
in the ASR domain to dynamically model speech concepts.
The idea of the iSVM and iSSVM is to divide the feature
space into regions to be handled by a mixture of experts,
i.e., specialized sub-models, where the number of experts is
inferred from the data and the mixture underlies a DP prior.
However, the number of actual concepts to be modeled is
known beforehand, and the SVM training is supervised and
relies on labels. In contrast, our DPMoMM infers concepts
from data only without prior knowledge of any sort.

III. DP MIXTURE OF MIXTURES MODEL

In this section, we develop our DP mixture of mixtures
model (DPMoMM). Definitions and mathematical expressions
are kept general and are not restricted to a specific type of
mixture components. Within the scope of this work, we use
our sampling algorithm to infer mixtures of Gaussian mixtures
in the use case of unsupervised subword modeling, for which

we originally developed this method (see Section VIII). We
begin by reviewing the standard DPMM and the augmented
DPMM of Chang et al. [21].

A. Graphical Representation

Fig. 2 is a representation of the general DPMM in plate
notation. xi is an observed data point i out of N data points,
and zi is the corresponding discrete label for that data point. π
denotes the theoretically infinite dimensional vector of mixture
weights. α is commonly referred to as the concentration pa-
rameter for the Dirichlet process, which governs the likelihood
for new classes to be generated during sampling, and λ is the
hyper-parameter for the Dirichlet process base measure. θk
denotes the parameters of cluster k, e.g., mean and covariance
in the case of Gaussians. The generative process of the DPMM
is expressed as follows:

xi ∼ p(xi|θzi), θk ∼ H(λ), (1)
zi ∼ Discrete(π), π ∼ GEM(α), (2)

where GEM(·) denotes the stick-breaking process, and H is
the DP base measure. The generative story of a data point
xi is this. A discrete cluster label zi is sampled from the set
of all possible clusters, which are distributed according to the
weights in π. Given the cluster label, xi is drawn from the
cluster with parameters θzi .

Fig. 3 is Chang et al.’s [21] augmented DPMM using
auxiliary variables. Each regular cluster is augmented with
two explicit sub-clusters, denoted as l for “left” and r for
“right”. The goal is to design a model that is tailored toward
splitting clusters. By picking suitable distributions for these
sub-clusters, then they can provide good split proposals for
their regular parent cluster. Each data point is assigned to either
the “left” or “right” sub-cluster with a sub-cluster label z̄i ∈
{l, r}. The naming convention implies that the sub-clusters
are designed towards separating the data points into distinct
groups within the parent cluster. Sub-clusters have their own
weights π̄k = {π̄lk, π̄rk} and parameters θ̄k = {θ̄lk, θ̄rk}. It is
important to note that in this auxiliary space the data points xi
generate the labels z̄i, in contrast to the regular space where
zi generate xi.

Our proposed DPMoMM is depicted in Fig. 4. As before,
xi is an observed data point i out of N data points that belong
to a cluster k. β governs the global mixture proportions, and
π is the vector of weights for clusters, sampled according
to a stick-breaking process. zi denotes the cluster assignment
label for the corresponding data point. In our model, clusters
are composed of components, which are represented by the
following variables. c̃ki is the label of the cluster component
conditioned on cluster k that the corresponding data point is
assigned to. π̃k are the cluster component weights, governed
by β and conditioned on cluster k. θc are the parameters for the
component that generated xi. All cluster components are de-
fined globally in the codebook. The codebook is the weighted
collection of all existing components in the DPMoMM, i.e.,
it is a global mixture of components. Given the codebook,
sampling operations can be performed on component level,
independent of their respective cluster memberships. ċi assigns

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TASLP.2018.2852500

Copyright (c) 2018 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 4

Fig. 2. Standard DPMM.

Fig. 3. Augmented DPMM by Chang et al. [21]. Auxiliary variables are
denoted by dotted circles.

a data point i to a codebook component and is derived
from the cluster component label c̃ki. Codebook components
have global weights π̇, governed by a separate concentration
parameter α. λ is again the hyper-parameter for the DP base
measure. The generative process of the DPMoMM is formally
expressed as follows:

xi ∼ p(xi|θc̃zii), θc ∼ H(λ), (3)

zi ∼ Discrete(π), π ∼ GEM(β), (4)
c̃ki ∼ Discrete(π̃k), π̃k ∼ GEM(β), (5)
ċi = c̃zii, π̇ ∼ GEM(α). (6)

The generative story for any data point xi in a DPMoMM
is as follows. A cluster label zi is sampled from the set of
all possible clusters, which are distributed according to the
weights in π. Then, a component label c̃zii is sampled from
the set of components that belong to the cluster with label zi,
which are distributed according to the weights in π̃zi . Given
the cluster and cluster component labels, xi is drawn from
the cluster component with parameters θc̃zii . The codebook
is a by-product of this generative process. The codebook
component labels are copies of the cluster component labels
according to (6), and the weights of the codebook components
are conditioned on these labels. Fig. 1 is an illustration of the
hierarchy within a DPMoMM. The sampling of the full model
is described in detail in Section IV.

An intuition of what the DPMoMM represents can be given
as follows. Assuming the tackled task is topic clustering, one
can view DPMoMM clusters as groups of closely related
topics (modeled by cluster components). If for instance there
are three components modeling the topics “cars”, “trucks” and
“motorbikes”, then a cluster that contains these components
would model the meta-topic “personal vehicles”.

Similar to the augmented DPMM, we define an auxiliary
space to enable a split and merge sampling approach. Each
component in the DPMoMM is augmented with two sub-
components, parametrized by θ̄c = {θ̄lc, θ̄rc}, to provide good
split candidates for a component split move proposal. c̄ki ∈
{l, r} is the label that assigns the corresponding data point to a
sub-component of c̃ki within cluster k, and π̄kc = {π̄lkc, π̄rkc}

Fig. 4. Proposed DP mixture of mixtures model (DPMoMM). Auxiliary
variables are denoted by dotted circles.

Algorithm 1 DPMoMM sampling algorithm
Randomly initialize Kinit clusters with 1 component each
while stop criterion not met do

Propose cluster merges and splits . Sec. VI
Propose cluster component switches . Sec. VI
Propose component merges and splits . Sec. V
for all clusters with split components do

Duplicate and update . Sec. V
end for
Sample parameters and labels . Sec. IV

end while

denotes the weights for sub-components of component c
within cluster k. On codebook level, sub-component labels
˙̄ci are derived from the cluster sub-component labels c̄ki, i.e.,
˙̄ci = c̄zii. ˙̄πc = { ˙̄πlc, ˙̄πrc} are the sub-component weights for
each codebook component, governed by α. The choice of the
auxiliary parameter distributions follows Chang et al. [21],
which is reflected in the way we sample these variables in
Section IV.

B. Sampling Algorithm

Chang et al.’s DPMM sampler [21] is an instantiated-weight
sampler that combines non-ergodic Markov chains into an
ergodic chain and proposes splits from learned sub-clusters
and merges of clusters. Their algorithm runs a Gibbs sampler,
which samples the parameters and weights of each cluster
and its sub-clusters, followed by sampling the cluster and
sub-cluster labels for each data point. The Gibbs sampler is
restricted to non-empty clusters. After Gibbs sampling, a split
and merge sampler proposes with an MH algorithm to either
split or merge clusters into new clusters. Gibbs sampling and
split and merge sampling iterate until convergence or until a
stop criterion is fulfilled.

Our proposed sampler uses a similar structure. Algorithm 1
is an outline of our algorithm in pseudo-code. We combine
a restricted Gibbs sampler with a split, merge and switch
sampler for clusters and a split and merge sampler for

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TASLP.2018.2852500

Copyright (c) 2018 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 5

components. The Gibbs sampler samples the parameters and
weights of each codebook component and its sub-components,
the weights of each cluster, and the weights of each cluster
component. This is followed by sampling the cluster, compo-
nent and sub-component labels for each data point. A split,
merge and switch sampler proposes to either split or merge
clusters or to move a cluster component from one cluster to
another. A split and merge sampler for components proposes
to either split or merge codebook components. Illustrations
of the possible component and cluster moves are given in
Fig. 6. Gibbs sampling, split, merge and switch sampling for
clusters, and split and merge sampling for components iterate
until convergence or until a stop criterion is fulfilled.

The Gibbs sampling steps and the split and merge moves
for the codebook components are equivalent to the original
DPMM sampler of Chang et al. [21], and the codebook
together with the global component weights is exactly the
model that the original sampler would infer.

The following sections explain in detail the individual
non-ergodic samplers that make up our proposed algorithm.
The non-restricted Gibbs sampler is explained in Section IV.
Section V explains the component split and merge sampler
which are technically identical with the sampler in [21], but
applied to the codebook components. Because changes of the
codebook components lead to changes of the clusters, we
introduce novel update steps for clusters. These are explained
accordingly in the respective subsections. Lastly, we propose
cluster split, merge and switch moves in Section VI. Fig. 5
is an illustration of how our proposed DPMoMM algorithm
behaves, compared to a DPMM.

IV. RESTRICTED GIBBS SAMPLING

In this section we lay out the details of the restricted Gibbs
sampler that we employ. The Dirichlet process uses an infinite
length prior on the cluster labels zi, cluster component labels
c̃ki and codebook component labels ċi. However, any label can
only point to a finite number of entities, i.e., the clusters and
the components that exist in any current state of the model.
Because the restricted Gibbs sampler does not create new
clusters and components itself, the dimensions of the infinite
vectors π, π̃k, π̇ and θ are technically finite during Gibbs
sampling. Posterior distributions of weights are conditioned
on the assignments of data points. The restricted conditional
distributions of the DPMoMM are

p(π|z, β) = Dir(N1, . . . , NK , β), (7)

p(π̃k|z, c̃, α, β) = Dir(B1
k, . . . , B

C
k , α), (8)

p(π̇|ċ, α) = Dir(Ṅ1, . . . , ṄC , α), (9)
p(θc|x, ċ, λ) ∝ f({x}c, θc)f(θc, λ), (10)

p(zi = k|x, π, θ) ∝ πk
C∑
c=1

π̃ckf(xi, θc), (11)

p(c̃ki = c|x, z, π̃, θ) ∝ π̃czif(xi, θc), (12)
p(ċi = c|x, π̇, θ) ∝ π̇cf(xi, θc), (13)

with

Nk =
N∑
i=1

1zi=k, N c
k =

N∑
i=1

1 zi=k
c̃ki=c

, (14)

Ṅc =
K∑
k=1

N c
k , Bck =

{
Nc

k+β
Ck

if N c
k > 0,

0 else,
(15)

where K is the current number of non-empty clusters, C is the
current number of non-empty codebook components and Ck is
the current number of non-empty cluster components in cluster
k. x is the vector of data points, z is the vector of cluster
labels, c̃ is the vector of cluster component labels, ċ is the
vector of codebook component labels, and π̃ = {π̃1, . . . , π̃K}.
{x}c denotes all data points assigned to the global codebook
component c. f(·) is a particular parametrized probability
density function. E.g., f({x}c, θc) is the likelihood of the data
subset {x}c given the cluster parameters θc, and f(xi, θc) is
the likelihood of the single data point xi given θc. 1(·) is an
indicator function that equals to 1 if the condition (·) holds
true and is 0 otherwise.

Given these probabilities, the sampling is as follows. Condi-
tioned on the labels in the current state, sample the parameters
of each codebook component, and all cluster and component
weights. Conditioned on all cluster and component parameters
in the current state, for each data point, sample a label for a
cluster, then sample a label for a component within the cluster.
The conditional distribution in (11) shows that the generative
process described further above prefers cluster components to
be neighbors in the feature space. During the model sampling
described in this and the following sections, the algorithm will
cause the clusters to be groups of nearby components so as to
maximize the likelihood of the data.

For our proposed algorithm, we lay out the Gibbs sampler as
follows. Given (7)-(13), the posterior distributions of weights,
labels and component parameters are expressed as

(π1, . . . , πK , πK+1) ∼ Dir(N1, . . . , NK , β), (16)

(π̃1
k, . . . , π̃

C
k , π̃

C+1
k) ∼ Dir(B1

k, . . . , B
C
k , α), (17)

(π̇1, . . . , π̇C , π̇C+1) ∼ Dir(Ṅ1, . . . , ṄC , α), (18)

θc
∝∼ f({x}c, θc)f(θc, λ), (19)

zi
∝∼

K∑
k=1

πk

(
C∑
c=1

πckf(xi, θc)

)
1zi=k, (20)

c̃ki
∝∼

C∑
c=1

πckf(xi, θc)1c̃ki=c, (21)

ċi = c̃zii, (22)

with

πK+1 = 1−
K∑
k=1

πk, (23)

π̃C+1
k = 1−

C∑
c=1

π̃ck, (24)

π̇C+1 = 1−
C∑
c=1

π̇c. (25)

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TASLP.2018.2852500

Copyright (c) 2018 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 6

××

×

×

×××

×

×

× ×

×

×

×
×

× ×

×
×

×

×

×
×

×
×

×

×
× ××

×
×××

×
×

× ×

×

×
×

× ×

×

×
×

×
×

×
×

×

×

×

×
× ×

× ×

×
×

×
×

×

× ××

×

×
×××

×××××××

××××××

× ×

×
×

×
××
× ×

×××
×

×
×
×

×

××

××
×

×

×××

×
××

×
×

×

××
×
× × ×

×
×

×

×××

×
×
××××

×
×

× ×
×

×
×

×

×
××

××

××
× ×

×××
××

×

×
×

××

× ×
×

×

××

×
×

×
×

×

×
×

×
×
×

×××
××
×

×××

××
×

××
×

×
××

×
×××

×× ××
×

×× ××

×
× ×

××
××

×
× ×

×
××

××
×

× ×

×

×
×× ×××

×

×× ×
×
×

×
×××

×
× ×

×

×

×
×
×

× ×
×

××

××
×

×××

×
×

×

× ×
×
××

×

×
×

×
×××

×
×

×
×

××

×
××

×
×

×× ××
×

×
×

××

××
×
×

×
×

××

×
××

×
×

×
×

×
××

×
×
×

×
×

×

×
××

×
×
××

×
×
××

×
×

×
××

× ×××
×
×

×

×
×

×
×

× ×
×

×××

×

× ×
×

×
×
×

×

××

×

×
×

×

×
×

×××

×

×
××

×

××
××

×
×
×

××
×

×

× ×
×
××

× ×
×

×
××

× ×
×

× ×
×

×
××× ××
×

×

×××

×

×
×

×
××

×
××

×

×

××
×

× ×

×
×

× ×

×

×

××

×

××××

×××

×
××

××

×
×

×
××

×

××

×
× ×

×
×

×

×
×

× ×

×
×××

××

×

× ×

× × ×
××

×
×

×

×
×

×
×

××

×
××

××

×××

×
×

(a)

××

×

×

×××

×

×

× ×

×

×

×
×
× ×

×
×

×

×

×
×

×
×

×
×

× ××

×
×××

×
×

× ×

×

×
×

× ×

×

×
×

×
×

×
×

×

×

×
×
× ×
× ×

×
×

×
×

×

× ××

×

×
×××

×××××××

××××××

× ×

×
×

×
××
× ×

×××
×

×
×
×

×

××

××
×

×

×××

×
××

×
×

×

××
×
× × × ×

×
×
×××

×
×
××××

×
×

× ×
×

×
×

×

×
××
××

××
× ×
×××
××

×

×
×

××

× ×
×

×

××

×
×
×
×

×

×
×

×
×
×

×××
××
×

×××

××
×
××

×
×
××

×
×××

×× ××
×

×× ××

×
× ×
××

××
×
× ×

×
××

××
×
× ×

×

×
×× ×××

×
×× ×

×
×

×
×××

×
× ×

×

×

×
×
×

× ×
×
××

××
×

×××

×
×

×

× ×
×
××
×

×
×

×
×××

×
×
×
×

××

×
××

×
×

×× ××
×

×
×
××

××
×
×

×
×

××
×

××

×
×

×
×

×
××

×
×
×

×
×
×

×
××

×
×
××

×
×
××

×
×
×
××

× ×
××
×
×

×

×
×

×
×

× ×
×

×××

×

× ×
×

×
×
×

×

××

×
×
×

×

×
×

×××

×

×
××

×

××
××
×

×
×

××
×

×

× ×
×
××

× ×
×

×
××

× ×
×

× ×
×

×
××× ××
×

×

×××

×

×
×

×
××

×
××

×

×

××
×

× ×

×
×

× ×

×

×

××

×

××××

×××

×
××

××

×
×
×

××

×

××

×
× ××

×
×

×
×

× ×

×
×××

××

×

× ×

× × ×
××

×
×

×
×
×

×
×

××

×
××

××

×××

×
×

(b)

××

×

×

×××

×

×

× ×

×

×

×
×

× ×

×
×

×

×

×
×

×
×

×

×
× ××

×
×××

×
×

× ×

×

×
×

× ×

×

×
×

×
×

×
×

×

×

×

×
× ×

× ×

×
×

×
×

×

× ××

×

×
×××

×××××××

××××××

× ×

×
×

×
××
× ×

×××
×

×
×
×

×

××

××
×

×

×××

×
××

×
×

×

××
×
× × ×

×
×

×

×××

×
×
××××

×
×

× ×
×

×
×

×

×
××

××

××
× ×

×××
××

×

×
×

××

× ×
×

×

××

×
×

×
×

×

×
×

×
×
×

×××
××
×

×××

××
×

××
×

×
××

×
×××

×× ××
×

×× ××

×
× ×

××
××

×
× ×

×
××

××
×

× ×

×

×
×× ×××

×

×× ×
×
×

×
×××

×
× ×

×

×

×
×
×

× ×
×

××

××
×

×××

×
×

×

× ×
×
××

×

×
×

×
×××

×
×

×
×

××

×
××

×
×

×× ××
×

×
×

××

××
×
×

×
×

××

×
××

×
×

×
×

×
××

×
×
×

×
×

×

×
××

×
×
××

×
×
××

×
×

×
××

× ×××
×
×

×

×
×

×
×

× ×
×

×××

×

× ×
×

×
×
×

×

××

×

×
×

×

×
×

×××

×

×
××

×

××
××

×
×
×

××
×

×

× ×
×
××

× ×
×

×
××

× ×
×

× ×
×

×
××× ××
×

×

×××

×

×
×

×
××

×
××

×

×

××
×

× ×

×
×

× ×

×

×

××

×

××××

×××

×
××

××

×
×

×
××

×

××

×
× ×

×
×

×

×
×

× ×

×
×××

××

×

× ×

× × ×
××

×
×

×

×
×

×
×

××

×
××

××

×××

×
×

(c)

Fig. 5. Illustration of the algorithm. Components are drawn with solid lines, sub-components with dotted lines. Only some exemplary sub-components
are illustrated. (a): Single component clusters inferred by a DPMM. This also corresponds to the codebook of the DPMoMM; (b). Clusters inferred by a
DPMoMM, where components of the same color belong to the same cluster; (c): The same DPMoMM after a component split in the upper right cluster and
a component merge in the lower right cluster. The original clusters are duplicated, and the bi-colored components are now shared across clusters.

component split

component merge

cluster split

cluster merge

cluster switch

Sec. V-A

Sec. V-B

Sec. VI-A

Sec. VI-B

Sec. VI-C

Fig. 6. Overview of the component moves (top) and cluster moves (bottom).

Note that the codebook component labels ċi are not sampled
explicitly but derived from the cluster component labels.
This is done to not break the assignment of data points to
components on the global level; a data point that is assigned
to component c within a cluster must also belong to component
c within the codebook for the split and merge sampling logic
to work properly.

For the split and merge sampling steps described in Sec-
tion V, we make use of auxiliary variables that are jointly
sampled with the regular variables. These auxiliary variables
describe the sub-components which augment all the regular
components. The sampled sub-components serve as good
split candidates for eventual component splits. The auxiliary
variables are sampled as follows:

(π̄lkc, π̄
r
kc) ∼ Dir(

N c,l
k + α

2
,
N c,r
k + α

2
), (26)

(˙̄πlc, ˙̄πrc) ∼ Dir(
Ṅ l
c + α

2
,
Ṅr
c + α

2
), (27)

θ̄lc
∝∼ f({x}lc, θ̄lc)f(θ̄lc, λ), (28)

θ̄rc
∝∼ f({x}rc , θ̄rc)f(θ̄rc , λ), (29)

c̄ki
∝∼
∑

s∈{l,r}

π̄sc̃ki
f(xi, θ̄

s
c̃ki

)1c̄ki=s, (30)

˙̄ci = c̄zii, (31)

with

N c,s
k =

N∑
i=1

1 zi=k
c̃ki=c
c̄ki=s

, Ṅs
c =

K∑
k=1

N c,s
k , (32)

where {x}lc and {x}rc denote the subsets of data points that
are assigned to the left and right sub-components of c. Note
that, analogous to (22), the labels ˙̄ci are not sampled explicitly
to not break the assignment of data points to sub-components
on the global level.

V. COMPONENT SPLIT AND MERGE SAMPLER

The split and merge moves for components are performed
on the global codebook level and therefore rely on the
codebook level variables that are jointly sampled with the
other model variables. The moves are designed for efficiency
by reducing the overhead of computational costs during the
MH step and enabling parallelization across components.
Components are equipped with auxiliary variables for sub-
components. The parameters of the sub-components are sam-
pled in the same fashion as the parameters for the regular
“parent” components. Conveniently, samples for the variables
of the regular components can be obtained by sampling the
auxiliary variables, since we draw from a joint parameter
space.

For performing split and merge moves for components with
an MH-MCMC method, candidate moves, or proposals are
required. Let O = {π̇, θ, ċ} be the set of component variables
and Ō = { ˙̄π, θ̄, ˙̄c} be the set of sub-component variables. We
propose a new set of random variables {Ô, ˆ̄O} for components
and sub-components and compute the Hastings ratio of the
form

HR =
p(Ô, x)p(ˆ̄O|x, ˆ̇c)
p(O, x)p(Ō|x, ċ)

q(O, Ō|Ô, ˆ̄O)

q(Ô, ˆ̄O|O, Ō)
, (33)

where q is called the proposal distribution and x denotes the
collection of all observations. The Hastings ratio weights the
state of the model before and after actually performing a move,

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TASLP.2018.2852500

Copyright (c) 2018 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 7

with the numerator standing for the post-move state and the
denominator the pre-move state. As can be seen requires the
Hastings ratio a reverse proposal to the proposed move. In the
case of proposing a split move, that would be a merge, and
vice versa. A proposed move is accepted with the probability

min(1, HR). (34)

A. Split Moves

The sub-components are utilized as good split move candi-
dates for the MH algorithm. Proposing a split move is typically
a non-trivial task. The construction of a prospective move is
necessary for an MH framework, where a proposal is weighed
against the status quo and accepted or rejected with a certain
probability. Theoretically, any kind of split proposal can lead to
an ergodic chain [21]. However, proposals with low probability
of being accepted unnecessarily increase the computational
load, since in case of a rejection, all previous computational
efforts are in vain. Iterative fitting of sub-components with the
help of the auxiliary variables introduced above circumvents
the risk of wasted computational time. The sub-components
are sampled jointly with the normal components. During
the MH-step, sub-components pose good proposals for split
moves. Moreover, split move computations can be parallelized
across components.

The proposal distribution for proposing a component split
move with the help of the auxiliary variables is defined as
follows. First, a split or merge move Q ∈ {Qcc-split, Q

m,n
c-merge}

is selected randomly. Qcc-split denotes a move for splitting
component c into m,n, and Qm,nc-merge is a merge of components
m,n into c. New sets of model variables are sampled as
follows, each conditioned on Q.

If Q = Qcc-split:

({ˆ̇c}m, {ˆ̇c}n) = splitc(ċ, ˙̄c), (35)

(ˆ̇πm, ˆ̇πn) = π̇c · (˙̄πlc, ˙̄πrc), (36)

(θ̂m, θ̂n) ∼ q(θ̂m, θ̂n|x, ˆ̇c, ˆ̄̇c), (37)

(ˆ̄Om,
ˆ̄On) ∼ p(ˆ̄Om,

ˆ̄On|x, ˆ̇c), (38)

with (˙̄πlc, ˙̄πrc) ∼ Dir(ˆ̇Nm,
ˆ̇Nn).

If Q = Qm,nc-merge:

{ˆ̇c}c = mergem,n(ċ), (39)
ˆ̇πc = π̇m + π̇n, (40)

θ̂c ∼ q(θ̂c|x, ˆ̇c, ˆ̄̇c), (41)
ˆ̄Oc ∼ p(ˆ̄Oc|x, ˆ̇c). (42)

The function splitc(·) splits the label assignments of compo-
nent c so that labels are assigned to the two new components
m and n, whereas the function mergem,n(·) does the reverse
move and merges the label assignments of components m and
n so that the respective data points are assigned to a new
component c. Sampling new parameters given the new label
assignments is done with the restricted Gibbs sampler. The
sub-component auxiliary variables are sampled jointly with
the variables for the regular components. This specific joint

sampler is also called deferred MH sampler [21] and conve-
niently sets q(ˆ̄O|x, Ô) = p(ˆ̄O|x, Ô). Components are marked
as “splittable” after the variables show signs of a burn-in,
which is the case when the likelihood f({x}lc, θlc)f({x}rc , θrc)
for all data points assigned to component c begins to oscillate
with the iterations. It can be shown [21] that the Hastings ratio
for a component split can be expressed as

HRc-split =
p(x|ˆ̇c)
p(x|ċ)

p(ˆ̇c)

p(ċ)

αΓ(ˆ̇Nm)Γ(ˆ̇Nn)

Γ(Ṅc)

=
f(x|ˆ̇c, θ̂m)f(x|ˆ̇c, θ̂n)

f(x|ċ, θc)
αΓ(ˆ̇Nm)Γ(ˆ̇Nn)

Γ(Nc)
. (43)

Splits of codebook components affect the clusters that
contain them as cluster components. All clusters that contain
a split component require an update of their variables. The
update step for clusters is subject to design, as there are
various ways to execute it. The naive approach is to split
the affected component within each cluster and update the
corresponding variables. We opted for an update scheme that
keeps the cluster sizes unchanged so as to separate codebook
growth and mixture of mixtures growth entirely.

After performing a component split, we proceed as follows.
All clusters that contain the respective component are dupli-
cated with a function

({ˆ̃ck}c, {ˆ̃ck′}c) = duplicateck(c̃, c̄), (44)

where c̄ is the vector of cluster sub-component labels.
The original cluster k keeps all unchanged components

and the “left” split result. The duplicate k′ also keeps all
unchanged components and the “right” split result. Data points
with zi = k that are assigned to the split component can
be reassigned so that the ones labeled with c̄ki = l belong
to cluster k, and data points with and c̄ki = r now belong
to cluster k′. Data points that are assigned to unchanged
components within the duplicated cluster however can not be
reassigned unambiguously. Because a data point can never
belong to two clusters at the same time, the duplication
automatically invalidates the labels zi and weights π. To re-
establish a valid state for the sampler, we re-sample all vari-
ables. Therefore, the split sampler for components is the last
step before the next iteration of the restricted Gibbs sampling
in our implementation, as can be seen in Algorithm 1. Fig. 5b
and 5c illustrate this step.

B. Merge Moves

The Hastings ratio for a proposed component merge also
requires a reverse proposal. Where there is only one way to
merge two sets of label assignments, there are 2Ṅc−1−1 ways
to split a set of labels into non-empty partitions. However,
since split proposals in this algorithm are determined by the
sub-components, the Hastings ratio will be zero if the labels
after a proposed reverse split do not match the pre-merge
labels. Therefore, the probability for accepting a component
merge rapidly diminishes with increasing number of assigned
data points. This behavior is approximated by automatically
rejecting all component merges.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TASLP.2018.2852500

Copyright (c) 2018 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 8

In order to mitigate for slow convergence in certain situa-
tions, a random merge sampler is introduced instead to propose
component merge moves whose reverse move is a random
split, in contrast to the sub-component based deterministic split
proposals. Two random components are sampled and a merge
proposal is computed. The reverse split proposal is generated
by a random partitioning of the data points assigned to the
respective component. The split proposal will generally have a
diminishing acceptance probability, whereas the corresponding
merge move is much more likely to be sensible. The Hastings
ratio for a random merge proposal is as follows:

HRc-merge =
p(x|ˆ̇c)
p(x|ċ)

p(ˆ̇c)

p(ċ)

Γ(α)Γ(Ṅm)Γ(Ṅn)

Γ(α+ ˆ̇Nc)Γ(α2)2

=
p(x|ˆ̇c)
p(x|ċ)

Γ(ˆ̇Nc)

αΓ(Ṅm)Γ(Ṅn)

Γ(α)Γ(Ṅm)Γ(Ṅn)

Γ(α+ ˆ̇Nc)Γ(α2)2

=
f(x|ˆ̇c, θ̂c)

f(x|ċ, θm)f(x|ċ, θn)

Γ(α)Γ(ˆ̇Nc)

αΓ(α+ ˆ̇Nc)Γ(α2)2
. (45)

A random split of component ˆ̇c is sampled for the reverse
split proposal, therefore the weights for the split results are
Dirichlet distributed.

Analogous to the split moves, all clusters that contain a
merged component need to be updated. Fortunately, the cluster
updates after component merges are much simpler. All clusters
that contained any of the two merged components replaces the
respective component with the merge result. Cluster labels zi
and weights π remain unchanged. Cluster component labels
c̃ki and weights π̃k are updated if cluster k contains both
components involved in the merge:

{ˆ̃ck}c = mergem,n(c̃k), (46)
ˆ̃πck = ˆ̃πmk + ˆ̃πnk . (47)

New values for cluster sub-component auxiliary variables
Ōk = {π̄k, c̄k} are sampled for all clusters to be updated
according to

ˆ̄Ock ∼ p(ˆ̄Ock|x, ˆ̃ck). (48)

Again, Fig. 5b and 5c illustrate the outcome of this step.

VI. CLUSTER SPLIT, MERGE AND SWITCH SAMPLER

Cluster split, merge and switch moves modify the assign-
ments of components to clusters. A split move splits a cluster –
which is a mixture of components – into two smaller mixtures.
A merge move merges two clusters into one larger mixture.
A switch move moves one component from one cluster to
another cluster. In all these cases the components themselves,
i.e., their parameters, are not modified. Cluster moves rely on
the local, cluster dependent component parameters to produce
good move proposals for a MH step. Cluster moves are
efficient because they can be easily computed based on the
existing data partitions.

Let M = {π, π̃, z, c̃} be the set of cluster and cluster
component variables and M̄ = {π̄, c̄} be the set of cluster sub-
component variables. A new set of random variables {M̂, ˆ̄M}

is proposed by any of the possible moves. The Hastings ratio
for a move is of the form

HR =
p(M̂, x)p(ˆ̄M |x, ˆ̃c)
p(M,x)p(M̄ |x, c̃)

q(M,M̄ |M̂, ˆ̄M)

q(M̂, ˆ̄M |M,M̄)
. (49)

As before, a proposed move is accepted with the probability
defined in (34). Note that the component parameters θc are
not subject to updates during cluster moves. That is because
neither assignments of data points to codebook components
nor codebook component parameters are modified.

A. Split Moves
Analogous to component splits, where good split candidates

are provided by auxiliary sub-components, we resort to the
cluster components themselves as support for producing good
proposals. To generate a good split proposal for cluster k,
we consider all 2Ck−1 − 1 possible non-empty partitions into
two separate mixtures and propose the most promising split,
according to the Hastings ratio.

The computational overhead grows with the number of
components in a cluster. For instance, a cluster with 16 compo-
nents can be partitioned into two clusters in 32.767 different
ways, which would require a same amount of computations
for Hastings ratios. In order to control the expected maximum
computational load for splits, we introduce a parameter cmax
into the algorithm which caps the maximum size of clusters.
Setting this parameter accordingly prevents clusters to grow
too large. By setting the value arbitrarily high, mixtures may
grow to any size. To maintain computation feasible for very
large clusters as well, we could also limit the considered
partitions to a random subset of possibilities smaller than the
Stirling number above.

The cluster split sampler’s design essentially follows the
considerations of the component split sampler in Section V-A.
As is the case for components, we can also parallelize the
cluster split move computations. The proposal distribution for
a cluster split move is defined as follows. First, we randomly
select a split move or a merge move Q ∈ {Qmk-split, Q

a,b
k-merge},

where Qmk-split denotes a move for splitting cluster m into a, b,
and Qa,bk-merge is a merge of clusters a, b into m. New sets of
model variables are sampled as follows, conditioned on Q.

If Q = Qmk-split:

({ẑ}a, {ẑ}b) = splitm(z, c̃), (50)

(π̂a, π̂b) = πm · (πam, πbm), (51)

(ˆ̃π1
a, . . . , ˆ̃π

C
a) ∼ Dir(B̂1

a, . . . , B̂
C
a), (52)

(ˆ̃π1
b , . . . , ˆ̃π

C
b) ∼ Dir(B̂1

b , . . . , B̂
C
b), (53)

with (πam, π
b
n) ∼ Dir(N̂a

m, N̂
b
m).

If Q = Qa,bk-merge:

{ẑ}m = mergea,b(z, c̃), (54)

π̂m = πa + πb, (55)

(ˆ̃π1
m, . . . , ˆ̃π

C
m) ∼ Dir(B̂1

m, . . . , B̂
C
m), (56)

with

B̂ck =

{
N̂c

k+β
Ck

if N̂ c
k > 0,

0 else.
(57)

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TASLP.2018.2852500

Copyright (c) 2018 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 9

The function splitm(·) splits the label assignments of cluster
m so that labels are assigned to the two new clusters a
and b, whereas the function mergea,b(·) does the reverse
move and merges the label assignments of clusters a and
b so that the respective data points are assigned to a new
cluster m. The component labels c̃ki do not require an update
since component IDs are valid globally. To promote a more
stable splitting behavior, clusters are marked “splittable” if
all components within the respective clusters are also marked
“splittable” (see Section V-A). We express the Hastings ratio
for a cluster split proposal as follows:

HRk-split =
p(x|ẑ)
p(x|c̃)

p(ẑ)

p(z)

Γ(β +Nm)Γ(β N̂a

Nm
)Γ(β N̂b

Nm
)

Γ(β)Γ(N̂a)Γ(N̂b)

=
p(x|ẑ)
p(x|c̃)

βΓ(N̂a)Γ(N̂b)

Γ(Nm)

Γ(β +Nm)Γ(β N̂a

Nm
)Γ(β N̂b

Nm
)

Γ(β)Γ(N̂a)Γ(N̂b)

=
f(x|ˆ̃c, Θ̂a)f(x|ˆ̃c, Θ̂b)

f(x|c̃,Θm)

βΓ(β +Nm)Γ(β N̂a

Nm
)Γ(β N̂b

Nm
)

Γ(Nm)Γ(β)
,

(58)

with Θ̂k = {π̂k, {θ}k}, and {θ}k being the parameters of all
codebook components that are also cluster components in k.

B. Merge Moves

For a prospective merge, two random clusters are sampled
and a merge proposal is computed. A cluster merge is only
permitted if the component size of the merge result is not
exceeding cmax. The reverse proposal is a random partition of
the cluster components into two separate mixtures. Analogous
to the cluster split proposal above, the Hastings ratio for a
cluster merge proposal is expressed as follows:

HRk-merge =
f(x|ẑ, Θ̂m)

f(x|z,Θa)f(x|z,Θb)

× Γ(Na +Nb)Γ(β)

βΓ(β +Na +Nb)Γ(β Na

N̂m
)Γ(β Nb

N̂m
)
. (59)

As mentioned earlier, (11) suggests that the likelihood of
a cluster is higher if the components of the respective cluster
are located closer to each other in the feature space. During
inference, β controls the importance of proximity for grouping
nearby components into clusters. The Hastings ratios (58) and
(59) suggest that with larger β the probability of accepting
a split proposal becomes higher, and the probability of the
reverse merge move becomes smaller.

C. Switch Moves

The component split and merge moves (see Section V)
produce clusters with shared components due to the specifics
of the cluster update steps. After a component split, all
clusters that contain the split component are duplicated. After
a component merge, all clusters who contained the previous
components now share the new component (unless a cluster
already contained both original components).

The number of clusters that share the same component
can grow very quickly if the algorithm decides to perform

many component splits. Another factor is the maximal cluster
size cmax. The larger clusters can get, the more likely they
duplicate due to eventual component splits. In cases where a
large amount of clusters overlap (that is, many clusters share
the same components) and therefore cover the same region in
the feature space, the algorithm can suffer from convergence
issues due to high ambiguity during label sampling.

To mitigate this issue, we developed a switch move sampler
that supports algorithm convergence. A switch move is an
operation, where all data points that are assigned to component
a in cluster m are re-assigned to the same component a in
cluster n. Given a pair of clusters, we consider a switch move
for a in both directions and propose the direction which is
most promising, according to the Hastings ratio. Switch move
proposals are sampled by a random switch sampler, where
for a prospective split, two random clusters are sampled and
the proposal is computed. New sets of model variables are
sampled as follows:

({ẑ}m, {ẑ}n, {ˆ̃c}m, {ˆ̃c}n) = switcham,n(z, c̃), (60)

(π̂m, π̂n) = (πm−πmπ̃am, πn + πmπ̃
a
m), (61)

(ˆ̃π1
m, . . . , ˆ̃π

C
m) ∼ Dir(B̂1

m, . . . , B̂
C
m), (62)

(ˆ̃π1
n, . . . , ˆ̃π

C
n) ∼ Dir(B̂1

n, . . . , B̂
C
n). (63)

The function switcham,n(·) re-assigns all data points in
component a of cluster m to component a of cluster n by
updating the component labels c̃ki and the cluster labels zi.

A switch move can be interpreted as splitting one compo-
nent a off of a cluster m and merging a single-component
cluster with a cluster n that already contains a as component.
The Hastings ratio for a switch proposal is therefore expressed
as follows:

HRswitch

=
p(x|ẑ)
p(x|z)

βΓ(Na
m)Γ(N̂m)Γ(Nn)

Γ(Nm)Γ(Nn)

Γ(β +Nm)Γ(β +Nn)

Γ(β)

×
Γ(β

Na
m

Nm+Nn
)Γ(β N̂m

Nm+Nn
)Γ(β Nn

Nm+Nn
)

Γ(Na
m)Γ(N̂m)Γ(Nn)

× Γ(N̂m)Γ(N̂n)

βΓ(Na
m)Γ(N̂m)Γ(Nn)

Γ(β)

Γ(β + N̂m)Γ(β + N̂n)

× Γ(Na
m)Γ(N̂m)Γ(Nn)

Γ(β N̂n

Nm+Nn
)Γ(β N̂m

Nm+Nn
)

=
p(x|ẑ)
p(x|z)

Γ(N̂m)Γ(N̂n)

Γ(Nm)Γ(Nn)

Γ(β +Nm)Γ(β +Nn)

Γ(β + N̂m)Γ(β + N̂n)

×
Γ(β

Na
m

Nm+Nn
)Γ(β Nn

Nm+Nn
)

Γ(β N̂n

Nm+Nn
)

. (64)

The reverse move requires to split the data points that
are assigned to component a in cluster n and assign these
data points to cluster m. For the same reasons than in the
case of normal component merges (see Section V-B), the
probability for the reverse proposal quickly approaches zero
with increasing data size and the reverse move will be rejected.
We approximate this behavior by automatically rejecting all
reverse switch moves.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TASLP.2018.2852500

Copyright (c) 2018 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 10

VII. USE CASE: UNSUPERVISED SUBWORD MODELING

In the following section, we will demonstrate the benefits
of our DPMoMM sampler on real speech data in the use case
of unsupervised subword modeling.

The objective of unsupervised subword modeling is to
construct a representation of speech sounds that is robust
to variation within and across speakers and that maximizes
class discrimination [8]. Previous work of Chen et al. [10],
[11] and ourselves [12]–[14] already achieved good results
using a DPMM sampler to tackle this task in the context
of the zero resource speech challenges [8], [9]. The general
procedure is to cluster speech feature vectors into classes
by sampling a Dirichlet process Gaussian mixture model
(DPGMM) [5], which is an infinite Gaussian mixture model
(IGMM) [3]. Speech would then be represented by frame-
level posteriorgrams, for instance, or simply by a sequence of
textual class labels, where the classes are the components in
the sampled mixture.

The official evaluation metric for the zero resource speech
challenge is the minimal pair ABX phone discriminability
between phonemic minimal pairs [33]. Another popular metric
for evaluating speech representations especially with respect
to information and sequentiality is the normalized mutual
information (NMI). We use both metrics to evaluate the output
of our sampler in the following section. The details of the
evaluation measures are explained in this section.

A. ABX Phone Discriminability

Let A and X be two speech representations of sound
categories a, and B a speech representation of sound category
b. The ABX phone discrimination error for categories a and
b is

c(a, b) = 1− 1

|a| · |b| · (|a| − 1)

∑
A∈a

∑
B∈b

∑
X∈a\{A}

(1d(A,X)<d(B,X) +
1

2
1d(A,X)=d(B,X)) (65)

where d(·, ·) is the dynamic time warping (DTW) distance
defined over sequences of frame based speech representations
(posteriorgrams, textual labels, etc.). Any proper distance mea-
sure can be used for computing the DTW distance. We evaluate
two types of representations, textual labels and posteriorgrams.
For the comparison of label sequences, we use the Levenshtein
distance (ABXls). For evaluating posteriorgram sequences, we
use the Kullback-Leibler divergence (ABXkl).

We collect discrimination errors for all possible pairings of
phone triplets and average them over all contexts for a given
pair of central phones, over all pairs of central phones and
over all speakers.

B. Symmetric Normalized Mutual Information

The mutual information of two random variables is a mea-
sure for mutual dependence. Normalized mutual information
is defined as

NMI(X;Y) =
H(X)−H(X|Y)

H(X)
(66)

and gives a measure of how good X can be predicted, given
the knowledge about Y . In our use case, X corresponds to
the random variable over the “true” distribution of sounds,
approximated by the sequence of phones for any target data
set. Y is the random variable over the estimated distribution
of sounds, given for instance by the label output of a DPMM
sampler for the same data. H(X) is the entropy of the
true transcription and is used as normalizing factor in the
denominator.

NMI(·) is not symmetric, which makes the comparison of
random variables that are defined over very different inventory
sizes difficult. To guarantee a fair comparison, we suggest to
use a symmetric NMI [34] of the form

NMImax(X;Y) =
H(X)−H(X|Y)

max(H(X), H(Y))
(67)

With this, we have a fair measure of correlation at hand for
the frame-level phone transcriptions of any target data and the
frame-level label output of a DPMM or DPMoMM.

VIII. EXPERIMENTAL EVALUATION

A. Data

We use two separate data sets known from the zero resource
speech challenge [8]. Because the sets vary in size, language
and speech quality, comparable experimental results should
be a good indicator for the robustness of our sampler. One set
contains spontaneous, conversational interview-style American
English (4h 59min), extracted from the Buckeye corpus [35].
The other set contains carefully uttered, read speech in Xit-
songa (2h 29min), a southern African Bantu language. The
latter is an excerpt of the NCHLT corpus [36]. The references
for English and Xitsonga contain 165k and 72k phone-triplet
annotations for 39 and 53 unique center phones, respectively.

From each of the two data sets, we extract two sets of speech
observations. Specifically, from each data set, we extract two
types of frame-wise feature vectors using the Kaldi speech
recognition toolkit [37]. We can use about 1.7M frames for En-
glish and 0.8M frames for Xitsonga as input to the DPMM and
DPMoMM samplers. The frame width is 25 milliseconds and
the frame shift is 10 milliseconds. The first type of features is
perceptual linear predictive (PLP) speech feature vectors [38]
with first and second order derivatives (PLP+∆+∆∆). The
second type is stacked PLP vectors that were transformed
unsupervisedly by linear discriminant analysis (PLP+LDA)
with the method described in [13]. LDA is a commonly used
in speech recognition to optimize speech features towards
discriminability [39]. We conduct experiments for each of the
two input feature vector types. Overall, we conduct all our
experiments four times, once for each data set and feature
vector type.

B. Procedure

We use our DPMoMM sampler to cluster a set of speech
feature vectors into classes. In our use case, our algorithm
jointly samples Gaussian mixtures as well as a global code-
book of Gaussians. This codebook is precisely what the
original DPMM sampler of Chang et al. [21] would infer. Due

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TASLP.2018.2852500

Copyright (c) 2018 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

JO
U

R
N

A
L

O
F

L ATE X
C

L
A

SS
FIL

E
S,V

O
L

.14,N
O

.8,A
U

G
U

ST
2015

11

2

3

4

8

50 100 200 300 400

c m
ax

β

0,09-0,1

0,08-0,09

0,07-0,08

0,06-0,07

0,05-0,06

0,04-0,05

0,03-0,04

0,02-0,03

0,01-0,02

0-0,01

-0,01-0

(a)

2

3

4

8

50 100 200 300 400

c m
ax

β

0,12-0,135

0,105-0,12

0,09-0,105

0,075-0,09

0,06-0,075

0,045-0,06

0,03-0,045

0,015-0,03

0-0,015

(b)

2

3

4

8

50 100 200 300 400

c m
ax

β

0,08-0,09

0,07-0,08

0,06-0,07

0,05-0,06

0,04-0,05

0,03-0,04

0,02-0,03

0,01-0,02

0-0,01

-0,01-0

(c)

2

3

4

8

50 100 200 300 400

c m
ax

β

0,24-0,27

0,21-0,24

0,18-0,21

0,15-0,18

0,12-0,15

0,09-0,12

0,06-0,09

0,03-0,06

0-0,03

(d)

2

3

4

8

50 100 200 300 400

c m
ax

β

0,9-1

0,8-0,9

0,7-0,8

0,6-0,7

0,5-0,6

0,4-0,5

0,3-0,4

0,2-0,3

0,1-0,2

0-0,1

(e)

2

3

4

8

50 100 200 300 400

c m
ax

β

0,05-0,06

0,04-0,05

0,03-0,04

0,02-0,03

0,01-0,02

0-0,01

-0,01-0

(f)

2

3

4

8

50 100 200 300 400

c m
ax

β

0,12-0,135

0,105-0,12

0,09-0,105

0,075-0,09

0,06-0,075

0,045-0,06

0,03-0,045

0,015-0,03

0-0,015

(g)

2

3

4

8

50 100 200 300 400

c m
ax

β

0,07-0,08

0,06-0,07

0,05-0,06

0,04-0,05

0,03-0,04

0,02-0,03

0,01-0,02

0-0,01

(h)

2

3

4

8

50 100 200 300 400

c m
ax

β

0,18-0,21

0,15-0,18

0,12-0,15

0,09-0,12

0,06-0,09

0,03-0,06

0-0,03

(i)

2

3

4

8

50 100 200 300 400

c m
ax

β

0,9-1

0,8-0,9

0,7-0,8

0,6-0,7

0,5-0,6

0,4-0,5

0,3-0,4

0,2-0,3

0,1-0,2

0-0,1

(j)
Fig. 7. Relative performance improvements when interpreting clusters instead of codebook components as acoustic classes. The inputs are 39 dimensional PLP+∆+∆∆ speech features. (a)-(e): Results on Xitsonga;
(f)-(j): Results on English; (a),(f) Relative improvement of NMImax, (b),(g) Relative improvement of ABXls, (c),(h) Relative improvement of ABXkl, (d),(i) Relative unit length increase, (e),(j) Cluster to component
amount ratio. Paired t-tests on all ABX task outputs yield p� 0.0001.

2

3

4

8

-0,0100,010,020,030,040,050,060,070,080,09

50 100 200 300 400

c m
ax

β

0,08-0,09

0,07-0,08

0,06-0,07

0,05-0,06

0,04-0,05

0,03-0,04

0,02-0,03

0,01-0,02

0-0,01

-0,01-0

(a)

2

3

4

8

-0,0100,010,020,030,040,050,060,070,08

50 100 200 300 400

c m
ax

β

0,07-0,08

0,06-0,07

0,05-0,06

0,04-0,05

0,03-0,04

0,02-0,03

0,01-0,02

0-0,01

-0,01-0

(b)

2

3

4

8

-0,0100,010,020,030,040,050,06

50 100 200 300 400

c m
ax

β

0,05-0,06

0,04-0,05

0,03-0,04

0,02-0,03

0,01-0,02

0-0,01

-0,01-0

(c)

2

3

4

8

00,030,060,090,120,150,180,210,240,270,30,33

50 100 200 300 400

c m
ax

β

0,3-0,33

0,27-0,3

0,24-0,27

0,21-0,24

0,18-0,21

0,15-0,18

0,12-0,15

0,09-0,12

0,06-0,09

0,03-0,06

0-0,03

(d)

2

3

4

8

00,10,20,30,40,50,60,70,80,91

50 100 200 300 400

c m
ax

β

0,9-1

0,8-0,9

0,7-0,8

0,6-0,7

0,5-0,6

0,4-0,5

0,3-0,4

0,2-0,3

0,1-0,2

0-0,1

(e)

2

3

4

8

-0,0100,010,020,030,040,050,06

50 100 200 300 400

c m
ax

β

0,05-0,06

0,04-0,05

0,03-0,04

0,02-0,03

0,01-0,02

0-0,01

-0,01-0

(f)

2

3

4

8

-0,0100,010,020,030,040,050,060,070,080,090,1

50 100 200 300 400

c m
ax

β

0,09-0,1

0,08-0,09

0,07-0,08

0,06-0,07

0,05-0,06

0,04-0,05

0,03-0,04

0,02-0,03

0,01-0,02

0-0,01

-0,01-0

(g)

2

3

4

8

-0,0100,010,02

50 100 200 300 400

c m
ax

β

0,01-0,02

0-0,01

-0,01-0

(h)

2

3

4

8

00,030,060,090,120,150,180,210,240,27

50 100 200 300 400

c m
ax

β

0,24-0,27

0,21-0,24

0,18-0,21

0,15-0,18

0,12-0,15

0,09-0,12

0,06-0,09

0,03-0,06

0-0,03

(i)

2

3

4

8

00,10,20,30,40,50,60,70,80,91

50 100 200 300 400

c m
ax

β

0,9-1

0,8-0,9

0,7-0,8

0,6-0,7

0,5-0,6

0,4-0,5

0,3-0,4

0,2-0,3

0,1-0,2

0-0,1

(j)
Fig. 8. Relative performance improvements when interpreting clusters instead of codebook components as acoustic classes. The inputs are 20 dimensional PLP+LDA speech features. (a)-(e): Results on Xitsonga;
(f)-(j): Results on English; (a),(f) Relative improvement of NMImax, (b),(g) Relative improvement of ABXls, (c),(h) Relative improvement of ABXkl, (d),(i) Relative unit length increase, (e),(j) Cluster to component
amount ratio. Paired t-tests on all ABX task outputs yield p� 0.0001.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TASLP.2018.2852500

Copyright (c) 2018 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 12

3

19

8
1518 16

53

12

67

9

0

10

20

30

40

50

60

70

1-4 5-8

N
u

m
b

er
 o

f
cl

u
st

er
s

Components in cluster

β=50 β=100 β=200 β=300 β=400

Fig. 9. Distribution of cluster sizes by the example of sampling Xitsonga
data for 500 iterations. Higher β values lead to more clusters with fewer
components. The same behavior was observed on the English data set.

to the joint sampling we can directly compare the modeling
quality of inferred Gaussian mixtures and the single Gaussians,
or in other words the DPMoMM and the codebook, i.e., a
DPGMM/IGMM.

After sampling the DPMoMM, the data can be represented
by frame-wise labels. We use the symmetric NMI to compare
the quality of label sequences. For that, we compute the
symmetric NMI once using the labels for clusters and once
using the labels for codebook components and calculate the
relative improvement. In the same way, we also compare the
ABX phone discriminability using the frame-wise labels as
representation and calculate the relative improvement from
using cluster labels instead of codebook component labels.

The ABX phone discriminability can also be computed
for posteriorgrams as representation for the data. In that
case, either a posteriorgram over clusters or over codebook
components is computed for each speech frame. The two kinds
of posteriorgrams are scored and compared to get a value
for the relative improvement by using cluster posteriorgrams
instead of component posteriorgrams.

We run every sampling for 1000 iterations. Each sampling
step is parallelized across 30 threads. For all conducted ex-
periments we sample each model 5 times, score each output
and average the results. It is known that the influence of α
diminishes in very high data regimes [21]. Chen et al. [10]
conducted an experience study and confirmed that the value of
α does not impact the outcome of sampling a DPMM given
high dimensional speech feature vectors. Their samples are
extracted from the same data sets that we use in our work
and are similar in nature. In several informal experiments in
connection with earlier work we also observed this behavior
and therefore set α = 1 for all our experiments.

C. The Impact of β

We compare the use of clusters versus using the codebook
components as model for the underlying data. The latter
corresponds to output that the original sampler of Chang et
al. [21] produces. We test on both data sets, English and
Xitsonga, and use either PLP+LDA features or PLP+∆+∆∆
as input. Fig. 7 and 8 show the relative improvements that our
proposed method achieved as contour plots.

We observed that using a very small value for the mixture
concentration parameter β tends to result in few sampled

#clusters #components likelihood

0 100 200 300 400 500

-2,86

-2,84

-2,81

-2,79

-2,76

-2,74

-2,71

-2,69

-2,66

-2,64

0

50

100

150

200

250

Lo
g

lik
el

ih
o

o
d

 (
×1

0
7
)

#C
o

m
p

o
n

en
ts

Iterations

(a)

0 100 200 300 400 500

-2,86

-2,84

-2,81

-2,79

-2,76

-2,74

-2,71

-2,69

-2,66

-2,64

0

50

100

150

200

250

Lo
g

lik
el

ih
o

o
d

 (
×1

0
7
)

#C
o

m
p

o
n

en
ts

Iterations

(b)

Fig. 10. Sampling behavior on Xitsonga data when (a) not using switch
moves for cluster components, and (b) using switch moves. Without switch
moves, the number of clusters might grow fast, and convergence is slow. With
switch moves, this issue does not occur. The same behavior was also observed
on the English data set.

mixtures that each contain a maximum amount of components.
In other words, the sampler is over-confident in grouping com-
ponents together based on minimal proximity. In contrast to
synthetic data, real data tends to be comprised of overlapping
classes. The aggressive grouping is one of the consequences
of this fact. With larger β, we observed that fewer components
are grouped together to form mixtures, which results in a
larger number of clusters that contain fewer components.
Fig. 9 exemplarily plots the distribution of cluster sizes for the
Xitsonga data with different values for β. Fig. 7e, 7j and 8e, 8j
show that the number of clusters approximates the number of
codebook components as β increases.

The behavior of the cluster inference dependent on β is
best explained by analyzing the sampling of weights during
restricted Gibbs sampling and the Hastings ratio for cluster
split and merge moves. According to (4)-(5), (7)-(8) and (16)-
(17), the distributions of cluster and the cluster component
weights are governed by β, whose impact is twofold. Its
value determines the probability mass that is reserved for
generating a new cluster by the split sampler, and it regulates
the weights of the cluster components. A large β will motivate
the generation of more clusters and cause cluster component
weights to take on more similar values, therefore keeping
more cluster components alive for a longer time. This in
turn encourages more cluster splits, which is also reflected
in the Hastings ratios for cluster moves. With larger β, (58)
takes on a larger value, i.e., the probability of accepting a
split proposal becomes higher, and (59) takes on a smaller
value, i.e., the probability of the reverse merge move becomes
smaller. Intuitively, the effect is that only closely related
components remain grouped in form of a cluster, and less
dense clusters are likely to be split to form new clusters with
less components. The resulting DPMoMM tends to be made
up by many clusters with mostly low amounts of components,
and only few clusters with higher amounts of components, if
the data suggests so. A small value for β has the exact opposite
effect and a sampled DPMoMM will have few clusters with
mostly large amounts of cluster components.

D. Convergence and the Switch Sampler

During our experiments, we found that under certain con-
ditions, the number of clusters can grow rapidly and stay

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TASLP.2018.2852500

Copyright (c) 2018 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 13

TABLE I
PERFORMANCE COMPARISON OF STANDARD DPMMS AND PROPOSED DPMOMMS APPLIED TO BOTH DATA SETS.

PAIRED T-TESTS ON ALL ABX TASK OUTPUTS YIELD p� 0.0001.

Features Sampler Clusters modeled by β cmax K C K/C NMImax ABXls ABXkl avg. seg. len.
Results for the Xitsonga data set

PLP+∆+∆∆ DPMoMM Single Gaussians - - 154 - 1.0 0.275 21.31% 14.03% 2.16 frames
Gaussian Mixtures 200 8 114 154 0.74 0.302 18.44% 12% 2.76 frames

PLP+LDA DPMoMM Single Gaussians - - 142 - 1.0 0.283 20.29% 13.15% 2.22 frames
Gaussian Mixtures 400 8 120 142 0.848 0.31 18.74% 12.47% 2.68 frames

PLP+fMLLR
DPMM [13] Single Gaussians - - 139 - - - - 12.2% -
DPMoMM Single Gaussians - - 144 - 1.0 0.293 19.33% 12.44% 2.29 frames
DPMoMM Gaussian Mixtures 400 8 126 144 0.876 0.315 18.06% 11.93% 2.7 frames

Results for the English data set

PLP+∆+∆∆ DPMoMM Single Gaussians - - 232 - 1.0 0.232 28.85% 18.99% 2.06 frames
Gaussian Mixtures 100 4 110 232 0.473 0.241 25.65% 17.61% 2.37 frames

PLP+LDA DPMoMM Single Gaussians - - 152 - 1.0 0.248 25.88% 16.18% 2.33 frames
Gaussian Mixtures 300 4 98 152 0.649 0.262 23.74% 15.99% 2.73 frames

PLP+fMLLR
DPMM [13] Single Gaussians - - 156 - - - - 15.7% -
DPMoMM Single Gaussians - - 157 - 1.0 0.253 25.28% 15.84% 2.31 frames
DPMoMM Gaussian Mixtures 300 4 93 157 0.591 0.266 23.28% 15.47% 2.64 frames

large for a long stretch of iterations. This is the case when
the allowed cluster size cmax is large and β is set to facilitate
many clusters with a large number of components. Under such
circumstances, the duplication of clusters during the cluster
update step in the component split sampler (see Section V-A)
becomes more likely and more frequent, especially if multiple
components in the same cluster are subject to splitting.

We developed the switch move sampler to mitigate this
issue and support convergence. Fig. 10 exemplarily shows the
sampling behavior of our DPMoMM sampler on Xitsonga data
with and without using switch moves for cluster components.
As can be seen, the number of clusters might grow fast without
switch moves, and convergence is slow. With switch moves,
however, this issue does not occur. The same behavior was
observable for both of our data sets. Without switch moves, a
considerably larger amount of time would be required by the
sampler to converge. With switch moves, convergence is fast.

E. Use Case Performance

Fig. 7a, 7f and 8a, 8f show the relative improvements
of cluster label sequences over codebook component label
sequences on the symmetric NMI metric. The best results
are always achieved by allowing larger clusters. The optimal
values for β seems to lie within a certain range. This range
is the same for our two data sets, English and Xitsonga,
but it seems to be input feature dependent. Sampling from
PLP+∆+∆∆ features benefits from a β value between 100
and 300, where sampling from PLP+LDA features might even
benefit from a β larger than 400, which during our experiments
was the highest value that we tested. These observations
transfer to the evaluation of cluster and component labels
with the ABX phone discriminability test, as can be seen in
Fig. 7b, 7g and 8b, 8g.

Interestingly, we observed considerable performance im-
provements when we extracted cluster posteriorgrams and
compared them to component posteriorgrams with the ABX
discriminability test, especially with PLP+∆+∆∆ as input
(see Fig. 7c, 7h and 8c, 8h). This is noteworthy because despite
the much lower dimensionality of cluster posteriorgrams,

TABLE II
PERFORMANCE COMPARISON OF ACOUSTIC UNIT RECOGNIZERS TRAINED
ON DPMM AND DPMOMM LABELS. PAIRED T-TESTS ON ALL ABX TASK

OUTPUTS YIELD p� 0.0001.

Labels of Units NMImax ABXls ABXkl avg. seg. len.
Results for the Xitsonga data set

Gaussians 144 0.319 18.06% 12.09% 2.59 frames
Mixtures 126 0.327 16.45% 11.17% 2.95 frames

Results for the English data set
Gaussians 157 0.263 24.48% 16.5% 2.77 frames
Mixtures 93 0.278 22.21% 15.76% 3.12 frames

performance not just equals, but even increases, compared
to the component posteriorgrams. This is an indicator that
the clusters inferred by our proposed DPMoMM are not
just accumulations of related classes, but in fact a better
approximation to the real underlying multimodal distributions
of more complex classes in the data.

The number of inferred clusters does not necessarily cor-
relate with the average length of sample sequences that use
the clusters as classes. Fig. 7d, 7i and 8d, 8i show that it is
the maximum number of allowed components per cluster cmax
that governs the average unit length, rather than β. The average
unit lengths is higher if the clusters are allowed to grow larger.
A too large β somewhat slows down this trend. The increased
unit lengths for larger clusters is an indicator that the grouping
of components into mixtures allows the mixture of mixtures
model to capture wider acoustic phenomena, an ability that is
highly valued in unsupervised subword modeling.

Overall, our results as depicted in Fig. 7 and 8 reveal that
with some tuning of β and cmax, relative improvements on
all evaluation metrics can be as high as 13.5%. The contour
plots also suggest that larger mixtures might result in even
larger improvements. It is a strong support for our initial
motivation for this work that good results can be achieved
with settings that lead to the inference of as little as 27% of
the amount of clusters than there are codebook components,
which considerably reduces model complexity. At the same
time, the found clusters can serve as models with average
durations of sound instances that are up to 31% longer. Table I

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TASLP.2018.2852500

Copyright (c) 2018 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 14

compares the performance of standard DPMMs and good
DPMoMMs that we sampled in absolute numbers. During
our experiments we sampled models that are best on one
metric, but sub-optimal on others. The exemplary DPMoMMs
in Table I perform reasonably well on all evaluation metrics
and give a good impression of what can be expected if the
parameters are tuned reasonably. Note that we did not yet
exhaust the exploration of the hyper-parameter space. We
expect that even better results are possible with larger values
for β and especially cmax.

F. State-of-the-art Zero Resource Challenge Performance

In [13], we transformed PLP features with LDA, maximum
likelihood linear transforms (MLLT) [40], [41] and feature-
space maximum likelihood linear regression (fMLLR) [42],
[43] (denoted as “PLP+fMLLR”) – a method commonly used
for speaker adaptation – to improve the input to a DPMM
sampler. The extracted posteriorgrams achieved the to-date
best results on the zero resource speech challenge 2015
Xitsonga and English data sets.

We repeated these experiments with our novel sampler,
using the hyper-parameters that we tuned for the PLP+LDA
features. Table I compares the previously published perfor-
mance of [13] with using a DPMoMM for sampling instead.
We could infer more compact models having fewer clusters
and at the same time reduce the discriminability errors – the
official evaluation method of the challenge – even further, thus
establishing a new state-of-the-art with our proposed method.

G. Acoustic Unit Recognition Performance

In [19], we conducted experiments where the output of
a DPMM sampler served as labels for training a context-
dependent “triphone” acoustic unit recognizer. In the proposed
framework, the DPMM defines the number and distributions
of units dynamically and without any prior supervision, given
only extracted speech observations, i.e., frame-based feature
vectors. We trained an HMM acoustic model and n-gram lan-
guage model using collapsed DPMM component labels. The
resulting DPMM-HMM acoustic unit recognizer was evaluated
by solving the ABX sound class discriminability task. Our
results showed that it is possible to build a DPMM-HMM
acoustic unit recognizer that is competitive with supervisedly
trained phone recognizers.

For this work, we conducted experiments with a compa-
rable setup, but using the DPMoMM for subword modeling
instead. The labels that we used come from the models
that were inferred from PLP+fMLLR-transformed features
as listed in Table I. We trained language-dependent acoustic
unit recognizers given the DPMoMM cluster labels. We then
compared the performance to recognizers that were trained on
the DPMoMM component labels instead, which correspond
to standard DPMM labels. Since we sampled each DPMoMM
five times, we also trained each recognizer five times, scored
five times and averaged the results. In addition to the ABX
test, we also evaluated the NMI scores. Training and testing
was done with 12-fold cross-validation. Table II compares the
results of the trained acoustic unit recognizers using cluster

labels vs. using single component labels as training references.
The recognizers trained on cluster labels perform significantly
better across data sets and across all evaluation metrics.

IX. CONCLUSION

We developed a Dirichlet process mixture of mixtures
model (DPMoMM) sampler that jointly infers a codebook of
global components and a mixture of clusters. The clusters
are themselves mixtures that are defined over the codebook
components. Split and merge samplers for modifying code-
book components were complemented with split and merge
samplers for modifying clusters. We introduced an additional
switch sampler for cluster components to support and ac-
celerate convergence, which has shown to be effective in
experiments on real data. We demonstrated in the use case of
unsupervised subword modeling on two separate data sets, that
classes represented by a mixture of mixtures model reliably
outperform the output of a standard DPMM. For both data
sets and on all our evaluation metrics, the models inferred
with our proposed DPMoMM sampler consistently achieved
significant performance improvements of up to 13.5% relative.
At the same time, considerably fewer classes that show longer
average durations were sampled, a behavior that is desired
for unsupervised subword modeling. Our experiments suggest
that the inferred mixture of mixtures approximates the true
underlying distributions of our experimental data much better
than a standard DPMM. Lastly, parallelization of sampling
steps allows the algorithm to work well even on larger data
sets in higher data regimes. Although we originally developed
the DPMoMM for improving unsupervised subword modeling,
we think that our sampler will be useful not only for handling
speech data, but for many tasks where classes are defined by
multimodal distributions.

ACKNOWLEDGMENT

Part of this work was supported by JSPS KAKENHI Grant
Numbers JP17H06101 and JP17K00237.

REFERENCES

[1] T. S. Ferguson, “A Bayesian analysis of some nonparametric problems,”
Annals of Statistics, pp. 209–230, 1973.

[2] C. E. Antoniak, “Mixtures of Dirichlet processes with applications to
Bayesian nonparametric problems,” Annals of Statistics, pp. 1152–1174,
1974.

[3] C. E. Rasmussen, “The infinite Gaussian mixture model,” in Advances in
Neural Information Processing Systems. Neural Information Processing
Systems Foundation, 2000, pp. 554–560.

[4] Y. W. Teh, M. I. Jordan, M. J. Beal, and D. M. Blei, “Sharing clusters
among related groups: Hierarchical Dirichlet processes,” in Advances in
Neural Information Processing Systems. Neural Information Processing
Systems Foundation, 2005, pp. 1385–1392.

[5] J. Chang and J. W. Fisher III, “Parallel sampling of HDPs using sub-
cluster splits,” in Advances in Neural Information Processing Systems.
Neural Information Processing Systems Foundation, 2014, pp. 235–243.

[6] S. N. MacEachern, “Dependent nonparametric processes,” in Proceed-
ings of the Section on Bayesian Statistical Science. American Statistical
Association, 1999, pp. 50–55.

[7] ——, “Dependent Dirichlet processes,” Unpublished manuscript, De-
partment of Statistics, The Ohio State University, pp. 1–40, 2000.

[8] M. Versteegh, R. Thiolliere, T. Schatz, X. N. Cao, X. Anguera,
A. Jansen, and E. Dupoux, “The zero resource speech challenge 2015,”
in Proceedings of Interspeech. International Speech Communication
Association, 2015, pp. 3169–3173.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TASLP.2018.2852500

Copyright (c) 2018 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 15

[9] E. Dunbar, X. N. Cao, J. Benjumea, J. Karadyi, M. Bernard, L. Besacier,
X. Anguerra, and E. Dupoux, “The zero resource speech challenge
2017,” in Proceedings of the Automatic Speech Recognition and Under-
standing Workshop. Institute of Electrical and Electronics Engineers,
2017, pp. 323–330.

[10] H. Chen, C.-C. Leung, L. Xie, B. Ma, and H. Li, “Parallel inference
of Dirichlet process Gaussian mixture models for unsupervised acoustic
modeling: A feasibility study,” in Proceedings of Interspeech. Interna-
tional Speech Communication Association, 2015, pp. 3189–3193.

[11] ——, “Multilingual bottle-neck feature learning from untranscribed
speech,” in Proceedings of the Automatic Speech Recognition and Un-
derstanding Workshop. Institute of Electrical and Electronics Engineers,
2017.

[12] M. Heck, S. Sakti, and S. Nakamura, “Unsupervised linear discrimi-
nant analysis for supporting DPGMM clustering in the zero resource
scenario,” in Proceedings of the International Workshop on Spoken
Language Technologies for Under-resourced Languages, 2016, pp. 73–
79.

[13] ——, “Supervised learning of acoustic models in a zero resource
setting to improve DPGMM clustering.” in Proceedings of Interspeech.
International Speech Communication Association, 2016, pp. 1310–1314.

[14] ——, “Feature optimized DPGMM clustering for unsupervised subword
modeling: A contribution to Zerospeech 2017,” in Proceedings of the
Automatic Speech Recognition and Understanding Workshop. Institute
of Electrical and Electronics Engineers, 2017, pp. 740–746.

[15] L. R. Rabiner and B.-H. Juang, Fundamentals of speech recognition.
Prentice Hall, 1993.

[16] R. Schwartz, Y. Chow, O. Kimball, S. Roucos, M. Krasner, and
J. Makhoul, “Context-dependent modeling for acoustic-phonetic recog-
nition of continuous speech,” in Proceedings of the International Con-
ference on Acoustics, Speech and Signal Processing, vol. 10. Institute
of Electrical and Electronics Engineers, 1985, pp. 1205–1208.

[17] K.-F. Lee, “On large-vocabulary speaker-independent continuous speech
recognition,” Speech Communication, vol. 7, no. 4, pp. 375–379, 1988.

[18] A. Waibel and K.-F. Lee, Eds., Readings in speech recognition. Morgan
Kaufmann, 1990.

[19] M. Heck, S. Sakti, and S. Nakamura, “Iterative training of a DPGMM-
HMM acoustic unit recognizer in a zero resource scenario,” in Pro-
ceedings of the Spoken Language Technology Workshop. Institute of
Electrical and Electronics Engineers, 2016, pp. 57–63.

[20] H. Z. Yerebakan, B. Rajwa, and M. Dundar, “The infinite mixture of
infinite Gaussian mixtures,” in Advances in Neural Information Process-
ing Systems. Neural Information Processing Systems Foundation, 2014,
pp. 28–36.

[21] J. Chang and J. W. Fisher III, “Parallel sampling of DP mixture models
using sub-cluster splits,” in Advances in Neural Information Processing
Systems. Neural Information Processing Systems Foundation, 2013,
pp. 620–628.

[22] X. Zhu, Z. Ghahramani, and J. Lafferty, “Time-sensitive Dirichlet
process mixture models,” School of Computer Science, Carnegie Mellon
University, Tech. Rep., 2005.

[23] J. E. Griffin and M. J. Steel, “Order-based dependent Dirichlet pro-
cesses,” Journal of the American Statistical Association, vol. 101, no.
473, pp. 179–194, 2006.

[24] D. M. Blei and P. I. Frazier, “Distance dependent Chinese restaurant
processes,” Journal of Machine Learning Research, vol. 12, pp. 2461–
2488, 2011.

[25] D. B. Dahl, “An improved merge-split sampler for conjugate Dirichlet
process mixture models,” Department of Statistics, University of Wis-
consin Madison, Tech. Rep., 2003.

[26] S. Jain and R. M. Neal, “A split-merge Markov chain Monte Carlo proce-
dure for the Dirichlet process mixture model,” Journal of Computational
and Graphical Statistics, vol. 13, no. 1, pp. 158–182, 2004.

[27] ——, “Splitting and merging components of a nonconjugate Dirichlet
process mixture model,” Bayesian Analysis, vol. 2, no. 3, pp. 445–472,
2007.

[28] O. Papaspiliopoulos and G. O. Roberts, “Retrospective Markov chain
Monte Carlo methods for Dirichlet process hierarchical models,”
Biometrika, vol. 95, no. 1, pp. 169–186, 2008.

[29] S. Favaro and Y. W. Teh, “MCMC for normalized random measure
mixture models,” Statistical Science, pp. 335–359, 2013.

[30] H. Ishwaran and L. F. James, “Gibbs sampling methods for stick-
breaking priors,” Journal of the American Statistical Association, vol. 96,
no. 453, pp. 161–173, 2001.

[31] J. Yang, R. C. Van Dalen, and M. J. Gales, “Infinite support vector
machines in speech recognition,” in Proceedings of Interspeech. Inter-
national Speech Communication Association, 2013.

[32] J. Yang, R. C. Van Dalen, S.-X. Zhang, and M. J. Gales, “Infinite
structured support vector machines for speech recognition,” in Proceed-
ings of the International Conference on Acoustics, Speech and Signal
Processing. Institute of Electrical and Electronics Engineers, 2014, pp.
3320–3324.

[33] T. Schatz, V. Peddinti, F. Bach, A. Jansen, H. Hermansky, and
E. Dupoux, “Evaluating speech features with the minimal-pair ABX
task: Analysis of the classical MFC/PLP pipeline,” in Proceedings of
Interspeech. International Speech Communication Association, 2013,
pp. 1781–1785.

[34] A. F. McDaid, D. Greene, and N. Hurley, “Normalized mutual infor-
mation to evaluate overlapping community finding algorithms,” arXiv
preprint arXiv:1110.2515, 2011.

[35] M. A. Pitt, K. Johnson, E. Hume, S. Kiesling, and W. Raymond, “The
Buckeye corpus of conversational speech: Labeling conventions and a
test of transcriber reliability,” Speech Communication, vol. 45, no. 1, pp.
89–95, 2005.

[36] N. J. De Vries, M. H. Davel, J. Badenhorst, W. D. Basson, F. De Wet,
E. Barnard, and A. De Waal, “A smartphone-based ASR data collection
tool for under-resourced languages,” Speech Communication, vol. 56,
pp. 119–131, 2014.

[37] D. Povey, A. Ghoshal, G. Boulianne, L. Burget, O. Glembek, N. Goel,
M. Hannemann, P. Motlicek, Y. Qian, P. Schwarz et al., “The Kaldi
speech recognition toolkit,” in Proceedings of the Automatic Speech
Recognition and Understanding Workshop. Institute of Electrical and
Electronics Engineers, 2011.

[38] H. Hermansky, “Perceptual linear predictive (PLP) analysis of speech,”
The Journal of the Acoustical Society of America, vol. 87, no. 4, pp.
1738–1752, 1990.

[39] R. Haeb-Umbach and H. Ney, “Linear discriminant analysis for im-
proved large vocabulary continuous speech recognition,” in Proceedings
of the International Conference on Acoustics, Speech and Signal Pro-
cessing, vol. 1. Institute of Electrical and Electronics Engineers, 1992,
pp. 13–16.

[40] R. A. Gopinath, “Maximum likelihood modeling with Gaussian distribu-
tions for classification,” in Proceedings of the International Conference
on Acoustics, Speech and Signal Processing. Institute of Electrical and
Electronics Engineers, 1998, pp. 661–664.

[41] M. J. Gales, “Semi-tied covariance matrices for hidden Markov models,”
IEEE Transactions on Speech and Audio Processing, vol. 7, no. 3, pp.
272–281, 1999.

[42] T. Anastasakos, J. McDonough, R. Schwartz, and J. Makhoul, “A
compact model for speaker-adaptive training,” in Proceedings of the
International Conference on Spoken Language. Institute of Electrical
and Electronics Engineers, 1996, pp. 1137–1140.

[43] M. J. Gales, “Maximum likelihood linear transformations for HMM-
based speech recognition,” Computer Speech and Language, vol. 12,
no. 2, pp. 75–98, 1998.

Michael Heck received his diploma degree in com-
puter science from Karlsruhe Institute of Technol-
ogy (KIT), Germany, in 2012. He was granted
the “Baden-Württemberg” scholarship and was sup-
ported by the Global Initiatives Program for a stay at
Nara Institute of Science and Technology (NAIST),
Japan, during his thesis work. Between 2013-2015,
he worked as research assistant at the Interactive
Systems Labs at KIT on unsupervised training and
adaptation of acoustic models for automatic speech
recognition. He was involved in several speech

recognition evaluations and international programs including Quaero, Babel
and EU-BRIDGE. While at KIT, he was a regular visiting researcher at the
Augmented Human Communication Laboratory (AHC Lab) at NAIST. Since
2015, he is a research assistant and doctoral course student at AHC Lab as
recipient of the NAIST international scholarship. In 2017, he was a research
intern at IBM Research – Tokyo. His research interests include automatic
speech recognition, unsupervised learning and the zero resource scenario.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TASLP.2018.2852500

Copyright (c) 2018 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 16

Sakriani Sakti received her B.E. degree in Infor-
matics (cum laude) from Bandung Institute of Tech-
nology, Indonesia, in 1999. In 2000, she received
DAAD-Siemens Program Asia 21st Century Award
to study in Communication Technology, University
of Ulm, Germany, and received her MSc degree
in 2002. During her thesis work, she worked with
Speech Understanding Department, DaimlerChrysler
Research Center, Ulm, Germany. Between 2003-
2009, she worked as a researcher at ATR SLC Labs,
Japan, and during 2006-2011, she worked as an

expert researcher at NICT SLC Groups, Japan. While working with ATR-
NICT, Japan, she continued her study (2005-2008) with Dialog Systems Group
University of Ulm, Germany, and received her PhD degree in 2008. She was
actively involved in collaboration activities such as Asian Pacific Telecommu-
nity Project (2003-2007), A-STAR and U-STAR (2006-2011). In 2009-2011,
she served as a visiting professor of Computer Science Department, University
of Indonesia (UI), Indonesia. From 2011, she has been an assistant professor
at the Augmented Human Communication Laboratory, NAIST, Japan. She
served also as a visiting scientific researcher of INRIA Paris-Rocquencourt,
France, in 2015-2016, under ”JSPS Strategic Young Researcher Overseas
Visits Program for Accelerating Brain Circulation”. She is a member of JNS,
SFN, ASJ, ISCA, IEICE and IEEE. Her research interests include statistical
pattern recognition, speech recognition, spoken language translation, cognitive
communication, and graphical modeling framework.

Satoshi Nakamura is Professor at the Graduate
School of Information Science, Nara Institute of
Science and Technology, Japan, Honorarprofessor
of Karlsruhe Institute of Technology, Germany, and
ATR Fellow. He received his B.S. from Kyoto
Institute of Technology in 1981 and Ph.D. from
Kyoto University in 1992. He was Associate Pro-
fessor of Graduate School of Information Science at
Nara Institute of Science and Technology in 1994-
2000. He was Director of ATR Spoken Language
Communication Research Laboratories in 2000-2008

and Vice president of ATR in 2007-2008. He was Director General of
Keihanna Research Laboratories and the Executive Director of Knowledge
Creating Communication Research Center, National Institute of Information
and Communications Technology, Japan in 2009-2010. He is currently Di-
rector of Augmented Human Communication laboratory and a full professor
of Graduate School of Information Science at Nara Institute of Science and
Technology. He is interested in modeling and systems of speech-to-speech
translation and speech recognition. He is one of the leaders of speech-to-
speech translation research and has been serving for various speech-to-speech
translation research projects in the world including C-STAR, IWSLT and
A-STAR. He received Yamashita Research Award, Kiyasu Award from the
Information Processing Society of Japan, Telecom System Award, AAMT
Nagao Award, Docomo Mobile Science Award in 2007, ASJ Award for
Distinguished Achievements in Acoustics. He received the Commendation
for Science and Technology by the Minister of Education, Science and
Technology, and the Commendation for Science and Technology by the
Minister of Internal Affairs and Communications. He also received LREC
Antonio Zampoli Award 2012. He has been Elected Board Member of
International Speech Communication Association, ISCA, since June 2011,
IEEE Signal Processing Magazine Editorial Board Member since April 2012,
IEEE SPS Speech and Language Technical Committee Member since 2013,
and IEEE Fellow since 2016.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TASLP.2018.2852500

Copyright (c) 2018 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

