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Fig. 7. Relative performance improvements when interpreting clusters instead of codebook components as acoustic classes. The inputs are 39 dimensional PLP+∆+∆∆ speech features. (a)-(e): Results on Xitsonga;
(f)-(j): Results on English; (a),(f) Relative improvement of NMImax, (b),(g) Relative improvement of ABXls, (c),(h) Relative improvement of ABXkl, (d),(i) Relative unit length increase, (e),(j) Cluster to component
amount ratio. Paired t-tests on all ABX task outputs yield p� 0.0001.
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Fig. 8. Relative performance improvements when interpreting clusters instead of codebook components as acoustic classes. The inputs are 20 dimensional PLP+LDA speech features. (a)-(e): Results on Xitsonga;
(f)-(j): Results on English; (a),(f) Relative improvement of NMImax, (b),(g) Relative improvement of ABXls, (c),(h) Relative improvement of ABXkl, (d),(i) Relative unit length increase, (e),(j) Cluster to component
amount ratio. Paired t-tests on all ABX task outputs yield p� 0.0001.
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Fig. 9. Distribution of cluster sizes by the example of sampling Xitsonga
data for 500 iterations. Higher β values lead to more clusters with fewer
components. The same behavior was observed on the English data set.

to the joint sampling we can directly compare the modeling
quality of inferred Gaussian mixtures and the single Gaussians,
or in other words the DPMoMM and the codebook, i.e., a
DPGMM/IGMM.

After sampling the DPMoMM, the data can be represented
by frame-wise labels. We use the symmetric NMI to compare
the quality of label sequences. For that, we compute the
symmetric NMI once using the labels for clusters and once
using the labels for codebook components and calculate the
relative improvement. In the same way, we also compare the
ABX phone discriminability using the frame-wise labels as
representation and calculate the relative improvement from
using cluster labels instead of codebook component labels.

The ABX phone discriminability can also be computed
for posteriorgrams as representation for the data. In that
case, either a posteriorgram over clusters or over codebook
components is computed for each speech frame. The two kinds
of posteriorgrams are scored and compared to get a value
for the relative improvement by using cluster posteriorgrams
instead of component posteriorgrams.

We run every sampling for 1000 iterations. Each sampling
step is parallelized across 30 threads. For all conducted ex-
periments we sample each model 5 times, score each output
and average the results. It is known that the influence of α
diminishes in very high data regimes [21]. Chen et al. [10]
conducted an experience study and confirmed that the value of
α does not impact the outcome of sampling a DPMM given
high dimensional speech feature vectors. Their samples are
extracted from the same data sets that we use in our work
and are similar in nature. In several informal experiments in
connection with earlier work we also observed this behavior
and therefore set α = 1 for all our experiments.

C. The Impact of β

We compare the use of clusters versus using the codebook
components as model for the underlying data. The latter
corresponds to output that the original sampler of Chang et
al. [21] produces. We test on both data sets, English and
Xitsonga, and use either PLP+LDA features or PLP+∆+∆∆
as input. Fig. 7 and 8 show the relative improvements that our
proposed method achieved as contour plots.

We observed that using a very small value for the mixture
concentration parameter β tends to result in few sampled
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Fig. 10. Sampling behavior on Xitsonga data when (a) not using switch
moves for cluster components, and (b) using switch moves. Without switch
moves, the number of clusters might grow fast, and convergence is slow. With
switch moves, this issue does not occur. The same behavior was also observed
on the English data set.

mixtures that each contain a maximum amount of components.
In other words, the sampler is over-confident in grouping com-
ponents together based on minimal proximity. In contrast to
synthetic data, real data tends to be comprised of overlapping
classes. The aggressive grouping is one of the consequences
of this fact. With larger β, we observed that fewer components
are grouped together to form mixtures, which results in a
larger number of clusters that contain fewer components.
Fig. 9 exemplarily plots the distribution of cluster sizes for the
Xitsonga data with different values for β. Fig. 7e, 7j and 8e, 8j
show that the number of clusters approximates the number of
codebook components as β increases.

The behavior of the cluster inference dependent on β is
best explained by analyzing the sampling of weights during
restricted Gibbs sampling and the Hastings ratio for cluster
split and merge moves. According to (4)-(5), (7)-(8) and (16)-
(17), the distributions of cluster and the cluster component
weights are governed by β, whose impact is twofold. Its
value determines the probability mass that is reserved for
generating a new cluster by the split sampler, and it regulates
the weights of the cluster components. A large β will motivate
the generation of more clusters and cause cluster component
weights to take on more similar values, therefore keeping
more cluster components alive for a longer time. This in
turn encourages more cluster splits, which is also reflected
in the Hastings ratios for cluster moves. With larger β, (58)
takes on a larger value, i.e., the probability of accepting a
split proposal becomes higher, and (59) takes on a smaller
value, i.e., the probability of the reverse merge move becomes
smaller. Intuitively, the effect is that only closely related
components remain grouped in form of a cluster, and less
dense clusters are likely to be split to form new clusters with
less components. The resulting DPMoMM tends to be made
up by many clusters with mostly low amounts of components,
and only few clusters with higher amounts of components, if
the data suggests so. A small value for β has the exact opposite
effect and a sampled DPMoMM will have few clusters with
mostly large amounts of cluster components.

D. Convergence and the Switch Sampler

During our experiments, we found that under certain con-
ditions, the number of clusters can grow rapidly and stay
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TABLE I
PERFORMANCE COMPARISON OF STANDARD DPMMS AND PROPOSED DPMOMMS APPLIED TO BOTH DATA SETS.

PAIRED T-TESTS ON ALL ABX TASK OUTPUTS YIELD p� 0.0001.

Features Sampler Clusters modeled by β cmax K C K/C NMImax ABXls ABXkl avg. seg. len.
Results for the Xitsonga data set

PLP+∆+∆∆ DPMoMM Single Gaussians - - 154 - 1.0 0.275 21.31% 14.03% 2.16 frames
Gaussian Mixtures 200 8 114 154 0.74 0.302 18.44% 12% 2.76 frames

PLP+LDA DPMoMM Single Gaussians - - 142 - 1.0 0.283 20.29% 13.15% 2.22 frames
Gaussian Mixtures 400 8 120 142 0.848 0.31 18.74% 12.47% 2.68 frames

PLP+fMLLR
DPMM [13] Single Gaussians - - 139 - - - - 12.2% -
DPMoMM Single Gaussians - - 144 - 1.0 0.293 19.33% 12.44% 2.29 frames
DPMoMM Gaussian Mixtures 400 8 126 144 0.876 0.315 18.06% 11.93% 2.7 frames

Results for the English data set

PLP+∆+∆∆ DPMoMM Single Gaussians - - 232 - 1.0 0.232 28.85% 18.99% 2.06 frames
Gaussian Mixtures 100 4 110 232 0.473 0.241 25.65% 17.61% 2.37 frames

PLP+LDA DPMoMM Single Gaussians - - 152 - 1.0 0.248 25.88% 16.18% 2.33 frames
Gaussian Mixtures 300 4 98 152 0.649 0.262 23.74% 15.99% 2.73 frames

PLP+fMLLR
DPMM [13] Single Gaussians - - 156 - - - - 15.7% -
DPMoMM Single Gaussians - - 157 - 1.0 0.253 25.28% 15.84% 2.31 frames
DPMoMM Gaussian Mixtures 300 4 93 157 0.591 0.266 23.28% 15.47% 2.64 frames

large for a long stretch of iterations. This is the case when
the allowed cluster size cmax is large and β is set to facilitate
many clusters with a large number of components. Under such
circumstances, the duplication of clusters during the cluster
update step in the component split sampler (see Section V-A)
becomes more likely and more frequent, especially if multiple
components in the same cluster are subject to splitting.

We developed the switch move sampler to mitigate this
issue and support convergence. Fig. 10 exemplarily shows the
sampling behavior of our DPMoMM sampler on Xitsonga data
with and without using switch moves for cluster components.
As can be seen, the number of clusters might grow fast without
switch moves, and convergence is slow. With switch moves,
however, this issue does not occur. The same behavior was
observable for both of our data sets. Without switch moves, a
considerably larger amount of time would be required by the
sampler to converge. With switch moves, convergence is fast.

E. Use Case Performance

Fig. 7a, 7f and 8a, 8f show the relative improvements
of cluster label sequences over codebook component label
sequences on the symmetric NMI metric. The best results
are always achieved by allowing larger clusters. The optimal
values for β seems to lie within a certain range. This range
is the same for our two data sets, English and Xitsonga,
but it seems to be input feature dependent. Sampling from
PLP+∆+∆∆ features benefits from a β value between 100
and 300, where sampling from PLP+LDA features might even
benefit from a β larger than 400, which during our experiments
was the highest value that we tested. These observations
transfer to the evaluation of cluster and component labels
with the ABX phone discriminability test, as can be seen in
Fig. 7b, 7g and 8b, 8g.

Interestingly, we observed considerable performance im-
provements when we extracted cluster posteriorgrams and
compared them to component posteriorgrams with the ABX
discriminability test, especially with PLP+∆+∆∆ as input
(see Fig. 7c, 7h and 8c, 8h). This is noteworthy because despite
the much lower dimensionality of cluster posteriorgrams,

TABLE II
PERFORMANCE COMPARISON OF ACOUSTIC UNIT RECOGNIZERS TRAINED
ON DPMM AND DPMOMM LABELS. PAIRED T-TESTS ON ALL ABX TASK

OUTPUTS YIELD p� 0.0001.

Labels of Units NMImax ABXls ABXkl avg. seg. len.
Results for the Xitsonga data set

Gaussians 144 0.319 18.06% 12.09% 2.59 frames
Mixtures 126 0.327 16.45% 11.17% 2.95 frames

Results for the English data set
Gaussians 157 0.263 24.48% 16.5% 2.77 frames
Mixtures 93 0.278 22.21% 15.76% 3.12 frames

performance not just equals, but even increases, compared
to the component posteriorgrams. This is an indicator that
the clusters inferred by our proposed DPMoMM are not
just accumulations of related classes, but in fact a better
approximation to the real underlying multimodal distributions
of more complex classes in the data.

The number of inferred clusters does not necessarily cor-
relate with the average length of sample sequences that use
the clusters as classes. Fig. 7d, 7i and 8d, 8i show that it is
the maximum number of allowed components per cluster cmax
that governs the average unit length, rather than β. The average
unit lengths is higher if the clusters are allowed to grow larger.
A too large β somewhat slows down this trend. The increased
unit lengths for larger clusters is an indicator that the grouping
of components into mixtures allows the mixture of mixtures
model to capture wider acoustic phenomena, an ability that is
highly valued in unsupervised subword modeling.

Overall, our results as depicted in Fig. 7 and 8 reveal that
with some tuning of β and cmax, relative improvements on
all evaluation metrics can be as high as 13.5%. The contour
plots also suggest that larger mixtures might result in even
larger improvements. It is a strong support for our initial
motivation for this work that good results can be achieved
with settings that lead to the inference of as little as 27% of
the amount of clusters than there are codebook components,
which considerably reduces model complexity. At the same
time, the found clusters can serve as models with average
durations of sound instances that are up to 31% longer. Table I
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compares the performance of standard DPMMs and good
DPMoMMs that we sampled in absolute numbers. During
our experiments we sampled models that are best on one
metric, but sub-optimal on others. The exemplary DPMoMMs
in Table I perform reasonably well on all evaluation metrics
and give a good impression of what can be expected if the
parameters are tuned reasonably. Note that we did not yet
exhaust the exploration of the hyper-parameter space. We
expect that even better results are possible with larger values
for β and especially cmax.

F. State-of-the-art Zero Resource Challenge Performance

In [13], we transformed PLP features with LDA, maximum
likelihood linear transforms (MLLT) [40], [41] and feature-
space maximum likelihood linear regression (fMLLR) [42],
[43] (denoted as “PLP+fMLLR”) – a method commonly used
for speaker adaptation – to improve the input to a DPMM
sampler. The extracted posteriorgrams achieved the to-date
best results on the zero resource speech challenge 2015
Xitsonga and English data sets.

We repeated these experiments with our novel sampler,
using the hyper-parameters that we tuned for the PLP+LDA
features. Table I compares the previously published perfor-
mance of [13] with using a DPMoMM for sampling instead.
We could infer more compact models having fewer clusters
and at the same time reduce the discriminability errors – the
official evaluation method of the challenge – even further, thus
establishing a new state-of-the-art with our proposed method.

G. Acoustic Unit Recognition Performance

In [19], we conducted experiments where the output of
a DPMM sampler served as labels for training a context-
dependent “triphone” acoustic unit recognizer. In the proposed
framework, the DPMM defines the number and distributions
of units dynamically and without any prior supervision, given
only extracted speech observations, i.e., frame-based feature
vectors. We trained an HMM acoustic model and n-gram lan-
guage model using collapsed DPMM component labels. The
resulting DPMM-HMM acoustic unit recognizer was evaluated
by solving the ABX sound class discriminability task. Our
results showed that it is possible to build a DPMM-HMM
acoustic unit recognizer that is competitive with supervisedly
trained phone recognizers.

For this work, we conducted experiments with a compa-
rable setup, but using the DPMoMM for subword modeling
instead. The labels that we used come from the models
that were inferred from PLP+fMLLR-transformed features
as listed in Table I. We trained language-dependent acoustic
unit recognizers given the DPMoMM cluster labels. We then
compared the performance to recognizers that were trained on
the DPMoMM component labels instead, which correspond
to standard DPMM labels. Since we sampled each DPMoMM
five times, we also trained each recognizer five times, scored
five times and averaged the results. In addition to the ABX
test, we also evaluated the NMI scores. Training and testing
was done with 12-fold cross-validation. Table II compares the
results of the trained acoustic unit recognizers using cluster

labels vs. using single component labels as training references.
The recognizers trained on cluster labels perform significantly
better across data sets and across all evaluation metrics.

IX. CONCLUSION

We developed a Dirichlet process mixture of mixtures
model (DPMoMM) sampler that jointly infers a codebook of
global components and a mixture of clusters. The clusters
are themselves mixtures that are defined over the codebook
components. Split and merge samplers for modifying code-
book components were complemented with split and merge
samplers for modifying clusters. We introduced an additional
switch sampler for cluster components to support and ac-
celerate convergence, which has shown to be effective in
experiments on real data. We demonstrated in the use case of
unsupervised subword modeling on two separate data sets, that
classes represented by a mixture of mixtures model reliably
outperform the output of a standard DPMM. For both data
sets and on all our evaluation metrics, the models inferred
with our proposed DPMoMM sampler consistently achieved
significant performance improvements of up to 13.5% relative.
At the same time, considerably fewer classes that show longer
average durations were sampled, a behavior that is desired
for unsupervised subword modeling. Our experiments suggest
that the inferred mixture of mixtures approximates the true
underlying distributions of our experimental data much better
than a standard DPMM. Lastly, parallelization of sampling
steps allows the algorithm to work well even on larger data
sets in higher data regimes. Although we originally developed
the DPMoMM for improving unsupervised subword modeling,
we think that our sampler will be useful not only for handling
speech data, but for many tasks where classes are defined by
multimodal distributions.
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