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Abstract—In this paper, to address problems in multichannel
music signal separation, we propose a new hybrid method that
combines directional clustering and advanced nonnegative matrix
factorization (NMF). The aims of multichannel music signal sepa-
ration technology is to extract a specific target signal from observed
multichannel signals that contain multiple instrumental sounds.
In previous studies, various methods using NMF have been pro-
posed, but many problems remain including poor separation accu-
racy and lack of robustness. To solve these problems, we propose
a new supervised NMF (SNMF) with spectrogram restoration and
a hybrid method that concatenates the proposed SNMF after di-
rectional clustering. Via the extrapolation of supervised spectral
bases, the proposed SNMF attempts both target signal separation
and reconstruction of the lost target components, which are gen-
erated by preceding directional clustering. In addition, we experi-
mentally reveal the trade-off between separation and extrapolation
abilities and propose a new scheme for adaptive divergence, where
the optimal divergence can be automatically changed in each time
frame according to the local spatial conditions. The results of an
evaluation experiment show that our proposed hybrid method out-
performs the conventional music signal separation methods.
Index Terms—Multichannel signal separation, music signal

processing, nonnegative matrix factorization (NMF), spectrogram
restoration.

I. INTRODUCTION

M USIC signal separation technologies have attracted con-
siderable interest and been intensively studied [1], [2]

in recent years. These techniques are underdetermined separa-
tion problems because almost all musical tunes are provided in
a stereo format and the number of sources is at least two. As a

Manuscript received May 22, 2014; revised October 06, 2014; accepted Jan-
uary 20, 2015. Date of publication February 06, 2015; date of current version
March 06, 2015. The associate editor coordinating the review of this manuscript
and approving it for publication was Prof. DeLiang Wang.
D. Kitamura is with the Department of Informatics, School of Multidis-

ciplinary Sciences, The Graduate University for Advanced Studies, Tokyo
101–8430, Japan (e-mail: d-kitamura@nii.ac.jp).
H. Saruwatari and H. Kameoka are with the Graduate School of Information

Science and Technology, The University of Tokyo, Tokyo 113–8656, Japan
(e-mail: hiroshi_saruwatari@ipc.i.u-tokyo.ac.jp; kameoka@hil.t.u-tokyo.ac.
jp).
Y. Takahashi and K. Kondo are with the Research and Development 1,

Yamaha Corporation, Shizuoka 438–0192, Japan (e-mail: yu.takahashi@music.
yamaha.com; kazunobu.kondo@music.yamaha.com).
S. Nakamura is with the Graduate School of Information Science, Nara Insti-

tute of Science and Technology, Nara 630–0192, Japan (e-mail: s-nakamura@is.
naist.jp).
Digital Object Identifier 10.1109/TASLP.2015.2401425

means of addressing underdetermined signal separation, in re-
cent years, nonnegative matrix factorization (NMF) [3], which
is a type of sparse representation algorithm, has received much
attention. NMF for acoustical signals decomposes an input spec-
trogram into the product of a spectral basis matrix and its acti-
vation matrix. The methods of signal separation based on NMF
are roughly classified into unsupervised and supervised algo-
rithms. The former method attempts separation without using
any training sequences, instead being subjected to various con-
straints, as proposed in [4]–[6]. However, these techniques have
difficulty in clustering the decomposed spectral bases into a
specific target sound because the entire procedure should be
carried out in a blind fashion. To solve this problem, super-
vised NMF (SNMF) has been proposed [7]–[9]. This method
includes a priori training, which requires some sound samples of
a target instrument, and separates the target signal using super-
vised bases. SNMF can extract the target signal to some extent,
particularly in the case of a small number of sources. However,
for a mixture consisting of many sources, the extraction perfor-
mance is markedly degraded because of the existence of instru-
ments with similar timbre.
To apply NMF-based separation methods to multichannel

signals, multichannel NMF has been proposed as an unsuper-
vised separation method [10], [11]. This method is a natural
extension of NMF for a stereo or multichannel signal and
is a unified method that addresses the spatial and spectral
separation problems simultaneously. However, such unsu-
pervised separation is a difficult problem, even if the signal
has multichannel components, because the decomposition
is underspecified. Hence, these algorithms suffer from poor
separation accuracy and lack robustness. For multichannel
signal separation, directional clustering has also been proposed
as an unsupervised method [12], [13]. This method quantizes
directional information via time-frequency binary masking.
However, there is an inherent problem that sources located in
the same direction cannot be separated using only the direc-
tional information. Furthermore, the extracted signal is likely
to be distorted because some target components may be lost by
the effect of binary masking in the directional clustering.
To cope with these problems, in this paper, we propose a new

SNMF with spectrogram restoration and a hybrid method that
concatenates the proposed SNMF after directional clustering.
This approach can reconstruct lost target components, which
are dispersedly generated by directional clustering, from only
the observable valid components using supervised bases. Such
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reconstruction with supervised bases can be considered as basis
extrapolation. In [14], bandwidth expansion with supervised
basis extrapolation was proposed. However, this method only
attempts to predict unseen high-frequency components. In con-
trast, our proposed method reconstructs dispersedly lost compo-
nents in parallel with source separation. Via the extrapolation of
supervised spectral bases, SNMF with spectrogram restoration
attempts both target signal separation and reconstruction of the
lost target components, which are generated by the preceding
binary masking performed in directional clustering.
Next, we provide an experimental analysis of basis extrapo-

lation ability and reveal the mechanism of the marked shift of
the optimal divergence in SNMF with spectrogram restoration
and the trade-off between separation and extrapolation abilities.
An evaluation experiment of the separation using artificial and
real-recorded music signals shows the effectiveness of the pro-
posed hybrid method.
Finally, on the basis of the above-mentioned findings, we

propose a new scheme for framewise divergence selection in
the proposed hybrid method to separate the target signal using
the optimal divergence. The results of an evaluation experiment
show that the proposed hybrid method with adaptive divergence
can achieve high performance under all spatial conditions, indi-
cating the improved robustness of the proposed method.
The rest of this paper is organized as follows. In Section II,

conventional methods for single-channel and multichannel
signal separation are described. In Section III, we propose a
new SNMF with spectrogram restoration and a hybrid method
and experimentally reveal the trade-off between separation
and extrapolation abilities. In Section IV, an improved method
based on adaptive divergence is presented. Following a dis-
cussion on the results of the experiments, we present our
conclusions in Section V.

II. CONVENTIONAL SIGNAL SEPARATION METHODS

A. Conventional Single-Channel Signal Separation Methods

1) Overview of NMF: NMF is a type of sparse representation
algorithm that decomposes a nonnegative matrix into two non-
negative matrices as

(1)

where is an observed nonnegative matrix, which
is an amplitude spectrogram for applying NMF to the acoustic
signal; is often called the basis matrix, which in-
cludes bases (frequently-appearing spectral patterns in ) as
column vectors; and is often called the activation
matrix, which involves activation information of each basis of
. In addition, and are the numbers of rows and columns

of , respectively, and is the number of bases of . Fig. 1 de-
picts the decomposition model of NMF, where the number of
bases equals two. In this Fig., the basis matrix includes two
types of spectral patterns as the bases to represent the observed
matrix using time-varying gains in the activation matrix. In the
decomposition of NMF, a cost function is defined to optimize
the variables and using an arbitrary divergence between

Fig. 1. Decomposition model of simple NMF.

and . The following equation represents the cost func-
tion of NMF:

(2)

where is an arbitrary distance function, e.g., Itakura-
Saito divergence (IS-divergence), generalized Kullback-Leibler
divergence (KL-divergence), and Euclidean distance (EUC-dis-
tance). In this study, we use the following generalized diver-
gence called -divergence [15] in the cost function:

(3)
where and are matrices whose entries
are and , respectively. This divergence is a family of
cost functions parameterized by a single shape parameter that
takes IS-divergence, KL-divergence, and EUC-distance as spe-
cial cases ( , and 2, respectively).
The multiplicative update rules for and that minimize

the cost function based on -divergence are given by [16]

(4)

(5)

where , , and are the nonnegative entries of ma-
trices , , and , respectively. In addition, is given by

(6)

We can optimize and by some iterations of these update
rules. The convergence of these update rules has been theoreti-
cally proven for all real values of [16].
2) SNMF: The signal separation using NMF is achieved

by extracting only the target spectral bases. However, such
unsupervised approaches have difficultly in clustering the
decomposed spectral patterns into specific target instruments.
Furthermore, each basis may be forced to include a multi-in-
strumental spectral pattern. To solve this problem, SNMF has
been proposed [7]–[9]. This supervised scheme consists of
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two processes, namely, a priori training and observed signal
separation.
In SNMF, as the supervision, a priori spectral patterns (bases)

should be trained in advance to achieve signal separation. Here-
after, we assume that we can obtain specific solo-played instru-
mental sounds, which is the target of the separation task. The
trained bases are constructed by NMF as

(7)

where is the amplitude spectrogram of a spe-
cific instrumental signal used for training, is a
nonnegative matrix that involves bases of the target signal as
column vectors, and is a nonnegative matrix that
corresponds to the activation of each basis of . In addition,
is the number of frequency bins, is the number of frames of
the training signal, and is the number of bases. Therefore, the
basis matrix constructed by (7) is used for the supervision of
the target instrumental spectrum.
The following equation represents the decomposition model

in the separation process with trained supervision :

(8)

where is the observed spectrogram,
is the activation matrix that corresponds to , is
the residual spectral patterns that cannot be expressed by ,
and is the activation matrix that corresponds to
. Moreover, is the number of frames of the observed signal

and is the number of bases of . Strictly speaking, some
papers call this method semi-supervised NMF to discriminate
between the words “semi-supervised” (only the target sound
is trained) and “fully supervised” (the target and interference
sounds are trained). However, we simply describe this method
as “supervised” in this paper because we do not intend to com-
pare semi-supervised and fully supervised cases, as reported in
other papers. In SNMF, the matrices , , and are optimized
under the condition that is known in advance. Hence, ide-
ally represents the target instrumental component and rep-
resents other interfering components after the decomposition.
The cost function for (8) is defined as

(9)

Also, the update rules for (9) are given by

(10)

(11)

(12)

where , , , , and are the nonnegative entries
of the matrices , , , , and , respectively, and

(13)

Fig. 2. Configuration of directional clustering.

This supervised method can separate the target signal to some
extent, particularly in the case of a small number of sources.
However, for the case of a mixture consisting of many sources,
such as more realistic musical tunes, the source extraction per-
formance is markedly degraded because of the existence of in-
struments with similar timbre.

B. Conventional Multichannel Signal Separation Methods

1) Directional Clustering: Decomposition methods em-
ploying directional information of the multichannel signal have
also been proposed as unsupervised separation techniques [12],
[13]. In this paper, we only focus on the gain-based directional
clustering method, which is a simple version of the technique
in [12]. Fig. 2 shows the configuration of directional clustering.
First, the time-frequency components of a stereo mixed signal

are represented in a two-dimensional space
having the amplitude of each channel as the coordinate axes,
where and are the amplitudes of the left and right
channels, respectively. Next, these components are normalized
over the unit circle to make apparent clusters, which corre-
spond to each directional component. Finally, these clusters are
separated by the -means clustering method. Therefore, this
method is equivalent to the quantization of directional informa-
tion via time-frequency binary masking under the assumption
that the sources are completely sparse (double disjoint) in the
time-frequency domain.
Such directional clustering works well, even in an under-

determined situation. However, there is an inherent problem
that sources located in the same direction cannot be separated
using the directional information. Furthermore, the extracted
signal is likely to be distorted because of the effect of binary
masking in directional clustering. The signal in the target di-
rection, which is obtained by directional clustering, has many
spectral chasms because the assumption of sparseness in the
time-frequency domain does not always hold completely. In
other words, the resolution of the spectrogram clustered as the
target-direction components is degraded by time-frequency bi-
nary masking. Fig. 3 shows an example of the spectrum of a
signal separated by directional clustering. The obtained spec-
trum has many chasms owing to the binary masking.
2) Multichannel NMF: Multichannel NMF, which is a

natural extension of NMF for a stereo or multichannel music
signal, has been proposed as an unsupervised signal separation
method [10], [11]. The algorithms used in this method employ
a Hermitian positive definite matrix that models the spatial
property of each NMF basis and each frequency bin. Therefore,
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Fig. 3. Example of spectrum of signal separated by directional clustering.

multichannel NMF utilizes a frequency-wise transfer function
between the signal source and microphone as a cue for basis
clustering. However, such unsupervised separation is a difficult
problem, even if the signal has multichannel components,
because the decomposition is underspecified. Hence, these
algorithms involve strong dependence on initial values and lack
robustness.

III. SNMF WITH SPECTROGRAM RESTORATION
AND HYBRID METHOD

A. SNMF with Spectrogram Restoration
1) Motivation and Strategy: To separate the target source uti-

lizing directional information, we can guess a hybrid method
that concatenates SNMF after directional clustering (hereafter
referred to as naive hybrid method). This hybrid method can ef-
fectively extract the target instrument because the directionally
clustered signal contains only a few instruments. Moreover, the
residual interfering signal in the same direction can be removed
by SNMF.
However, such naive hybrid method has a problem that the

extracted signal may suffer from the generation of considerable
distortion. This is because the spectrogram obtained from direc-
tional clustering has many spectral chasms owing to the binary
masking procedure. These spectral losses may deteriorate the
separation performance because SNMF is forced to incorrectly
fit these spectral chasms using supervised bases. To solve this
problem, in this section, we propose a new SNMF with spec-
trogram restoration as an alternative to the conventional SNMF
for the hybrid method [17].
Fig. 4 shows the signal flow in the proposed hybrid method

that includes SNMF with spectrogram restoration. The algo-
rithm of SNMF with spectrogram restoration utilizes index
information determined in directional clustering. For example,
if the target instrument is localized in the center cluster along
with the interference, SNMF is only applied to the existing
center components using index information (active binary
mask). Therefore, the spectrogram of the target instrument
is reconstructed using more matched bases because spectral
chasms are treated as unseen, and these chasms have no impact
on the cost function in SNMF with spectrogram restoration.
In addition, the components of the target instrument lost after
directional clustering can be extrapolated using the supervised
bases. In other words, the deteriorated target spectrogram is
recovered with the spectrogram restoration via supervised basis
extrapolation. Furthermore, a soft directional mask, which
employs probabilities instead of binary indexes, can also be
applied to the proposed hybrid method (see Appendix A).

Fig. 4. Signal flow of proposed hybrid method; SNMF with spectrogram
restoration is performed after directional clustering.

The proposed method requires directional information of the
target signal, namely, we have to know which directional cluster
includes the target signal. In this paper, the target signal is al-
ways located in the center direction, and such a priori informa-
tion for the direction is given. However, when the target signal
is located in an other direction, we can apply the proposed hy-
brid method in the same manner. In addition, even if the target
direction is unknown, we can obtain the separated signal by ap-
plying SNMF with spectrogram restoration to all the directions
(clusters) and choosing the result with the highest quality.
To illustrate the separation mechanism step by step,

Fig. 5(a) shows the direction of arrival (D.O.A.) histogram
of each source (shaded with various patterns to distinguish
the sources) in the stereo signal, (b) shows the separated
components that are clustered around the center direction
after directional clustering, and (c) shows the separated target
component obtained by SNMF with spectrogram restoration.
In Fig. 5(a), the source components are distributed in all
directions with some overlapping. This is because the sound
sources are received with the room reverberation. After direc-
tional clustering (Fig. 5(b)), the center sources lose some of
their components (i.e., the tails on both sides), and the other
source components leak in the center cluster. The lost tail of
the center sources corresponds to the binary-masked points in
the time-frequency domain, and the leaked tails in the center
cluster are the components of left- and right-side interference
sources, which are not masked in directional clustering. After
SNMF with spectrogram restoration, the proposed algorithm
restores the lost components by supervised basis extrapolation
(Fig. 5(c)).
However, this basis extrapolation includes an underlying

problem. If the time-frequency spectra are almost unseen in
the spectrogram, which means that the indexes are almost all
zero, a large extrapolation error may occur. Then, incorrect
bases are chosen and fitted to a small number of time-frequency
points by incorrectly modifying the activation matrix . In the
worst case, the activation matrix contains very large values
at a specific time. For example, when only one grid point is
observed and the other points are masked in a frame, this frame
is able to be extrapolated with any type of supervised bases.
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Fig. 5. Directional source distribution of (a) observed stereo signal, (b) sepa-
rated components in center cluster, and (c) component separated and extrapo-
lated by spectrogram restoration.

If such an observed grid point has large value but the chosen
basis has a spectral valley at this grid point, a large gain of is
generated for the chosen basis; this leads to unexpected spectral
peaks outside the observed grid point. Such an extrapolation
error generates very loud and unnatural sounds in the waveform
domain. To avoid this, we should add a new penalty term [18]
in the cost function, as described in the next section.
2) Cost Function: We define the cost function of SNMF

with spectrogram restoration using -divergence. Here, the
index matrix is obtained from the binary masking
preceding the directional clustering. This index matrix has
specific entries of unity or zero, which indicates whether or not
each grid point of the spectrogram belongs to the target direc-
tional cluster. The cost function in SNMF with spectrogram
restoration is defined using the index matrix as

(14)

where is the set of objective variables, is
an entry of the index matrix , and are the weighting param-
eters for each term, is a Frobenius norm, and repre-
sents the binary complement of each entry in the index matrix.

The first term represents the main cost of separation in SNMF.
Since the divergence is only defined in spectral grid
point whose index is one, the chasms in the spectrogram are
ignored in this SNMF decomposition. The second term forces
the minimization of the value of . Hence, the su-
pervised bases are chosen so as to minimize the scale of in
proportion to the number of zeros in the index matrix in each
frame to avoid the extrapolation error [18]. In other words, this
penalty term regulates the extrapolation. As another means of
avoiding the extrapolation error, some people may guess that a
simple sparse regularization for the activation can also be in-
troduced instead of the proposed regularization. This issue will
be discussed in Appendix B. The third penalty term forces the
other bases to become as different as possible from the super-
vised bases and can improve the separation performance [19].
3) Auxiliary Function Technique: The update rules of NMF

are usually derived by the auxiliary function technique, which
is an extension of the expectation-maximization algorithm. To
explain this technique, let us consider a general optimization
problem of finding an optimum parameter vector that
satisfies

(15)

where is a cost function. In the auxiliary function technique,
we have to find an auxiliary function satisfying

(16)

where are called auxiliary variables. Then, instead of di-
rectly minimizing the cost function , the auxiliary func-
tion is minimized in terms of and , alternately.
The iterative update rules are obtained as

(17)

(18)

In these updates, a monotonic decrease in is guaranteed.
In addition, the update rules of auxiliary variables in an NMF-
based method can usually be written in a closed form, and we
can obtain efficient update rules for NMF variables.
4) Derivation of Update Rules: Similarly to in [16], we de-

rive the update rules based on -divergence using an auxiliary
function technique. Here, we rewrite the cost function (14) using
-divergence as

(19)

(20)

(21)

(22)

where constant terms are omitted.
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First, we define the upper-bound function for . The first
term of is convex for and concave for , and
the second term is convex for and concave for
. Applying Jensen’s inequality to the convex function and the
tangent line inequality to the concave function, we can define the
upper-bound function using auxiliary variables ,

, , , and that satisfy ,
, and as

(23)

where

(24)

(25)

(26)

The equality in (23) holds if and only if the auxiliary variables
are set as follows:

(27)

(28)

(29)

(30)

(31)

Therefore, (27)–(31) are the update rules for auxiliary variables
, , , , and , which correspond to (17).

Second, we define the upper-bound function for . This term
is convex for and concave for . Similarly to
(23)–(26), we can define the upper bound function using
auxiliary variables and as

(32)

where

(33)
The equality in (32) holds if and only if the auxiliary variable

is set as (27) and is set as follows:

(34)

Similarly to (27)–(31), (34) is the update rule for the auxiliary
variable .
Third, we define the upper-bound function for using the

auxiliary variable that satisfies as

(35)

The equality in (35) holds if and only if the auxiliary variable is
set as follows:

(36)

Equation (36) is the update rule for the auxiliary variable .
Finally, using (23), (32), and (35), we can define the upper-

bound function as

(37)

where is the set of auxiliary variables. The update rules with
respect to each variable are determined by setting the gradient
to zero.
From , we obtain

(38)

where

(39)

(40)

(41)

By solving (38) for assuming nonnegativity, we obtain

(42)
This equation is one of the updates of the primary variables
and corresponds to (18). Then we can obtain more efficient up-
date rules of by substituting the update rules of the auxiliary
variables (27), (29), (31), and (34) into (42) as follows:

(43)

where is given by

(44)
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The update rules of the other variables are similarly obtained as
follows:

(45)

(46)

where is given by

(47)

The convergence of these update rules has been theoretically
proven for all real values of and [16].

B. Experimental Analysis of Basis Extrapolation Based on
Generation Model
1) Optimal Divergence for Basis Extrapolation and Gener-

ation Model: The proposed method attempts both signal sep-
aration and basis extrapolation using the supervised bases .
In previous studies, the analysis of optimal divergence has been
discussed for signal separation [19], [20]. However, there has
been no discussion on the optimal divergence for the extrapola-
tion techniques using NMF. In this section, we experimentally
analyze the extrapolation ability based on a statistical generation
model of the observed data , and determine the optimal diver-
gence for basis extrapolation for various and values [21].
In NMF decomposition, the minimization of -divergence

between and corresponds to a log-likelihood maximiza-
tion under the assumption of the generation model of for
each [22]. The minimization of is equivalent to
the maximization of . Here, we can rewrite

as

(48)
where represents a parameter of the max-
imum likelihood estimation. A probability density function
(p.d.f.) that corresponds to (48) is given by

(49)
where is a gamma function. These generation models of

, 1, and 2 are equivalent to exponential, Poisson, and
Gaussian distributions, respectively. The generation models for

correspond to a distribution in which the probability in-
creases exponentially with increasing . Strictly, such a dis-
tribution is not a p.d.f. because it diverges when increases.

Thus, we set the upper bound of to a constant and de-
fine the corresponding p.d.f. with normalization coefficient ,
which is given by

(50)

Using (49), we can generate the most probable spectrogram for
each .
2) Simulation Conditions: To analyze the net extrapolation

ability, we simulated the spectrogram restoration task. In this
simulation, we generated random i.i.d. values, which obey the
corresponding generationmodel (49) for each , as the observed
data matrix . We compared , 1, 2, 3, 4 and , 1,
2, 3, and we used the same divergence in the training and
separation processes. The size of this data matrix was set to

and . We set the parameters of each p.d.f.
to , , , , , and .
These parameters were determined so as to generate nonnega-
tive random i.i.d. values that obey each corresponding gener-
ation model. Note that the parameters – simply determine
the scales of the input random variables and basically can be
set to arbitrary values without loss of generality. In addition, we
used two types of data-missing pattern , in which 75% or 98%
of the spectral grid points were missing in a uniform manner,
and the missing data imitated the binary-masking proce-
dure. The supervised bases were obtained by training using
the same data matrix , namely, in (7) and (8). The
number of supervised bases, , was 100, which is the half the
value of , and the number of other bases, , was 30. Therefore,
the task was to reconstruct the original from the observations
with missing data, , using the trained bases.
3) Simulation Results and Discussion: We used the sources-

to-artifacts ratio (SAR) defined in [23] as the accuracy of the
extrapolation. In this task, the observed signal does not have
any interference sources. Therefore, SAR, which measures the
absence of artificial distortion, is a good evaluation score for the
restoration of the target signal. Here, the estimated signal
is defined as

(51)

where is the allowable deformation of the target
source, is the allowable deformation of the sources
that account for the interference of the undesired sources, and

is an artifact term that may correspond to the artifacts
of the separation algorithm, such as musical noise, or simply
undesirable deformation induced by the nonlinear property of
the separation algorithm. The formula for SAR is defined as

(52)

Fig. 6 shows the SAR result for each divergence and regular-
ization. From this result, it is confirmed that a higher pro-
vides better basis extrapolation regardless of the type of regu-
larization ( ). In NMF decomposition, if we set to a large
value, the trained bases tend to become anti-sparse (smooth). In
contrast, if is close to zero, the trained bases become more
sparsity-aware, and this property is suitable for normal NMF-
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Fig. 6. Extrapolation abilities for (a) 75%-binary-masked data and (b) 98%-
binary-masked data.

Fig. 7. Conceptual illustration of trade-off between separation and extrapola-
tion abilities. The overall performance is highest when .

based music source separation because of the inherent sparsity
of music spectrograms (e.g., is recommended in [19],
[20]). However, for basis extrapolation, sparse bases are not
suitable because it is difficult to extrapolate them only from the
observable data. Therefore, we speculate that the optimal diver-
gence in SNMF with spectrogram restoration, which attempts
to fit the trained bases using spectral components except for
chasms, is shifted to rather than KL-divergence ( )
because of the trade-off between separation and extrapolation
abilities, as illustrated in Fig. 7. This issue will be confirmed
experimentally in the next section.

C. Comparison Between Proposed Hybrid Method and
Conventional Methods
1) Experimental Conditions: We conducted an objective

evaluation to confirm the effectiveness of the proposed hybrid
method described in the previous section. In this experiment, we
compared the separation performance of six methods, namely,
simple directional clustering [12], multichannel NMF [11] and
its supervised version (supervised multichannel NMF), simple
SNMF [19], naive hybrid method described in Section III-A1,
and the proposed hybrid method including SNMF with spec-
trogram restoration after directional clustering, in terms of their
ability to separate artificial and real-recorded music signals.
The supervised multichannel NMF employs a priori training
of the target spectral bases as well as SNMF and the hybrid
methods, and we initialized the spatial covariance matrices
of the supervised bases as the center direction for directional
supervision of the target source. Also, we compared evaluation
scores obtained with various and for SNMF, naive hybrid
method, and the proposed hybrid method by setting five diver-
gences and three regularizations, namely, , 1, 2, 3, 4 and

, 1, 2. We used the same divergence ( ) in the training
and separation processes for the supervised methods.
In this evaluation, we conducted two experiments to consider

artificial signal and real-recorded signal cases. We used stereo
signals containing four melody parts (depicted in Fig. 8) with
three compositions (C1–C3) of instruments as shown in Table I.

Fig. 8. Scores of each part.

Fig. 9. Scores of each training sound that contain notes over two octaves. Note
that only target instrumental sound is used in training stage.

TABLE I
COMPOSITIONS OF MUSICAL INSTRUMENTS

The training signal consisted of notes over two octaves
that covered all the notes of the target instrument in the ob-
served signal (see Fig. 9). This was artificially generated by a
YAMAHA MU-1000 PCM-based MIDI synthesizer (hereafter
referred to as Tone Generator A). Note that only the target in-
strument was trained in the training stage. We prepared three
types of observed test signals , namely, test signals generated
by Tone Generator A, another type of PCM-based MIDI syn-
thesizer Microsoft GS Wavetable Synth (hereafter referred to
as Tone Generator B), and Garritan Personal Orchestra 4 (here-
after referred to as Tone Generator C). The test signal gener-
ated by Tone Generator A has the same timbre as the training
sound, meaning that the best supervised bases were given for
the separation task. The test signal generated by Tone Generator
B provides different synthesized instrumental sounds, and that
generated by Tone Generator C imitates more realistic sounds
based on professionally recorded sample sounds. In addition,
when using Tone Generator B and Tone Generator C, we added
independent white Gaussian noises to the left and right chan-
nels of the observed signal with dB to simulate
background noise. In particular, these stereo signals were mixed
down to a monaural format only when we evaluated the separa-
tion accuracy of SNMF because SNMF is a separation method
for a monaural input signal. .
In the artificial signal case, the observed signals were pro-

duced by mixing four sources with the same power. The ob-
served signal contained one source each in the left and right di-
rections and two sources in the center direction based on the sine
law (see Fig. 10(a)). The target instrument was always located
in the center direction along with another interfering instrument,
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Fig. 10. Location of four sources with sine law used in (a) artificial signal and
(b) real-recorded signal cases. Numbered black circles represent locations of
instruments in stereo format. The angle of left- and right-side sources are

in artificial signal case and with in real-recorded signal case.

and we prepared two patterns in which the left and right sources
were located at and 45 , respectively. The sampling
frequency of all the signals was 44.1 kHz. The spectrograms
were computed using a 92-ms-long rectangular window with a
46 ms overlap shift. These STFT settings were determined so as
to obtain sufficient frequency resolution. The number of itera-
tions used for the training and separation were 500. The number
of a priori bases, , was set to 100 to prepare four bases for
each of the training notes (24 notes). In addition, the number
of clusters used in directional clustering was 3, the number of a
priori bases, , was 100, and the number of bases for matrix ,
, was 30. The weighting parameter for the orthogonal penalty,
, was set to 10000 because suitably chosen high value gives

a good separation result [19]. The weighting parameter for the
regularization term, , affects the extrapolation and quality of
separated sound. In this experiment, was set to the optimal
value based on the development dataset, which comprised the
observed signals whose target was an oboe. The rest of the ob-
served signals were used as a test dataset.
In the real-recorded signal case, we recorded each instru-

mental solo signal and the supervision sound, which were gen-
erated by Tone Generator A, using a NEUMANN KU 100 bin-
aural microphone in an experimental room whose reverbera-
tion time was 200 ms. The levels of background noise and the
sound source measured at the microphone were 37 dB(A) and
60 dB(A), respectively. The geometry of the loudspeaker and
binaural microphone is shown in Fig. 10(b), where .
The target source and the supervision soundwere always located
at position No.1 in Fig. 10(b). The observed signal was pro-
duced by mixing these recorded signals at the same power. The
other conditions were the same as those of the artificial signal
case.
2) Experimental Results: We used the signal-to-distortion

ratio (SDR) defined in [23] as the evaluation score. The formula
for SDR is defined as

(53)

SDR indicates the total evaluation score, which involves
the quality of the separated target sound and the degree of
separation.
Figs. 11–13 show the average SDR scores of the proposed

hybrid method and the other methods for each divergence ( )
and each regularization ( ) in the artificial signal case with

Fig. 11. Average SDR scores in artificial signal case using Tone Generator A
when (a) and (b) .

and , where the four instruments are shuf-
fled with 12 combinations in each of the compositions C1–C3,
and three input signals whose target is the oboe are used as a
development dataset. Therefore, these results are the averages
of 33 input signal patterns (test dataset). Also, Fig. 14 shows
the average SDR scores in the real-recorded signal case. From
the SDR scores in Figs. 11––14, we can confirm that direc-
tional clustering andmultichannel NMF do not have satisfactory
performance because they cannot discriminate the sources in
the same direction. Supervised multichannel NMF also cannot
achieve satisfactory separation performance. For this reason, it
is expected that (a) this method should be used to classify four
source clusters with two-channel inputs, compared with two
clusters (target and the rest; and ) in SNMF, and (b) as
the number of clusters increases, this method should optimize
more parameters such as spatial covariance matrices and latent
variables, even if the target bases are given. In particular, the
scores of multichannel NMF in Figs. 12–13 are markedly worse.
In multichannel NMF, we must cluster the decomposed bases
using their spatial covariance matrices to achieve the separation.
However, if the diffuse noise exists, this method cannot separate
the target signal well because such spatially uniform noise in-
terferes with the clustering of decomposed bases. In contrast,
SNMF-based methods can reduce such background noise by
pushing them into the non-target component as interfering
sources. This result shows an advantage of SNMF methods in
terms of the robustness against the background noise. Also,
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Fig. 12. Average SDR scores in artificial signal case using Tone Generator B
with white noise when (a) and (b) .

in artificial signal cases, the sources are spatially arranged ac-
cording to only the difference of amplitudes (sine law) between
channels. Therefore, two sources at the center (Nos. 1 and 4 in
Fig. 10(a)) have identical spatial properties. Thus, multichannel
NMF cannot distinguish these sources and never achieves good
separation in artificial signal cases. In contrast, for the real-
recorded signals, supervised multichannel NMF achieves a cer-
tain level of separation because the two sources at the center
direction have different room transfer functions (i.e., different
spatial covariance matrices) as shown in Fig. 10(b).
The methods using SNMF give better results and the pro-

posed hybrid method using SNMF with spectrogram restora-
tion outperforms all other methods in both artificial and real-
recorded signal cases. The naive hybrid method is inferior to
SNMF when , where this hybrid method utilizes both
directional clustering and SNMF. This is because the naive hy-
brid method is affected by spectral chasms and cannot recon-
struct such lost components. Furthermore, we can confirm that
the EUC-distance-based cost function ( ) is the optimal
divergence for the proposed hybrid method, whereas KL-diver-
gence ( ) is the best divergence even for conventional
SNMF [19], [20]. This marked shift of the optimal divergence
for SNMF with spectrogram restoration is due to the trade-off
between the separation and extrapolation abilities, as predicted

Fig. 13. Average SDR scores in artificial signal case using Tone Generator C
with white noise when (a) and (b) .

Fig. 14. Average SDR scores in real-recorded signal case when .

in Section III-B. In addition, the regularization with KL-diver-
gence ( ) is slightly better than that with the other diver-
gences but the difference is not significant, except when .

IV. SNMF WITH SPECTROGRAM RESTORATION BASED
ON ADAPTIVE DIVERGENCE

A. Divergence Dependence on Local Chasm Condition
In Section III, we revealed the mechanism of the shift in the

optimal divergence in the SNMF methods. This shift is due to
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the trade-off between separation and extrapolation abilities. The
optimal divergence for SNMF with spectrogram restoration de-
pends on the density of spectral chasms in each time frame of the
spectrogram obtained by the preceding directional clustering.
Therefore, the optimal divergence temporally fluctuates because
the spatial condition is not consistent in a general music signal,
and the divergence of SNMF should be automatically changed
in each time frame. To solve this problem, in this section, we
propose a new scheme for framewise divergence selection to
separate the target signal using the optimal divergence.
If there are many chasms in a frame of the binary-masked

spectrogram, it is preferable for SNMF to have high extrapola-
tion ability. In contrast, if the density of chasms is low, separa-
tion ability is required rather than extrapolation ability. There-
fore, it is expected that EUC-distance should be used in the
frames with many chasms and KL-divergence should be used in
the other frames. To improve the total separation performance of
SNMFwith spectrogram restoration for all types of input signal,
we introduce an adaptive-divergence-based cost function as de-
scribed in the next section.

B. Cost Function and Update Rules
Considering the above-mentioned dependence of divergence

on the local chasm condition, we propose to adapt the diver-
gence in each frame of the spectrogram so that it is the optimal
value according to the density of chasms in each frame and a
threshold value ( ), where the density of chasms

can be calculated from the index matrix . A straightfor-
ward but naive extension to this purpose is to apply independent
SNMF with spectrogram restoration to short-time-period data
while switching the divergence in an online manner (hereafter
referred to as online hybrid method). In this method, however,
the size of each input matrix becomes small and the dimension-
ality is reduced. This degrades the separation performance be-
cause the trained bases can represent any small-dimension
matrix and no component is pushed into the interference .
To cope with this problem and maintain sufficient dimension-

ality of the matrix, we propose a new batch SNMF with spec-
trogram restoration that includes an adaptive-divergence-based
cost function covering the whole input matrix (see Fig. 15). The
proposed cost function is defined as

(54)

(55)

(56)

(57)

where and are the supervised
basis matrices trained in advance using KL-divergence-based

Fig. 15. Adaptive divergence algorithm in proposed method.

NMF and EUC-distance-based NMF, respectively. Also,
and are the entries of and , respectively,
and are the weighting parameters for each term, and

. The divergence is determined from and in each
frame. Therefore, this method can be considered as framewisely
adaptive SNMF (hereafter referred to as adaptive-divergence-
based hybrid method) to achieve both optimal separation and
extrapolation.
The update rules based on (54) are obtained by the auxiliary

function approach. Similarly to in Section III-A2, we can design
the upper-bound function using auxiliary variables
, , , , , and that
satisfy , , , and

as

(58)

(59)

where

(60)

(61)

(62)
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(63)

(64)

(65)

(66)

The equality in (59) holds if and only if the auxiliary variables
are set as in (28) and as follows:

(67)

(68)

(69)

(70)

(71)

The update rules are obtained as follows by differentiating the
upper-bound function (58) w.r.t. each objective variable and
substituting of the equality conditions (67)–(71);

(72)

(73)

(74)

where , , , and are given by

(75)

(76)

(77)

(78)

The update rules of SNMF with spectrogram restoration based
on adaptive divergence are defined as (72)–(74).

C. Evaluation Experiment
1) Experimental Conditions: To confirm the effectiveness of

the proposed algorithm, we compared seven methods, namely,
SNMF based on KL-divergence and EUC-distance [19], simple
directional clustering [12], multichannel NMF [11] and its

Fig. 16. Scores of each part. The observed signal consists of four measures.

TABLE II
SPATIAL CONDITIONS OF EACH DATASET

supervised version, the conventional hybrid method based on
KL-divergence and EUC-distance, the online hybrid method
described in Section IV-B, and the proposed hybrid method
that uses adaptive divergence.
In this experiment, similarly to in Section III-C1, we pro-

duced artificial and real-recorded stereo signals containing four
melody parts (depicted in Fig. 16) with the three compositions
(C1–C3) of instruments shown in Table I. The artificial training
and observed signals were generated with the same conditions
in Section III-C1. These stereo signals were mixed down to a
monaural format only when we evaluated the separation accu-
racy of SNMF. In addition, we prepared four spatially different
dataset patterns of the observed signals, SP1–SP4, as shown in
Table II. Note that the target signal was always located in the
center direction along with another interference signal as shown
in Fig. 10, and the left- and right-side interference signals were
instantaneously moved to the center direction in the middle of
the song for SP1–SP3. In the hybrid method, a large number of
chasms were produced by directional clustering in the measures
with compared with those with . Therefore,
we expected that EUC-distance-based hybrid method would be
suitable for the dataset of SP4 rather than the dataset of SP1.
The threshold value was set to 20%, which appears to be rela-
tively small. This is because the separated sound quality is par-
ticularly important in music signal separation and the spectral
chasms should be actively extrapolated. The type of regulariza-
tion was . The other experimental conditions were the
same as those in Section III-C1.
2) Experimental Results: Fig. 17 shows the average SDR

scores for each method and each dataset pattern. These results
are the averages of 33 input signal patterns, similarly to in
Section III-C1. The SDR scores of SNMF are the same for all
datasets because the input signals for SNMF were mixed down
to a monaural format.
From these results, the KL-divergence-based hybrid method

achieves high separation accuracy for the datasets of spatial
patterns SP1 and SP2 because these signals do not have many
spectral chasms. On the other hand, the EUC-divergence-based
hybrid method achieves high separation accuracy for SP4.
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Fig. 17. Average SDR scores of each method and each spatial condition in
(a) artificial signal case using Tone Generator A, (b) artificial signal case using
Tone Generator B with white noise, (c) artificial signal case using Tone Gener-
ator C with white noise, and (d) real-recorded signal case.

This dataset has many spectral chasms because the signals are
mixed with a wide panning angle ( ), which yields
many chasms, and high extrapolation ability is required. In

addition, the proposed hybrid method with adaptive divergence
achieves better separation for all datasets regardless of whether
or not many chasms exist. This is because the proposed method
selects the appropriate divergence and can automatically apply
the optimal divergence to each time frame.

D. Experimental Comparison Between
Adaptive-Divergence-Based Hybrid Method and
Another Strategy

1) Parallel Divergence Method: As another means of ap-
plying multiple divergence to a whole spectrogram (batch
method), the following method can also be considered for
the adaptation of divergence. First, we divide the whole
spectrogram into two parts, and , based on the
density of chasms and threshold , where consists
of the frames with greater than and consists of the
other frames. Then, we apply the EUC-distance-based and
KL-divergence-based proposed methods to and , re-
spectively, in parallel. Finally, the separated whole spectrogram
is reconstructed by concatenating the frames of the separated
spectrograms in the original order. Hereafter we refer to this
method as parallel-divergence-based hybrid method. In this
method, the update rules of and are equivalent to (72)
and (74), respectively. The difference between the parallel- and
adaptive-divergence-based hybrid methods is how to deal with
the interference matrix . In the adaptive-divergence-based
hybrid method, a single is optimized over all the frames
in (thus, the dimensionality of is identical to that of
). On the other hand, the parallel-divergence-based hybrid

method prepares two interference matrices, and
for and , respectively, whose frames are

disjoint and whose dimensionality is reduced compared with
that of . Generally speaking, in the SNMF-based methods, the
dimensionality of the input spectrogram affects the separation
accuracy. This is because the interference matrix becomes
an effective low-rank representation that ensures the success
of separation when the number of frames increases. Therefore,
we expect the parallel-divergence-based hybrid method to
underperform compared with the adaptive-divergence-based
hybrid method because the numbers of frames in and

are small. This phenomenon is also expected to become
more apparent as the number of frames in decreases. This
will be experimentally confirmed in the next subsection.
2) Conditions and Results: We compared the two proposed

hybrid methods based on adaptive and parallel divergence. We
used three different lengths of the observed signals, which con-
sist of two, three, and four measures with four melody parts
(depicted in Fig. 16). As the spatial conditions, SP1 and SP2
were generated for the two-measure signal, SP1–SP3 were gen-
erated for the three-measure signal, and SP1–SP4 were gen-
erated for the four-measure signal, which were used in addi-
tion to the spatial conditions in Section IV-C. Similarly to in
Section IV-C1, we produced artificial and real-recorded stereo
signals containing the three compositions (C1–C3) of instru-
ments shown in Table I. For the parallel divergence method, we
set the number of bases in and to 30. The other ex-
perimental conditions were the same as those in Section IV-C1.
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Fig. 18. Average SDR scores of each method and each spatial condition in
artificial signal case using Tone Generator A: (a) two-measure-signal, (b) three-
measure-signal, and (c) four-measure-signal.

Fig. 19. Average SDR scores of each method and each spatial condition in
artificial signal case using Tone Generator B with white noise: (a) two-measure-
signal, (b) three-measure-signal, and (c) four-measure-signal.

Fig. 20. Average SDR scores of each method and each spatial condition in
artificial signal case using Tone Generator C with white noise: (a) two-measure-
signal, (b) three-measure-signal, and (c) four-measure-signal.

Figs. 18–21 show the average SDR scores for each method
and each case. From these results, we can confirm that the adap-
tive-divergence-based hybrid method outperforms the parallel-
divergence-based hybrid method for all tasks. The degree of su-
periority is marked when the input signal is short (e.g., com-
pare Fig. 18(a) with Fig. 18(c)), as predicted in the previous
subsection.

V. CONCLUSION

In this paper, we first proposed a newmultichannel signal sep-
aration method, i.e., a hybrid method that combines SNMF with

Fig. 21. Average SDR scores of each method and each spatial condition in
real-recorded signal case: (a) two-measure-signal, (b) three-measure-signal, and
(c) four-measure-signal.

spectrogram restoration after directional clustering. Via extrap-
olation of supervised spectral bases, the proposed SNMF with
spectrogram restoration attempts both target signal separation
and the reconstruction of the lost target components, which are
generated by the preceding binary masking performed in direc-
tional clustering.
Secondly, from experimental analysis based on the generation

model of the signal, it was revealed that the optimal divergence
in SNMF with spectrogram restoration, which attempts to fit the
trained bases using spectral components except for the chasms,
is shifted to an anti-sparse divergence rather than KL-diver-
gence. This was due to the fact that a trade-off exists between
the separation and extrapolation abilities in SNMF. An experi-
ment evaluating the separation using artificial and real-recorded
music signals showed the effectiveness of the proposed hybrid
method.
Finally, on the basis of this finding, we also proposed an im-

proved hybrid method based on adaptive divergence. The pro-
posedmethod adapts the divergence in each frame to the optimal
one using a threshold value for the density of chasms to sepa-
rate and extrapolate the target signal with high accuracy. Exper-
imental results showed that our proposed method can achieve
high separation accuracy under all spatial conditions.

APPENDIX A
HYBRID METHOD WITH SOFT DIRECTIONAL MASK

Instead of employing a hard clustering method for directional
separation, we can apply soft directional clustering, which
provides a soft time-frequency mask. Various types of soft
mask have been proposed [24]–[27]. Here, we generated a soft
mask using MESSL as proposed in [27]. In MESSL, we chose
the specific set of parameters, , with frequency-independent
Gaussian model for interaural level and phase differences [27],
which gave the best SDR score in our task.
To evaluate the efficacy of the soft-mask-based hy-

brid method, we conducted the experiment described in
Section III-C with a real-recorded signal case. Simple soft
directional clustering [27] gives an SDR of less than 5 dB.
Fig. 22 shows a comparison of the SDR between the proposed
hybrid methods using hard and soft directional masks with
SNMF. From these results, the hybrid method with a soft mask
slightly improves the SDR, although a clear improvement is
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Fig. 22. Average SDR scores of hybrid methods with hard and soft masks in
real-recorded signal case.

Fig. 23. Average SDR scores with sparse and proposed regularizations in (a) ar-
tificial signal case using Tone Generator A, (b) artificial signal case using Tone
Generator B with white noise, (c) artificial signal case using Tone Generator C
with white noise, and (d) real-recorded signal case.

not obtained. This is because even if all the target components
are lost in some STFT grid points as a result of binary masking,
SNMF with spectrogram restoration can reconstruct the lost
target components by basis extrapolation. Thus, the restoration
ability does not depend on the type of directional mask.

APPENDIX B
SPARSE REGULARIZATION FOR ACTIVATION MATRIX

To avoid the extrapolation error, the sparse regularization for
can also be used. This can be achieved by substituting the

following equation for term in (19):

(79)

where or 2, which corresponds to or norm of .
This penalty term increases sparseness of .
To compare the separation performance in the cases of (79)

and (21), we conducted the same experiment in Section III-C.
The results are shown in Fig. 23. From these results, sparse reg-
ularization for can also avoid the extrapolation error but the
scores do not outperform that of the proposed penalty. This is
because the proposed penalty only affects the frames that have
many chasms whereas the penalty in (79) imposes unnecessary
sparseness to all the frames.
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