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Abstract—In this paper, we present novel speaking-aid systems
based on one-to-many eigenvoice conversion (EVC) to enhance
three types of alaryngeal speech: esophageal speech, electrolaryn-
geal speech, and body-conducted silent electrolaryngeal speech.
Although alaryngeal speech allows laryngectomees to utter speech
sounds, it suffers from the lack of speech quality and speaker
individuality. To improve the speech quality of alaryngeal speech,
alaryngeal-speech-to-speech (AL-to-Speech) methods based on
statistical voice conversion have been proposed. In this paper,
one-to-many EVC capable of flexibly controlling the converted
voice quality by adapting the conversion model to given target
natural voices is further implemented for the AL-to-Speech
methods to effectively recover speaker individuality of each type
of alaryngeal speech. These proposed systems are compared with
each other from various perspectives. The experimental results
demonstrate that our proposed systems are capable of effectively
addressing the issues of alaryngeal speech, e.g., yielding significant
improvements in speech quality of each type of alaryngeal speech.

Index Terms—Alaryngeal speech, eigenvoice conversion, laryn-
gectomees, speech enhancement, voice conversion.

I. INTRODUCTION

ATIENTS who suffer from laryngeal cancer require total

laryngectomy, which is a surgical operation to remove
the larynx and tissues around the larynx such as the vocal
folds. People who have undergone total laryngectomy, called
laryngectomees, cannot speak in the usual manner owing to the
removal of their vocal folds. Because speech is one of the most
popular methods of human communication, laryngectomees
experience inconvenience in many situations of their daily life.
Therefore, they desire to be able to speak using medical devices
or following rehabilitation in order to reintegrate into their indi-
vidual, social, and regular activities. To accomplish their wish,
alternative speaking methods to produce speech sounds using
residual organs or medical devices instead of vocal cords have
been used. Speech sounds generated by alternative speaking
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Fig. 1. Alternative speaking methods for laryngectomees: (a) to produce
esophageal (ES) speech, (b) to produce electrolaryngeal (EL) speech, and (c) to
produce silent electrolaryngeal (silent EL) speech.

methods without vocal fold vibration are called alaryngeal
speech.

There are various alternative speaking methods. In this
paper, three speaking methods shown in Fig. 1 are focused
on. Among them, the speaking methods for esophageal speech
(ES speech) and electrolaryngeal speech (EL speech) are the
most popular methods in Japan. The speaking method for ES
speech is one of the alternative speaking methods that generate
alaryngeal speech with residual organs. ES speech is generated
by modulating alternative excitation sounds that are produced
by releasing gases from or through the esophagus by articula-
tory movement. This speaking method allows laryngectomees
to speak without any equipment and ES speech sounds more
natural than the other types of alaryngeal speech such as EL
speech, but its sound quality is not comparable to normal
speech uttered by non laryngectomees. Although it generally
takes a long time to learn the speaking method for ES speech,
support for learning it is provided by many volunteers in Japan.

The speaking method for EL speech is one of the most
popular alternative speaking methods using medical devices.
Alternative excitation sounds are produced using an electro-
larynx, which is a medical device to mechanically generate
the sound source signals. The generated sound source signals
are conducted as alternative excitation sounds into the oral
cavity from the skin on the lower jaw. Then, the alternative
excitation sounds are articulated to produce EL speech sounds.
It is much easier to learn how to speak using the electrolarynx
than to learn how to produce ES speech. Moreover, users need
less physical power to produce EL speech compared with
other alaryngeal speech, such as ES speech. However, the EL
speech sound is mechanical and artificial because the generated
fundamental frequency (F) contour is totally unnatural owing
to the pre-defined frequency of the vibration (i.e., £y of the
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sound source signals). Additionally, because the electrolarynx
needs to generate sufficiently loud sound source signals to
make the produced EL speech sufficiently audible, the sound
source signals are readily emitted outside, disturbing speech
communication.

To resolve the issue of the emitted sound source signals in
the speaking method for EL speech, a new speaking method for
silent EL speech has been proposed [1]. A new sound source
unit is used to generate less audible sound source signals. Since
the produced speech also becomes less audible, it is detected
with a nonaudible murmur (NAM) microphone [2], which is
a body-conductive microphone capable of detecting extremely
soft speech from the neck below the ear. The detected speech
signals are presented outside as silent EL speech while keeping
the external sound source signals sufficiently silent.

Although these three types of alaryngeal speech allow la-
ryngectomees to speak again, their sound quality and intelli-
gibility are severely degraded compared with those of normal
speech. Moreover, alaryngeal speech sounds are of similar voice
quality! regardless of the speaker differences because the pro-
duction mechanism of the sound source signals in each type of
alaryngeal speech strongly affects the voice quality of the pro-
duced speech. Consequently, the alaryngeal speech suffers from
the degradation of speaker individuality.

Several attempts at improving alaryngeal speech quality have
been carried out. A new electrolarynx using an air pressure
sensor has been developed to control Fj of the sound source
signals by an expiratory pressure. Although it is not easy to
accurately control Fy by adjusting the expiratory pressure, this
device makes it possible for laryngectomees to produce more
naturally sounding EL speech, the Fy of which effectively
varies over an utterance [3]. One weakness of this device is
that both hands are needed to hold an electrolarynx and air
pressure sensor while speaking. Moreover, it is still difficult to
mechanically generate sound source signals similar to those
naturally generated by vocal fold vibrations. Consequently, the
produced EL speech quality is still different from the natural
voices produced by non laryngectomees.

As another attempt, speech enhancement methods based on
the modifications of acoustic features of ES speech using signal
processing, such as comb filtering [4], smoothing of acoustic
parameters [5], formant manipulation [6], and noise reduction
based on auditory masking [7] have been proposed. Although
they are useful in the alaryngeal speech enhancement, quality
improvements are still limited since the acoustic features of ala-
ryngeal speech exhibit quite different properties from those of
normal speech, and therefore, it is basically difficult to compen-
sate for those acoustic differences using such a simple modifi-
cation process.

Recently, statistical approaches to alaryngeal speech en-
hancement have been proposed [8], [9] to convert alaryngeal
speech into target normal speech while keeping linguistic in-
formation unchanged. The statistical enhancement framework
consists of training and conversion processes. In the training
process, a conversion function from acoustic features of alaryn-

IIn this paper, the term “voice quality” is used to represent speech charac-
teristics on speaker individuality affected by both glottal excitation parameters
and vocal tract spectral parameters.

geal speech into those of target normal speech is modeled using
training data including utterance pairs of alaryngeal speech and
normal speech. In the conversion process, any utterance of ala-
ryngeal speech is converted to that of target normal speech on
the basis of the conversion function. This data-driven approach
is capable of more complicated acoustic modifications to com-
pensate for the large acoustic differences between alaryngeal
speech and normal speech. As typical conventional methods, a
codebook mapping method [10] and a probabilistic conversion
method based on Gaussian mixture models (GMMs) [11] have
been applied to alaryngeal speech enhancement [8], [9]. The
GMM-based conversion method is one of the most popular
voice conversion methods. It is well defined mathematically
and its conversion performance is relatively high. It has been
reported that the alaryngeal speech enhancement method based
on the GMM-based voice conversion, which is called Alaryn-
geal-Speech-to-Speech (AL-to-Speech), is highly effective for
improving the naturalness and intelligibility of individual types
of alaryngeal speech [1], [3], [9].

Although these conventional enhancement methods allow la-
ryngectomees to speak in more natural voices than alaryngeal
speech, recovering speaker individuality is minimally consid-
ered. In fact, it is essentially difficult to flexibly control the voice
quality of enhanced alaryngeal speech by these methods. In the
statistical voice conversion approaches, it is possible to change
the converted voice quality using different target voices but it is
necessary to prepare training data consisting of utterance pairs
of the alaryngeal speech and each target voice, which is very
laborious. To flexibly change the converted voice quality to re-
cover speaker individuality or provide a unique voice for laryn-
gectomees, one-to-many eigenvoice conversion (EVC) [12] has
been applied to ES speech enhancement (called ES-to-Speech)
in our previous work [13]. One-to-many EVC is a technique
for converting a specific source speaker’s voice into an arbi-
trary target speaker’s voice. This method allows us to control
the speaker individuality of the converted speech by manipu-
lating a small number of parameters or to flexibly adapt the
conversion model to an arbitrary target speaker on the basis of
a small number of given target speech samples in a text-inde-
pendent manner. ES-to-Speech based on EVC helps laryngec-
tomees speak in their favorite voices or in their own voices that
have already been lost but a few recorded samples are available.

In this study, we develop AL-to-Speech systems capable of
flexibly controlling the enhanced voice quality based on one-to-
many EVC for not only ES speech but also EL speech and silent
EL speech. The effectiveness of the proposed AL-to-Speech
systems based on VC/EVC for the three types of alaryngeal
speech is evaluated from various perspectives. The features of
each AL-to-Speech system are demonstrated through various
comparisons among the different AL-to-Speech systems. In this
paper, we present further details of the proposed systems, more
discussions, and more evaluations than those in our previous
work [9].

The paper is organized as follows. In Section II, the charac-
teristics of three types of alaryngeal speech, namely, ES speech,
EL speech and silent EL speech are described. In Section 111, the
statistical VC algorithm and a one-to-many EVC algorithm are
described. In Section IV, the proposed method of enhancing ala-
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ryngeal speech is discussed. In Section V, our proposed method
is experimentally evaluated. Finally, this paper is summarized
in Section VL.

II. ALARYNGEAL SPEECH

The larynx including the vocal fold has to be removed by la-
ryngectomy, if the larynx has severe trouble such as cancer. Be-
cause the larynx prevents food from entering the trachea, the
trachea and the oral cavity connecting the esophagus are com-
pletely separated from each other when this function is lost by
total laryngectomy. Therefore, laryngectomees cannot generate
vocal fold vibrations nor expire air through the oral cavity. They
have to produce speech sounds in an alternative manner.

In this section, we describe the three types of alaryngeal
speech generated by an alternative speaking method for laryn-
gectomees. Fig. 2 shows an example of speech waveforms,
spectrograms, Fj contours, and aperiodic components of
(a) normal speech, (b) ES speech, (c) EL speech, and (d) silent
EL speech in the same sentence.

Fy contours are extracted with STRAIGHT analysis [14] by
manually optimizing an Fy search range to reduce F extraction
errors as much as possible. Spectrograms and 5-band aperiodic
components (averaged on 0-1, 1-2, 2-4, 4-6, and 6-8 kHz fre-
quency bands) [15] are also extracted with STRAIGHT analysis
[16], [17].

A. Esophageal Speech (ES speech)

ES speech sounds more natural than the other types of ala-
ryngeal speech. Although a speaker skilled in producing ES
speech can control prosody using residual organs, the produced
sound is constantly low in tone regardless the speaker. More-
over, specific unnatural sounds caused by producing the ex-
citation sounds in the manner mentioned above are often ob-
served. The difficulty of producing ES speech makes a spectral
envelope vary unstably but it still captures phoneme-dependent
acoustic characteristics and is capable of conveying linguistic
information. Aperiodic components are constantly noisy in all
frequency bands.

Even if we can perceive pitch information (i.e., perceptual
tone related to prosody) in ES speech, it is difficult to directly
extract Fy patterns corresponding to pitch information from ES
speech because the excitation signals are less periodic. This is
similar to pitch perception in a whispered voice, which is un-
voiced speech. We have found that pitch information is also per-
ceived in an ES speech sample resynthesized from a mel-cep-
strum sequence including power coefficients and noise excita-
tion [13]. Therefore, we expect that an acoustic cue of pitch in-
formation in ES speech is included in its spectral envelope and
power.

B. FElectrolaryngeal Speech (EL Speech)

It is easier to stably speak using EL speech than using ES
speech because stable excitation signals are generated using
medical device. However, EL speech sounds mechanical owing
to artificial excitation signals. Although the spectral envelope
stably varies according to each phoneme, it is distorted by the
sound source signals leaked from the electrolarynx. The elec-
trolarynx used in this study generates sound source signals with

almost constant F values and a high periodicity. Excitation pa-
rameters such as Fy and aperiodic components are easily ex-
tracted from EL speech but are less informative since they cap-
ture only the acoustic characteristics of the artificial excitation
signals.

C. Body-Conducted Silent Electrolaryngeal Speech (Silent
EL Speech)

Silent EL speech allows the user to speak without leaked ex-
citation sounds even with an electrolarynx. However, silent EL
speech sounds much more unnatural than EL speech owing to
its lower-powered sound source signals and body conduction.
It basically has similar acoustic characteristics to EL speech ex-
cept that (1) the signal-to-noise ratio of silent EL speech is much
lower than that of EL speech and (2) high-frequency compo-
nents over 3 or 4 kHz are severely attenuated by the lack of
radiation characteristics from the lips and by the effect of the
low-pass characteristics of the soft tissue [18].

III. VOICE CONVERSION

A. Basic Voice Conversion (VC)

VC is the method that converts the source speaker’s voice
into the target speaker’s voice in a probabilistic manner. In this
section, we describe a conversion method based on maximum
likelihood estimation of speech parameter trajectories consid-
ering global variance (GV) [19] as one of the state-of-the-art
VC methods. This method consists of a training and a conver-
sion process.

1) Training Process: Let us assume a D), dimensional
input static feature vector x; = [a4(1), -, 24(D,)]"
and a D, dimensional output static feature vector y, =
[ye(1), -+, y:(D,)]" at frame ¢, respectively, where T denotes
transposition of the vector. As an input speech parameter vector,
we use X; to capture contextual features of source speech, such
as the joint feature vector of static and dynamic feature vectors
or the concatenated feature vector from multiple frames. As
an output speech feature vector, we use Y; = [y, Ay/]"
consisting of static feature vector y, and a dynamic feature

vector Ay,.
By using a parallel training data set consisting of time-aligned
input and output parameter vectors Z; = [X{,Y]]T, Zy =

[(X5.,Y5]", -, Zp = [X],Y;]" determined by Dynamic
Time Warping (DTW), where T denotes the total number of
frames, the joint probability density of the input and output pa-
rameter vectors is modeled with a GMM [20] as follows:

M
.
P(ZA) = 3 anN ([XLYZ] ~,u,<Z>.,§:<Z>),

I m m (l)
m=1
(X) (XX) (XY)
(Z) — Nm, E(Z) — m_o_ m,[ B . 2
o=l =o- [ Sin] o

where NV (+; 1, &) denotes a Gaussian distribution with a mean
vector p and a covariance matrix 3. The mixture component
index is 7. The total number of mixture components is M. A
parameter set of the GMM is A, which consists of weights ¢y,
(2) . . (z X
mean vectors ft,y, ~ and full covariance matrices X, for in-
dividual mixture components. The mean vector /M(,,Z ) consists
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Fig. 2. Example of acoustic features, i.e., waveforms, spectrograms, [y contours, and aperiodic components of (a) normal speech, (b) ES speech, (c) EL speech,
and (d) silent EL speech in the same sentence fragment /ho Nsyow ak otoban o/. Inaperiodic components, the solid line, coarse broken line, and fine broken
line represent averaged aperiodic components in low frequency band, middle frequency band, and high frequency band, respectively.

of an input mean vector u,gn and an output mean vector u; ),

The covariance matrix 3 E,L cons1sts of input and output covari-
(XX) Y)

ance matr1ces Y 7 and 2,7, and cross-covariance matrices
=5 and 5 ¥

The GV is deﬁned as the variance of features over one ut-
terance. To consider the GV in the conversion, the probability
density of the GV w(y) of the output static feature vectors y =
[y, -,4), --,y}] " over an utterance is also modeled with
a Gaussian distribution,

P(u(y)|A™)

= N(v(y); u, BW), 3
where the GV v(y) = ,v(D,)]" is calculated as

[w(1), -
1 & e ’
v(d) = T > (yt(d) T y‘r(d)> . )

t=1

A parameter set A{") consists of a mean vector (") and a diag-
onal covariance matrix (")

Conversion Process: Let X = [X],---, X/}, - X7|T
andY = [Y],---,Y],--- .Y 1] be a time sequence of the
input and output feature vectors, respectively. The converted
static feature vector sequence § = [i; , -, , - §p] | is
determined by maximizing an objective function defined as a
product of the GV probability density function given by Eq. (3)
and the conditional probability density function P(Y|X, A),
which is analytically derived from the joint probability density
given (1), as follows:

4 = argmax P(Y|X, A) P(v(y)|A®)*,
()
subjecttoY = Wy, 5)

where W' is a window matrix to extend the static feature vector
sequence into the joint feature vector sequence of static and

dynamic features [21]. The balance between P(Y|X,A) and
P(v(y)|A™)) is controlled by the weight w.

B. One-to-Many Eigenvoice Coversion (EVC)

We also describe one-to-many EVC [12] as a technique for
flexibly controlling the voice quality of the converted speech.
This method consists of training, adaptation, and conversion
process.

Training Process: In one-to-many EVC, Eigenvoice GMM
(EV-GMM) is used as a conversion model. The EV-GMM is
trained using multiple parallel data sets consisting of a single
input speech data set and many output speech data sets including
various speakers’ voices. EV-GMM models the joint probability
density of the input and output parameter vectors as follows:

P(ZAEY) g Z amN(XT v p? >(w),2m?>) ,
- (6)
X (X)
(Z) — ,Ll,m — Hm . 7
257;\ \') nEXY)

B = {ZQ»X) i) ®)
where AFY)  is a target-speaker-independent param-
eter set of EV-GMM, ie., om, pi’, 2, A, and
b, for the m!™ mixture component, where b, and

A = [am(1), - ,am(j). - ,am(J)] are a bias vector
and eigenvectors a.,(j), respectively. .J-dimensional weight
vector w = [w(1),---,w(J)]T is a target-speaker-dependent
parameters for controlling target speaker individuality. The
number of eigenvectors is J.

Adaptation Process: The trained EV-GMM allows users to
control the converted voice quality by manipulating the weight
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TABLE I
CHARACTERISTICS OF ACOUSTIC FEATURES OF ALARYNGEAL SPEECH

| [ ES | EL and silent EL |
Unstably varying Varying according to
Spectrum according to phonemes phonemes
(still informative) (still informative)
Aperiodic Constantly noisy Depend'mg on mechani-
. . cal excitation
components (less informative)

(less informative)
Hard to be extracted Constant due to mechan-

Fy R . ical excitation
(less informative) (less informative)

vector w. If users have target speech data, the GMM for the
source speech and new target speech are flexibly built by au-
tomatically determining the weight vector w using only a few
arbitrary utterances of the target speech in a text-independent
manner. The optimal weight vector @ is estimated by maxi-
mizing the likelihood of the marginal distribution as follows
[22]:

W= argmax/P(X,Y(t“")|)\(EV),'w)dX, ©)]
wo.

where Y% s a time sequence of the target features for the
adaptation.

Conversion Process: In the conversion process, the user
gives a target-speaker-dependent parameter @ by entering data
manually or by estimating from target speech samples. The
adapted EV-GMM is generated with 1 as shown in (7). Then,
the converted speech is estimated in the same manner as basic
VC shown in (5).

IV. VOICE CONVERSION FROM ALARYNGEAL SPEECH TO
SPEECH (AL-TO-SPEECH)

To enhance the three types of alaryngeal speech, namely, ES
speech, EL speech, and silent EL speech, statistical VC ap-
proaches for converting alaryngeal speech into normal speech
have been proposed. In AL-to-Speech based on VC, the con-
verted speech sounds similar to normal speech because the con-
verted speech parameters are basically determined according
to the statistics extracted from the normal speech in a proba-
bilistic manner. Furthermore, by applying one-to-many EVC to
AL-to-speech, AL-to-Speech allows users to flexibly control the
speech quality of the converted speech. In this section, we de-
scribe AL-to-Speech based on VC and one-to-many EVC for
the enhancement of the three types of alaryngeal speech.

A. Feature Extraction in AL-to-Speech

In AL-to-Speech, three types of acoustic feature of normal
speech, namely, spectrum, aperiodic components, and Fj, are
separately estimated from the acoustic features of each type
of alaryngeal speech. Then, the estimated acoustic features are
used in vocoding to generate converted speech. To estimate the
acoustic features of normal speech by AL-to-Speech, we need to
decide which acoustic features of each type of alaryngeal speech
are used as the input feature. However, we have little choice be-
cause most of the acoustic features of alaryngeal speech are less

informative as mentioned in Section II. Table I shows charac-
teristics of acoustic features of each types of alaryngeal speech.

Because the spectrum of ES speech is the only informative
acoustic feature of ES speech even if it unstably varies, we use
the spectrum of ES speech as an input feature to estimate the
spectrum and aperiodic components of normal speech, which
smoothly vary according to the phoneme. On the other hand,
for Fjy estimation, we assume that an acoustic cue of the pitch
of ES speech could be included in the spectrum with power as
mentioned in Section II. On the basis of this assumption, we also
use the spectrum of ES speech as an input feature to estimate Fj
of normal speech. This is similar to the conventional estimation
methods of Fy from mel-frequency cepstral coefficients [23],
[24] but this is an estimation process of Fy from the spectrum
of unvoiced speech rather than voiced speech, and therefore,
this estimation process is much more difficult compared with
the conventional ones. Furthermore, although one reasonable
conversion process is to estimate Fy corresponding to the pitch
of ES speech, it is not straightforward to prepare target Fy values
in training process as such an Fj is difficult to extract from ES
speech. To address this issue, we record normal speech uttered
by non laryngectomee so that its pitch sounds similar to that
of ES speech and use Fj extracted from the recorded normal
speech as the target in training. Namely, Fj corresponding to the
pitch of ES speech is approximated with £ of normal speech
uttered by a different speaker.

Although the spectra of EL speech and silent EL speech
change according to the phoneme, it is significantly different
from those of normal speech. F}y values of EL speech and silent
EL speech are mechanically decided independent of utterance
content. Moreover, because an electrolarynx is driven during
an utterance, the aperiodic components of EL speech and silent
EL speech depending on only the mechanical excitation signals
are not informative as input feature. Therefore, in the acoustic
features of EL speech and silent EL speech, only the spectrum
is informative, and then, we use the spectra of EL speech and
silent EL speech as input feature to estimate the spectrum,
aperiodic components, and Fy of normal speech uttered by non
laryngectomee.

In AL-to-Speech for these three types of alaryngeal speech,
the spectrum of each alaryngeal speech is used as input fea-
ture to estimate each acoustic feature of each type of alaryn-
geal speech, respectively. However, directly using the spectrum
of alaryngeal speech causes the degradation of the converted
speech because the spectrum structures of some phonemes of
alaryngeal speech are often collapsed owing to difficulties of
producing them. To address these issues, we use a spectral seg-
ment feature extracted from multiple frames [25] as follows:

X, =CX;+d, (10)
where Xy = [z/_;,---,z/,---,x,,]" is a joint vector gener-

ated by concatenating a spectral parameter vector z; at the cur-
rent frame and those at £ preceding and succeeding frames.
Because this joint vector includes significantly redundant in-
formation, dimensionality reduction with principal component
analysis (PCA) is performed for the joint vector X, in order to
extract a spectral segment feature X', at frame ¢, where C and d
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Fig. 3. Training process and conversion process of AL-to-Speech.

are a transformation matrix and a bias vector extracted by PCA,
respectively.

B. AL-to-Speech Based on VC

AL-to-Speech based on VC consists of a training process and
a conversion process shown in Fig. 3.

Training Process: In the training process, we record utter-
ance pairs of alaryngeal speech and normal speech uttered by
a non laryngectomee. To convert the spectral segment feature
of alaryngeal speech into three speech parameters of the target
normal speech: namely, (1) spectral features, (2) log-scaled Fp,
and (3) aperiodic components, we independently train three
GMMs modeling joint probability densities of the spectral
segment feature of alaryngeal speech and individual target
speech parameters using the corresponding joint feature vector
sets. For the Iy feature, a constant value clearly different from
Fy values (e.g., a value much less than the minimum Fj value)
is used to represent unvoiced frames [26]. In £ estimation for
ES speech, Fy extracted from normal speech recorded so as to
be similar to the pitch of ES speech is used as the target.

Conversion Process: In the conversion process, spectral seg-
ment features are extracted from alaryngeal speech. Then, in-
dividual converted speech parameters are independently esti-
mated from the extracted spectral segment features using each
of the trained GMMs. In the F{; estimation, unvoiced/voiced de-
cision is also performed using a manually setting threshold to
detect the constant value to represent unvoiced frames. After
estimating the converted spectral features, the converted log-
scaled Iy, and the converted aperiodic components, the excita-
tion signal is generated using STRAIGHT mixed excitation on
the basis of the converted £y values and the converted aperiodic
components [15]. Finally, the converted speech is synthesized
by filtering the generated excitation signal with the converted
spectral features.
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Adaptation process

Normal speech of target speaker

Feature extraction| | Analysis |
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Fig. 4. Training process and adaptation process in AL-to-Speech based on
one-to-many EVC. “Sp_,” and “Ap_” show spectral features and aperiodic
components of normal speech of the sth speaker NS,, respectively.

C. AL-to-Speech Based on EVC

In AL-to-Speech based on the basic VC, it is difficult to
recover speaker individuality of alaryngeal speech owing to
the predefined voice quality of converted speech, although the
sound quality of converted speech is improved. To flexibly con-
trol the converted voice quality, we further apply one-to-many
EVC to AL-to-Speech. The EVC technique allows users to
manually control the voice quality of converted speech. Fur-
thermore, conversion models can be adapted using a small
number of utterances of target speech in a text-independent
manner. Therefore, if recorded normal speech data of the
laryngectomee before undergoing the total laryngectomy still
exist, AL-to-Speech based on EVC can estimate the converted
speech that sounds similar to the laryngectomee’s original
voice. In this section, we describe the AL-to-Speech system
on the basis of the assumption that a few utterances of the
laryngectomee’s original speech have been kept. AL-to-Speech
based on EVC consists of training, adaptation, and conversion
processes. Fig. 4 shows the training and adaptation process in
AL-to-Speech based on one-to-many EVC.

Training Process: In the training process, we independently
train two one-to-many EV-GMMs: namely, a one-to-many
EV-GMM for estimating the converted spectral feature and a
one-to-many EV-GMM for estimating the converted aperiodic
components, for each alaryngeal speech. To train these two
EV-GMMs, we use multiple parallel data sets consisting of ala-
ryngeal speech data uttered by the laryngectomee and prestored
normal speech data uttered by many non laryngectomees. The
EV-GMM for the spectral estimation is trained using multiple
joint feature vector sets consisting of the spectral segment fea-
tures of the laryngectomee and the prestored spectral features of
the non laryngectomees. On the other hand, the EV-GMM for
the aperiodic component estimation is trained using multiple
joint feature vector sets consisting of the spectral segment
features of the laryngectomee and the prestored aperiodic com-
ponents of the non laryngectomees. In this paper, we perform
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the training method on the basis of Speaker Adaptive Training
(SAT) [27] for the EV-GMM [28].

The EV-GMM is adapted to a new target speaker by ad-
justing the weight vector so that the marginal likelihood for
given target speech features is maximized as shown in (9). This
adaptation process is effective if speaker-dependent character-
istics are well captured by short-term features, such as spectrum
and aperiodic components. On the other hand, it is essentially
difficult to control speaker-dependent characteristics captured
by long-term features, such as Fy patterns. Therefore, instead of
the EV-GMM, a well-trained speaker-dependent GMM is used
to estimate the F} patterns from the spectral segment sequence
of alaryngeal speech. In AL-to-Speech for ES speech, to de-
velop the GMM for estimating the Fjy patterns corresponding to
the perceived pitch information of ES speech, we use Fy values
extracted from normal speech uttered by a non laryngectomee
as an imitating prosody of ES speech in the training as the output
features. This process is the same as in the AL-to-Speech based
on VC described in Section IV-B. To develop a GMM for Fy
estimation in EL speech and silent EL speech, speaker-depen-
dent GMMs are separately trained for all target speakers. Then,
the GMM achieving the highest F|y estimation accuracy is man-
ually selected.

Adaptation and Conversion Processes: Assuming that a
few speech samples uttered by laryngectomees before under-
going total laryngectomy are available as adaptation data, the
EV-GMM is flexibly adapted to the target voice quality by
automatically determining the weight vector in a text-indepen-
dent manner [12]. The weight vectors of the EV-GMM:s for the
spectral and aperiodic estimations are independently estimated
using the spectral features and aperiodic components extracted
from the given target speech samples. The converted spectral
feature vectors and aperiodic components are independently
estimated using the adapted EV-GMMs. In the Fj estimation,
the global speaker-dependent characteristics of Fjy patterns are
simply controlled. A log-scaled Fj sequence is first estimated
with the selected speaker-dependent GMM, and then further
converted so that its mean p, and standard deviation o, are
equal to those of the adaptation speech data, 1., and o, as
follows:

Ty
log y; = Z(log:ﬂt = fia) + iy, (11)
where x; and y; denote the Fy value estimated with the GMM
and the converted Fjy value at frame ¢, respectively.

V. EXPERIMENTAL EVALUATIONS

To demonstrate the effectiveness of the AL-to-Speech based
on VC/EVC methods, we conducted experimental evaluations
using several criteria. Then, we explicitly indicate the advantage
of each alaryngeal speech when applying AL-to-Speech.

A. Experimental Conditions

We recorded 50 phonetically balanced sentences of ES
speech uttered by one Japanese male laryngectomee, those of
EL speech and silent EL speech uttered by another Japanese
male laryngectomee, and those of normal speech uttered by
each of 40 Japanese non laryngectomees. The speech data of

30 non laryngectomees were used for training and those of the
other 10 non laryngectomees were used as the target data for
evaluation. From the 50 recorded sentences of each speaker, 40
were used as the training or adaptation data and the remaining
10 were used as the test data. The sampling frequency was set
to 16 kHz.

The Oth through 24th mel-cepstral coefficients were used as
spectral parameters. STRAIGHT analysis [17], which is Fj
adaptive analysis to extract accurate spectral envelope by effec-
tively removing the effect of Fy periodicity on spectrum, was
employed for normal speech. On the other hand, mel-cepstrum
analysis [29] was employed for alaryngeal speech since Fyy of
alaryngeal speech is not informative.

As the source excitation features of normal speech, we
used log-scaled Fy values and aperiodic components on five
frequency bands, i.e., 0-1, 1-2, 2-4, 4-6, and 6-8 kHz, which
were used for designing mixed excitation. The frame shift was
5 ms. To extract the spectral segment feature of ES speech,
current and £8 frames were used for spectral and aperiodic
component estimations and current and =16 frames were used
for Fy estimation. For EL speech and silent EL speech, current
and £8 frames were used for each parameter estimation. These
numbers of frames per segment were experimentally optimized
[13].

The EV-GMMs for spectral and aperiodic component esti-
mations were trained for each type of alaryngeal speech. The
numbers of eigenvectors and mixture components were set to
29 and 64 in every EV-GMM, respectively. The EV-GMMs
were adapted to the target speakers using 1, 2, 4, 8, 16, or
32 utterances of their normal speech data. For AL-to-Speech
based on VC, the GMMs for spectral and aperiodic estimation
were trained using a parallel dataset for each type of alaryngeal
speech and normal speech of each target speaker. The number
of training utterance pairs was set to 1, 2, 4, 8, 16 or 32.
The number of mixture components was optimized manually
depending on the training data size so that the best conver-
sion accuracy in the evaluation data was obtained. Individual
speaker-dependent GMMs for Fjy estimation were trained for
all the 40 non laryngectomees. The GMM yielding the most
natural F pattern was then selected by listening to the con-
verted speech. The same Fy estimation process was performed
for the EVC-based AL-to-Speech and VC-based AL-to-Speech.
Full covariance matrices were used in every GMM/EV-GMM.

B. Objective Evaluations

We evaluated the effectiveness of AL-to-Speech for each type
of alaryngeal speech with estimation accuracy of each acoustic
feature, i.e., spectrum, aperiodic components, and Fj.

Estimation Accuracy of Spectrum and Aperiodic Compo-
nents: Figs. 5 and 6 show mel-cepstral distortion and root
mean square error (RMSE) on aperiodic components as a
function of the number of adaptation utterances used in EVC
or of utterance pairs used in VC, respectively. EVC shows a
significantly smaller mel-cepstral distortion and RMSE than
VC in each type of alaryngeal speech enhancement when the
amount of the target normal speech data is small. Even if only
one arbitrary utterance of the target normal speech is available
in EVC, its conversion performance is almost equivalent to or
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Fig. 6. RMSE on aperiodic components as a function of the number of utter-
ances of target normal speech (i.e., utterance pairs in VC or adaptation utter-
ances in EVC).

better than that of VC using 16 parallel utterance pairs. It is also
observed that ES speech yields the best conversion accuracy,
and silent EL speech yields the worst among the three types of
alaryngeal speech.

Iy Estimation Accuracy: We also evaluated the Fy esti-
mation accuracy in AL-to-Speech for each type of alaryngeal
speech using Fy correlation coefficient and Unvoiced/Voiced
(U/V) error between converted speech and target normal
speech. To demonstrate the F{ estimation accuracy for var-
ious speakers in AL-to-Speech, the results calculated using
individual speaker-dependent GMMs for the 40 non laryngec-
tomees are shown in Table II. For ES speech, the results for
another non laryngectomee who uttered normal speech so that
its pitch sounded similar to that of ES speech are also shown
as “ES pitch.” ES speech yields the best estimation accuracy
among the three types of alaryngeal speech. Additionally, the
estimation accuracy is significantly improved using the GMM
developed with the normal speech, the Fy patterns of which
correspond well to the pitch patterns of ES speech.

The final results for the 10 target non laryngectomees from
the test data are shown in Table III. The GMM for “ES pitch”
was used in ES speech enhancement, and manually selected
speaker-dependent GMMs were used in the EL/silent EL speech
enhancement. Namely, the speaker used in the model training is
different from the target speakers. It is observed that, for EL

TABLE II
Fo ESTIMATION ACCURACIES FOR VARIOUS TARGET SPEAKERS USING
CORRESPONDING TARGET-SPEAKER-DEPENDENT GMMS

| | Correlation | U/V error [%] |
ES 0.58 1239 (V - U : 6.59,U — V : 5.80)
EL 0.40 1320 (V - U :4.92,U — V : 8.28)
Silent EL 0.42 1402 (V- U :6.89,U — V : 7.13)
[ESpitch | 068 | 836 (V > U:430,U -V :4.05) |

TABLE III
Fq ESTIMATION ACCURACIES FOR ACTUAL TARGET SPEAKERS IN EVALUATION
USING WELL-TRAINED SPEAKER-DEPENDENT GMMS

| [ Correlation | U/V error [%] |
ES pitch 0.62 13.88 (V — U :10.70,U — V : 3.18)
EL 051 1205 (V > U :7.13,U = V : 4.92)
Silent EL 0.45 1378 (V - U :8.92,U — V : 4.86)

speech and silent EL speech, the estimation accuracy of the se-
lected GMM s is higher than that of various speaker-dependent
GMMs shown in Table 11, even though a speaker different from
the target speakers is used in the training. To generate a natural
Fy pattern in AL-to-Speech, it is useful to select an optimum
speaker for training rather than to directly use the same speaker
as the actual target speaker since the £y estimation accuracy
largely varies among different speakers. It is also observed that
ES speech enhancement yields better |, correlation than the
others.

C. Subjective Evaluations

We evaluated the effectiveness of AL-to-Speech for each
types of alaryngeal speech with speech quality, listenability,
intelligibility, and speaker individuality. In this paper, the term
“listenability” is used to indicate a score that was measured
by asking the listener to subjectively evaluate how easy it
was to understand the utterance. On the other hand, the term
“intelligibility” is used to indicate a score that was calculated
by asking the listener to write down the content of the utterance,
and measuring the accuracy of transcription.2

Opinion Test on Speech Quality and Listenability: We con-
ducted opinion tests on speech quality and listenability. In the
opinion test of speech quality and listenability, 8 listeners eval-
uated 9 types of speech including original alaryngeal speech
and converted speech with AL-to-Speech based on VC/EVC
in ES speech, EL speech, and silent EL speech. The VC-based
AL-to-Speech used 32 utterance pairs for GMM training. On
the other hand, only one utterance was used as adaptation data
for the EVC-based AL-to-Speech. The GV was considered in
the conversion process. For the EVC-based AL-to-Speech, the
mean vector of the GV probability density was set to the GV ex-
tracted from the adaptation utterance for each target non laryn-
gectomee and the covariance matrix was fixed to that calculated
using the GVs extracted from all utterances of the non laryn-
gectomees used in the training of the EV-GMM. The opinion
score in each test was set to a 5-point scale. Individual speech
samples were normalized so that loudness of each sample was
almost the same as each other. Note that signal-to-noise ratio
was kept in each sample before and after the normalization. We

2Note that the term “intelligibility” in [9] is used in the sense of “listenability.”
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asked the listeners to evaluate speech samples with a wide range
of the score from 1 to 5; i.e., a higher score was better speech
quality or listenability. In each test, the individual listeners lis-
tened to several speech samples before starting the test to make
their own score range as stable as possible. Each listener evalu-
ated 135 speech samples in the test.

Figs. 7 and 8 show the results of the opinion tests of speech
quality and listenability, respectively. All the AL-to-Speech
methods yield significant improvements in speech quality com-
pared with that of the original alaryngeal speech. The speech
quality of the enhanced silent EL speech is lower than those
of the enhanced ES speech and enhanced EL speech but it is
significantly higher than that of each type of original alaryngeal
speech. The listenability of ES speech and silent EL speech
are also improved by AL-to-Speech. On the other hand, the
listenability of EL speech slightly degrades from that of the
original EL speech by AL-to-Speech, as observed in our pre-
vious work [3]. The speech quality and listenability enhanced
by the EVC-based AL-to-Speech are almost equivalent to
those enhanced by the VC-based AL-to-Speech. Note that the
EVC-based method requires only one arbitrary utterance of the
target normal speech, whereas the VC-based method requires
32 utterance pairs of alaryngeal speech and the target normal
speech.

TABLE IV
RESULT OF DICTATION TEST ON INTELLIGIBILITY

Word correct [%] | Word accuracy [%] Number of
replays
ES 87.76 84.30 2.23
EL 92.89 90.93 2.70
Silent EL 66.42 64.71 2.70
ES-EVC 79.90 76.96 2.93
EL-EVC 89.22 87.50 1.90
Silent EL-EVC 84.80 82.84 2.57
90 . . ,
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Fig. 9. Result of preference test of speaker individuality.

Dictation Test on Intelligibility: We conducted a manual dic-
tation test. In this test, 6 listeners evaluated 6 types of speech
including original alaryngeal speech and converted speech by
AL-to-Speech based on EVC. Only one utterance was used as
adaptation data in the adaptation process of EV-GMMs. We al-
lowed listeners to replay the same stimulus as much as they
want.

Table IV shows word correct, word accuracy, and the average
number of replays by listeners. Before conversion, EL speech
is the best, ES speech is the next, and silent EL speech is the
worst in intelligibility. We found that articulation of the laryn-
gectomee who uttered EL speech and silent EL speech is clearer
than that of the other laryngectomee who uttered ES speech. Be-
cause quality of silent EL speech is significantly degraded by the
small-powered excitation and body-conductive recording, silent
EL speech is less intelligible than ES speech even if it is more
clearly articulated than ES speech.

Intelligibility of silent EL speech is significantly improved by
AL-to-Speech based on EVC. On the other hand, intelligibility
of ES speech and EL speech are degraded by AL-to-Speech
based on EVC. Consequently, after conversion, EL speech is
still the best, silent EL speech is the next, and ES speech is the
worst. In AL-to-Speech, conversion errors are inevitable and
they tend to cause degradation in intelligibility. Moreover, if ar-
ticulation of input speech is unclear and unstable, larger degra-
dation in intelligibility tends to be caused by conversion as ob-
served in ES speech.

On the other hand, intelligibility of silent EL speech is sig-
nificantly improved by conversion. As articulation of silent EL
speech is relatively clear and stable, the degradation of intel-
ligibility caused by conversion tends to be smaller. Moreover,
AL-to-Speech well addresses a problem of very low quality
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respectively.

causing degradation in intelligibility of silent EL speech. Con-
sequently, intelligibility of silent EL speech is better than ES
speech after conversion. These results suggest that our proposed
method is basically capable of improving intelligibility of ala-
ryngeal speech if its intelligibility is degraded by some factors,
such as low speech quality, except for less articulated sounds.

Preference Test on Speaker Individuality: We also conducted
ABX test as a preference test to evaluate speaker individuality.
In the preference test, 6 listeners evaluated 6 types of speech
consisting of converted speech by the VC/EVC-based AL-to-
Speech in EL speech, ES speech, and silent EL speech. In this
test, listeners heard target speech sample and two speech sam-
ples from among 6 types of converted speech, and then, they
chose speech sample that has more similar speaker individuality
as target speech sample.

Each listener evaluated 60 pairs in the test.

The training data used in VC and the adaptation data used in
EVC were the same as those used in the opinion tests.

Fig. 9 shows the result of the preference test.

Every type of the converted speech was compared against
all the others and the preference score of each was calculated
as the ratio of the number of samples selected as having better
speaker individuality to the total number of samples presented
to listeners.

We can observe the same tendency as that in Fig. 6. Enhanced
ES speech yields the best speaker individuality and enhanced
silent EL speech yields the worst among the three types of ala-
ryngeal speech. Even if using only one arbitrary utterance of
the target speaker is used in the EVC-based method, its perfor-
mance is close to that of the VC-based method using 32 par-
allel utterances of the target speaker. This result shows that the

EVC-based method is capable of effectively adjusting speaker
individuality of the converted speech.

D. Example of the Converted Speech by AL-to-Speech Based
on EVC

Fig. 10 shows an example of the acoustic features of target
normal speech and converted speech from the three types of ala-
ryngeal speech by AL-to-Speech based on EVC. These samples
were converted from each alaryngeal speech shown in Fig. 2.
We can see that the acoustic features of each converted speech
come closer to those of normal speech than to those of each
type of alaryngeal speech. In the spectrogram, the spectral struc-
ture of converted speech from ES speech became clearer and
stably varies compared with those of ES speech. Moreover, the
spectral structure at high frequency that could not be observed
in EL speech and silent EL speech is observed in converted
speech from EL speech and silent EL speech. Fy of converted
speech from each type of alaryngeal speech can capture the
coarse structure of those of normal speech. Furthermore, al-
though over smoothing occurs, the aperiodic components of
converted speech are similar to those of normal speech. There-
fore, the AL-to-Speech based on EVC is significantly effective
for the enhancement of alaryngeal speech.

VI. CONCLUSIONS

In this paper, we presented AL-to-Speech as enhance-
ment methods based on VC and one-to-many EVC for three
types of alaryngeal speech, namely, esophageal speech (ES
speech), electrolaryngeal speech (EL speech), and body-con-
ducted silent electrolaryngeal speech (silent EL speech). These
methods convert a spectral segment feature into spectrum,
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aperiodic components, and Fy of normal speech independently
using different GMMs or EV-GMMs. The experimental re-
sults suggested that (1) the proposed methods significantly
improve the speech quality of each type of alaryngeal speech,
(2) the proposed methods also improve the listenability of ES
speech and silent EL speech, (3) the proposed methods also
significantly improve the intelligibility of silent EL speech,
(4) AL-to-Speech based on eigenvoice conversion (EVC) is
capable of effectively adjusting the voice quality of enhanced
speech to the target voice quality using only one arbitrary
utterance of the target voice.

Although the individual types of alaryngeal speech has their
own merits and demerits in terms of speech quality, listenability,
intelligibility, speaker individuality, difficulties of learning how
to produce, and so on. Some of the demerits are effectively ad-
dressed by AL-to-Speech. The results presented in this paper
could be helpful for laryngectomees to decide which type of
alaryngeal speech they use. We plan to develop and evaluate the
AL-to-Speech systems for other alaryngeal speech and further
implement a real-time conversion process for AL-to-Speech.
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