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Abstract Machine translation is traditionally formulated as the transduction of
strings of words from the source to the target language. As a result, additional lexical
processing steps such as morphological analysis, transliteration, and tokenization are
required to process the internal structure of words to help cope with data-sparsity
issues that occur when simply dividing words according to white spaces. In this paper,
we take a different approach: not dividing lexical processing and translation into two
steps, but simply viewing translation as a single transduction between character strings
in the source and target languages. In particular, we demonstrate that the key to achiev-
ing accuracies on a par with word-based translation in the character-based framework
is the use of a many-to-many alignment strategy that can accurately capture correspon-
dences between arbitrary substrings. We build on the alignment method proposed in
Neubig et al. (Proceedings of the 49th Annual Meeting of the Association for Computa-
tional Linguistics. Portland, Oregon, pp. 632–641, 2011), improving its efficiency and
accuracy with a focus on character-based translation. Using a many-to-many aligner
imbued with these improvements, we demonstrate that the traditional framework of
phrase-based machine translation sees large gains in accuracy over character-based
translation with more naive alignment methods, and achieves comparable results to
word-based translation for two distant language pairs.
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1 Introduction

Statistical machine translation (SMT) is generally treated as the task of translat-
ing a source-language sentence f J

1 to a target-language sentence eI
1, where each

element of f j and ei is assumed to be a word in the source and target lan-
guages. However, the definition of “word” is often problematic. The most obvi-
ous example of this is in unsegmented languages such as Chinese, Japanese,
or Thai, where word segmentation is a necessary step prior to translation, and
it has been noted that the segmentation standard has a large effect on transla-
tion accuracy (Chang et al. 2008). Even for languages with explicit word bound-
aries, all MT systems perform at least some cursory form of tokenization, split-
ting punctuation and words to prevent the sparsity that would occur if punctu-
ated and non-punctuated words were treated as different entities. Sparsity also
manifests itself in a number of other forms, with an extremely large number
of rare words existing due to morphological productivity, word compounding,
numbers, and proper names. A myriad of methods have been proposed to han-
dle each of these phenomena individually in the context of MT, including mor-
phological analysis, stemming, compound breaking, number regularization, word
segmentation optimization, and transliteration, which are outlined in more detail
in Sect. 2.

These difficulties stem from the basic premise that we are translating sequences of
words as our basic unit. On the other hand, Vilar et al. (2007) examine the possibilities
of eschewing the concept of words, treating each sentence as sequences of characters
to be translated. This method is attractive, as it is theoretically able to handle almost
all sparsity phenomena in a single unified framework, but has only proven feasible
between similar language pairs such as Spanish–Catalan (Vilar et al. 2007), Swedish–
Norwegian (Tiedemann 2009), and Thai–Lao (Sornlertlamvanich et al. 2008), which
have a large number of cognates and a strong co-occurrence between single characters.
As Xu et al. (2004) and Vilar et al. (2007) state and we further confirm here, accurate
translations cannot be achieved when simply applying the traditional MT pipeline to
character-based translation for less similar language pairs.

This paper is an extension of our work presented in Neubig et al. (2012), sup-
plemented with a more complete description of the proposed alignment technique,
additional experimental results investigating the effect of varying reordering lim-
its or using character strings on only one side of the translation, and a subjec-
tive analysis of what type of alignments benefit or suffer when using character
strings. We propose improvements to character-based translation, and demonstrate
that it is, in fact, possible to achieve competitive translation accuracy for distant lan-
guage pairs using only character strings. In particular, we focus on the bitext align-
ment process, and demonstrate that poor alignments achieved by more traditional
alignment methods are one of the major reasons for character-based alignment fail-
ing to generalize to distant language pairs in previous work. We then propose an
improved alignment strategy for character-based translation, which is made possible
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through recent advances in many-to-many word alignment, which we overview
in Sect. 3. In comparison with the popular one-to-many IBM alignment models
(Brown et al. 1993; Och and Ney 2003) used in previous work on character-based trans-
lation, many-to-many alignment can choose to align arbitrary substrings, which may
consist of characters, morphemes, words, or multi-word phrases, automatically
adjusting the granularity of alignment based on the paucity or abundance of data
available.

One barrier to applying many-to-many alignment models to character strings is
training cost. In the inversion transduction grammar (ITG) framework (Wu 1997),
used in many previous works in many-to-many alignment, search is cumbersome
for longer sentences, a problem that is further exacerbated when using characters
instead of words as the basic unit. Even with more efficient search techniques for
phrasal ITGs such as those proposed by Saers et al. (2009) or Blunsom and Cohn
(2010), most previous research has limited the number of words in a sentence to at
most 40. In order to overcome this computational burden and make character-based
alignment feasible, we propose two improvements to the alignment model. The first
proposed improvement, described in Sect. 4.3, increases the efficiency of the beam-
search technique of Saers et al. (2009) by augmenting it with look-ahead probabilities
in the spirit of A* search. As a heuristic function, we consider the monolingual cost
of covering the strings in the source and target languages independently, which can
be calculated efficiently but provides a reasonable estimate of the bilingual alignment
cost.

A second problem with existing many-to-many alignment models in the context
of character-based translation lies in the fact that they use one-to-many alignment
models to seed the many-to-many alignment models in the form of a prior proba-
bility over the phrase pair distribution. While this has proven critical for accuracy
in many-to-many systems for word-based translation (DeNero et al. 2008), in the
character-based context one-to-many probabilities are not reliable. The second pro-
posed improvement, described in Sect. 5, seeds the search process using counts of
all substring pairs in the corpus to bias the phrase alignment model. We present
an efficient method to calculate these substring pairs using enhanced suffix arrays
(Abouelhoda et al. 2004) and sparse matrix operations. After these statistics have
been collected, we transform them into prior probabilities and use them to seed
the less efficient, but more accurate Bayesian ITG-based many-to-many alignment
model.

Finally, to evaluate the effectiveness of the method, we perform end-to-end MT
experiments on four language pairs with differing morphological properties. The eval-
uation results presented in Sect. 6 show that for distant language pairs, character-based
SMT can achieve translation accuracy that is comparable to word-based systems. In
addition, ablation studies show that the use of our proposed look-ahead parsing tech-
nique as well as substring-based priors both significantly help accuracy, and the look-
ahead parsing method doubles the speed of alignment. Finally, we perform a qualitative
analysis of the translation results that shows that the character-based method is not
only able to translate unsegmented text, conjugated words, and proper names in a
unified framework, but also uses a larger fraction of locally correct translation rules
than word-based translation.
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2 Related work on lexical processing in SMT

As traditional SMT systems treat all words as single tokens without considering their
internal structure, major problems of data sparsity occur for less frequent tokens. In
fact, it has been shown that there is a direct negative correlation between vocabulary
size (and thus sparsity) of a language and translation accuracy (Koehn 2005). Rare
words causes trouble for alignment models, both in the form of incorrect alignments,
and in the form of garbage collection, where rare words in one language are incorrectly
aligned to large segments of the sentence in the other language (Och and Ney 2003).
Unknown words are also a problem during the translation process, and the default
approach is to map them ‘as is’ into the translated sentence.

This is a major problem in morphologically rich languages such as Finnish and
Korean, as well as highly compounding languages such as Dutch and German. Many
previous works have attempted to handle morphology, decompounding and regular-
ization through lemmatization, morphological analysis, or unsupervised techniques
(Nießen and Ney 2000; Brown 2002; Lee 2004; Goldwater and McClosky 2005;
Talbot and Osborne (2006); Macherey et al. (2011)). Other research has noted that
it is more difficult to translate into morphologically rich languages with word-based
systems, and methods for modeling target-side morphology have attracted interest in
recent years (Bojar 2007; Subotin 2011). It is also notable that morphology and com-
pounding remain problematic regardless of the size of the training data, with systems
trained on hundreds of millions of words still seeing significant gains in accuracy due
to lexical processing (Macherey et al. 2011).

Another major source of rare words in all languages is proper names, which have
been handled by using cognates or transliteration to improve translation (Knight and
Graehl 1998; Kondrak et al. 2003; Li et al. 2004; Finch and Sumita 2007). More sophis-
ticated methods for named entity translation that combine translation and transliter-
ation have also been proposed (Al-Onaizan and Knight 2002). In addition, while
transliteration uses the underlying phonetic similarity of proper names to translate
between writing systems, there has also recently been work on direct phoneme-to-word
speech translation with the motivation of improving robustness to speech recognition
errors (Jiang et al. 2011).

Choosing word units is also essential for creating good translation results for lan-
guages that do not explicitly mark word boundaries, such as Chinese, Japanese, and
Thai. A number of works have addressed this word segmentation problem in trans-
lation, mainly focusing on translation of unsegmented languages such as Chinese or
Japanese (Bai et al. 2008; Chang et al. 2008; Zhang et al. 2008b; Chung and Gildea
2009; Nguyen et al. 2010; Wang et al. 2010; Chu et al. 2012). However, these works
generally assume that a word segmentation exists in one language (e.g. English) and
attempt to optimize the word segmentation in the other language (e.g. Chinese). There
have also been a number of works which propose evaluation measures for these lan-
guages that consider matches over characters instead of words (Denoual and Lepage
2005; Li et al. 2011; Liu and Ng 2012).

This enumeration of related work demonstrates the range of problems caused by
the concept of ‘words’ in MT, and the large number of solutions proposed to address
these problems. Character-based translation has the potential to handle all of the
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phenomena in the previously mentioned research in a single unified framework, while
at the same time requiring no language-specific tools such as morphological analyzers
or word segmenters. However, while the approach is conceptually attractive, previ-
ous research has only been shown to be effective for closely related language pairs
(Vilar et al. 2007; Sornlertlamvanich et al. 2008; Tiedemann 2009, 2012), or when
word- and character-based alignment is combined (Nakov and Tiedemann 2012). This
work proposes effective alignment and decoding techniques that allow character-based
translation to achieve accurate results for both close and distant language pairs. It
should also be noted that there are other many-to-many alignment methods that have
been used for simultaneously discovering morphological boundaries over multiple
languages (Snyder and Barzilay 2008; Naradowsky and Toutanova 2011), but these
have generally been applied to single words or short phrases, and it is not immediately
clear that they will scale to aligning full sentences.

3 Alignment methods

Statistical machine translation systems are generally constructed from a parallel corpus
consisting of target-language sentences E and source-language sentences F . The first
step of training is to find alignments A, which indicate which parts of the target
sentence align to which parts of the source sentence.

Here, we will represent our target and source sentences as eI
1 and f J

1 . ei and f j

represent single elements of the target and source sentences respectively, and I and
J indicate the number of elements in the target and source sentences. Each element
may be a word in word-based alignment models or a single character in character-
based alignment models.1 We define our alignment as aK

1 , where each element is a
span ak = 〈s, t, u, v〉 indicating that the target string es, . . . , et and source string
fu, . . . , fv are alignments of each other.2

3.1 One-to-many alignment

The most well-known and widely-used models for bitext alignment are for one-to-
many alignment, including the IBM models (Brown et al. 1993) and HMM alignment
model (Vogel et al. 1996). These models are by nature directional, attempting to
find the alignments that maximize the conditional probability of the target sentence
P(eI

1|f J
1 , aK

1 ). For computational reasons, the IBM models are restricted to aligning
each word on the target side to a single word on the source side. In the formalism
presented above, this means that each ei must be included in at most one span, and for
each span u = v. Traditionally, these models are run in both directions and combined
using heuristics to create many-to-many alignments (Koehn et al. 2003).

However, in order for one-to-many alignment methods to be effective, each ele-
ment f j must contain enough information to allow for effective alignment with its

1 Some previous work has also performed alignment using morphological analyzers to normalize or split
the sentence into morpheme streams (Corston-Oliver and Gamon 2004).
2 Null alignments can be represented implicitly with no span in aK

1 covering the unaligned words.
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(a) (b)

Fig. 1 Character-based alignments using a one-to-many models and b many-to-many models

corresponding elements in eI
1. While this is often the case in word-based models, for

character-based models this assumption breaks down, as there is generally no clear
correspondence between single characters.

An example of the alignments that result when applying one-to-many alignment
to character strings is shown in Fig. 1a. It can be seen that in general, the alignments
are less than desirable, with only cognates with similar spellings (e.g. “projects” and
“projets”) being aligned properly. The remaining words are not aligned properly, and
a number of spurious alignment links are introduced, preventing even some of the
properly aligned cognates from being extracted correctly.

3.2 Many-to-many alignment

On the other hand, in recent years, there have been advances in many-to-many align-
ment techniques that are able to align multi-element chunks on both source and target
sides (Marcu and Wong 2002; DeNero et al. 2008; Blunsom et al. 2009; Neubig et
al. 2011; Levenberg et al. 2012). Many-to-many methods can be expected to achieve
superior results when applied to character-based alignment, as the aligner can use
information about substrings, which may correspond to single characters, morphemes,
words, or short phrases. An example of alignments acquired using the many-to-many
models described in later sections is shown in Fig. 1b. From this example it can be
confirmed that the alignments are not only of higher quality than those obtained by
one-to-many alignment models, but also in units that correspond to human intuition:
words (“project”/“projet”), phrases (“both”/“les deux”), sub-words (“ious”/“ieux”).
The above example also shows the somewhat surprising alignment “s are”/“s sont”,
in which the plural suffix of the noun and the plural form of the copula are combined
into a single phrase, capturing agreement between the two words.

Given our objective of finding multi-character alignments over character strings,
there are a number of requirements for the alignment model that can be used.
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1. Efficiency: The number of characters in a sentence is greater than the number
of words in a sentence, so an alignment model that can handle longer sentences
becomes a greater concern.

2. Automatic Granularity Adjustment: Given that it is possible to find alignments
of any number of granularities, we must be able to choose an appropriate size
based on the amount of data at our disposal. If we have more data, we can use
longer units to achieve more accurate alignments, and if we have less data, we can
fall back to sub-words or characters to maintain robustness.

3. Compact Translation Model: When performing word-based translation, phrases
are generally restricted to a maximum size of around seven words. However, for
character-based translation, seven characters is not enough to achieve reasonable
accuracy, so we would like a model that can utilize longer phrases without creating
enormous and unwieldy translation models.

Out of the many-to-many alignment methods proposed in the literature, the model
we introduced in Neubig et al. (2011) satisfies most of these desiderata. In order
to achieve efficient many-to-many alignment, it formulates the alignment process
using ITGs (Wu 1997), which allow for many-to-many alignment through biparsing
(described in the following section) in polynomial time. In order to automatically adjust
the granularity of alignment, alignment model probabilities are calculated according
to non-parametric Bayesian statistics, which allows for a balance between complex,
expressive models that memorize long segments, and small but less expressive models
that use shorter segments. Finally, the method reduces the translation model size by not
using all phrases licensed by alignments as is typically done in traditional translation
systems (Koehn et al. 2003), but only those licensed by the ITG tree.

This model is trained using Gibbs sampling in a multi-step process that can be very
simply outlined below (readers may refer to Neubig et al. (2011) for more details):

1. Calculate prior probabilities with a less accurate but highly efficient alignment
model (such as IBM Model 1 (Brown et al. 1993)).

2. Sample alignments A for each sentence:

(a) Remove statistics from the model for the current sentence.
(b) Biparse the two sentences according to the current ITG statistics.
(c) Sample a new alignment using the information from the parse and add the

statistics back into the model.

While previous work has shown this model to be effective for word-based alignment,
in this paper we examine its effectiveness with regards to character-based alignment,
and propose two improvements that are described in detail in the following sections.
In particular, Sect. 4.3 describes an improvement to the biparsing step that improves
the efficiency and accuracy for long sentences, while Sect. 5 describes improvements
to the step of calculating prior probabilities using substring co-occurrence statistics.

4 Efficient sampling of ITG-based many-to-many alignments

In this section we briefly explain the process of alignment in the ITG framework,
describe the process of biparsing that is used to find these alignments, and finally

123



146 G. Neubig et al.

touch upon our proposed method to improve the efficiency of biparsing in many-to-
many alignment models through the use of look-ahead probabilities.

4.1 Inversion transduction grammars (ITGs)

Inversion transduction grammars are generative models that were designed to simulta-
neously describe the generative process of equivalent strings of tokens e and f in two
different languages. They are a limited form of synchronous context-free grammar
(SCFG) in Chomsky normal form (Chomsky 1956), where “synchronous” indicates
that the grammar is defined over two languages instead of one. Figure 2a shows an
example of the word-based ITG derivation that has generated two phrases “to admit
it” and “de le admettre” in English and French, which we will use to demonstrate
how ITGs work. The ITG describes how these two equivalent sentences were created
through a recursive process that passes through two phases.

The first phase consists of generating the sentence structure, which in the case of
ITGs is particularly important for specifying the reordering that occurs between the
sentences in the two languages. It can be seen from the reordering matrix in Fig. 2b
that for some phrase pairs the word order is the same in both languages (“to” precedes
“admit it” and “de” precedes “le admettre”). On the other hand, there are also some
places where the order is inverted (“admit” precedes “it” while “admettre” follows
“le”). ITGs represent this reordering structure as a binary tree, with each internal node
labeled as straight (str) or inverted (inv), where each of these node types represents
the case where the order is the same or inverted in both languages, respectively.3 Much
like standard CFGs, each leaf node is labeled with the pre-terminal (term) to indicate
that we have finished the first step of generating the sentence structure.

The second phase takes place after generating the pre-terminal symbol, and consists
of generating short parallel phrases. These phrases can be one-to-one alignments as
shown in the above example, but can just as easily be one-to-many or many-to-many
alignments without a significant increase in the time required for alignment.

In addition, by assigning a probability to each of the ITG productions, it is possible
to create a generative model for parallel phrase pairs. The ITG generative probability
can be characterized by Px (x), which is a distribution over non- and pre-terminals, and
Pt (〈e, f 〉), which is a distribution over parallel phrase pairs. In this work, we follow
the model of Neubig et al. (2011) which defines the probability through a hierarchical
backoff scheme that attempts to generate parallel phrase pairs from Pt (〈e, f 〉), but
smooths the probability of longer phrase pairs by combining shorter phrase pairs in
the order specified by the non-terminals generated by Px (x).

Inversion transduction grammar-based models can be used to find alignments for
words in parallel sentences through the process of biparsing (Wu 1997). Within the
ITG framework, a sentence pair 〈eI

1, f J
1 〉 can be defined as the phrase pair that is

generated by the node at the top of the derivation tree. Biparsing for ITGs finds the

3 Here we are specifically referring to a special case of ITGs with only a single symbol each for straight and
inverted productions, which is also known as the bracketing ITG. ITGs with multiple straight and inverted
terminals are also conceivable, but are generally not used in alignment as they significantly increase the
computational burden of learning the ITG.
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Fig. 2 An example of a an
inversion transduction grammar
(ITG) derivation tree, b its
corresponding alignment matrix

(a)

(b)

most likely derivation for this sentence pair given the ITG probabilities. Once we have
this most likely derivation, we treat all phrase pairs that were generated from the same
terminal symbols as aligned (for example, in Fig. 2: “to/de,” “admit/admettre,” and
“it/le”).

4.2 Biparsing and beam biparsing

Biparsing ITGs is quite similar to standard chart parsing algorithms for monolingual
PCFGs, efficiently calculating marginal probabilities for each span using bottom-up
dynamic programming. We define the chart as a data structure with a single cell for
each alignment as,t,u,v spanning et

s and f v
u . Each cell has an accompanying “inside”

probability I (as,t,u,v). This probability is the combination of the generative probability
of each phrase pair Pt (et

s, f v
u) and the sum of the probabilities over all shorter spans

in straight and inverted order, as in (1):

I (as,t,u,v) = Pt (e
t
s, f v

u )

+
∑

s≤S≤t

∑

u≤U≤v

Px (x = str)I (as,S,u,U )I (aS,t,U,v)

+
∑

s≤S≤t

∑

u≤U≤v

Px (x = inv)I (as,S,U,v)I (aS,t,u,U ) (1)

where Px (x = str) and Px (x = inv) are the probability of straight and inverted
ITG productions, respectively. An example of part of the chart used in this bottom-
up parsing can be found in Fig. 3a, where we show the cells that have one-to-one
alignments.

The exact calculation of these probabilities can be performed in O(n6) time, where
n = max(I, J ) is the length of the longer of eI

1 and f J
1 (Wu 1997). This calculation is

performed using a dynamic programming algorithm that separates each of the spans
into queues based on their length l = t − s + u − v, and queues are processed in
ascending order of l. An example of the queues for the first three lengths is shown
in Fig. 4.
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Fig. 3 a A chart with inside log
probabilities I (s, t, u, v) in
boxes and forward/backward
look-ahead log probabilities
marking surrounding arrows.
b Spans with corresponding
look-ahead probabilities added,
and the minimum probability
underlined. Light and dark
shaded spans will be trimmed
when the beam is log(P) ≥ −3
and log(P) ≥ −6 respectively

(a)

(b)

Fig. 4 An example of the first three queues used in ITG parsing along with their inside probabilities. The
hypotheses that would be processed if the beam is set to c = 1e − 1 are surrounded by boxes

The motivation behind this algorithm is that when calculating a particular span’s
inside probability I (as,t,u,v) according to Eq. (1), all of the other inside spans that we
reference on the right-hand side of the equation are shorter than as,t,u,v itself. Thus, if
we process all spans in ascending order of length, it is simple to calculate these sums
for every span in the chart. The computational complexity of the algorithm is O(n6)

because Eq. (1) must be calculated for all of the O(n4) spans in the sentence, and there
are O(n2) elements in each calculation of the sum.

However, exact computation of these probabilities in O(n6) time is impractical for
all but the shortest sentences. Saers et al. (2009) note that in order to increase the
efficiency of processing, queues can be trimmed based on a fixed histogram beam,
only processing the b hypotheses with the highest probability for each queue. Here,
we instead utilize a probability beam, expanding only hypotheses that are more than
c times as likely as the best hypothesis â. In other words, we have a queue discipline
based on the inside probability, and all spans ak where I (ak) < cI (â) are pruned. c is
a constant between 0 and 1 describing the width of the beam, and a smaller constant
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probability will indicate a wider beam. Figure 4 shows an example of this, with boxes
surrounding part of each queue showing the hypotheses that fall within the beam when
c = 10−1.

It should also be noted that slice sampling has been proposed as a way to improve
efficiency in the learning of Bayesian ITGs (Blunsom and Cohn 2010). Comparing
these two methods, slice sampling has the ability to derive exact samples from the true
probability distribution for biparse trees, and the cost of faster parsing time is reflected
in a larger number of samples required to converge to a high-probability section of
the probability space. In contrast, beam search is by nature an approximate search
method, and removes the guarantees of selecting from the true probability distribution.
However, beam search is also comparatively simple and conducive to introduction of
the look-ahead probabilities that we introduce in the following section, so we opt to
use it instead.4

4.3 Look-ahead biparsing

While this pruning significantly increases the speed of biparsing, this method is insen-
sitive to the existence of competing hypotheses when performing pruning. Figure 3a
provides an example of what a competing hypothesis is, and why it is unwise to ignore
them. Particularly, the alignments “les/1960s” and “les/the” both share the word “les,”
and thus cannot both exist in a single derivation according to the ITG framework. We
will call hypotheses that are mutually exclusive in this manner competing hypothe-
ses. As the probability of “les/1960s” is much lower than its competing hypothesis
“les/the,” it is intuitively unlikely to be chosen, and thus a good candidate for prun-
ing. However, its inside probability is the same as that of “années/1960s,” which has
no competing hypotheses and thus should not be removed from consideration. This
section proposes the use of a look-ahead probability to increase the efficiency of this
chart parsing by considering competing hypotheses.

In order to take into account competing hypotheses, we can use for our queue
discipline not only the inside probability I (ak), but also the outside probability O(ak),
the probability of generating all spans other than ak , as in A* search for CFGs (Klein
and Manning 2003), and tic-tac-toe pruning for word-based ITGs (Zhang and Gildea
2005). As the calculation of the true outside probability O(ak) is just as expensive as
parsing itself, it is necessary to approximate this with heuristic function O∗ that can
be calculated efficiently.

This section proposes a heuristic function that is designed specifically for phrasal
ITGs and is computable with worst-case complexity of n2, compared with the n3

amortized time of the tic-tac-toe pruning algorithm described by Zhang et al. (2008a).
During the calculation of the phrase generation probabilities Pt , we save the best
probability O∗ for each monolingual span.

4 It is also likely that the look-ahead probabilities could be integrated into the auxiliary variable sampling
function for slice sampling to improve efficiency while maintaining correctness guarantees, an interesting
challenge that we will leave to future work.
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O∗
e (s, t) = max

{ã=〈s̃,t̃,ũ,ṽ〉;s̃=s,t̃=t}
Pt (ã) (2)

O∗
f (u, v) = max

{ã=〈s̃,t̃,ũ,ṽ〉;ũ=u,ṽ=v}
Pt (ã) (3)

For each language independently, we calculate forward probabilities α and backward
probabilities β. For example, αe(s) is the maximum probability of the span (0, s) of
e that can be created by concatenating together consecutive values of O∗

e , as in (4):

αe(s) = max{S1,...,Sx }O
∗
e (0, S1)O∗

e (S1, S2) . . . O∗
e (Sx , s). (4)

Backwards probabilities and probabilities over f can be defined similarly. These prob-
abilities are calculated for e and f independently, and can be calculated in n2 time
by processing each α in ascending order, and each β in descending order in a fashion
similar to that of the forward-backward algorithm. Finally, for any span, we define
the outside heuristic as the minimum of the two independent look-ahead probabilities
over each language, as in (5):

O∗(as,t,u,v) = min(αe(s) ∗ βe(t), α f (u) ∗ β f (v)). (5)

It should be noted that both of the monolingual probabilities are optimistic estimates
of the one-best outside probability O(ak) (in a manner similar to the heuristic function
in A* search). Thus, taking the minimum of the two is motivated by the fact that we
would like to choose the less optimistic of the two as a more accurate estimate of the
true one-best probability.

Taking a look again at the example in Fig. 3b, it can be seen that when using
these look-ahead probabilities, the relative probability difference between the highest
probability span “les/the” and the spans “années/1960s” and “60/1960s” decreases,
allowing for tighter beam pruning without losing these good hypotheses. In contrast,
the relative probability of “les/1960s” remains low, as it is in conflict with a high-
probability alignment, allowing it to be discarded.

5 Prior probabilities

One of the most critical elements to achieving accurate alignments in the probabilistic
ITG is the accuracy of the phrase distribution Pt . Previous work on many-to-many
alignment (DeNero et al. 2008; Neubig et al. 2011) helps achieve more accurate
translations through the definition of a phrase pair prior probability Pbase(et

s, f v
u), also

referred to as the “base measure”. This can help efficiently seed the search process
with a bias towards phrase pairs that satisfy certain properties. In particular, there
are three pieces of prior knowledge that we would like to provide through the base
measure. First, we would like to minimize the number of phrases that are not aligned
to any phrase in the other language, as we can assume that most of the phrases will
have some corresponding translation. Second, we would like to bias against overly
long phrases, as these are likely to cause sparsity and hurt generalization performance
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when the model is tested on new data. Finally, to the best extent possible, we would
like to provide information about whether phrase pairs are likely potential alignments.
This can be done by using a simpler alignment model that is more efficient but less
accurate than the ITG-based many-to-many alignment model.

5.1 One-to-many prior probabilities

First, we describe a formulation of the base probability similar to that of DeNero et al.
2008, which uses efficiently calculable IBM Model 1 probabilities to seed the ITG
translation model. Pbase is first calculated by choosing whether to generate an
unaligned phrase pair (where |e| = 0 or |f | = 0) according to a fixed probability
pu . pu should generally be a small value (10−2 in our experiments) to minimize the
number of unaligned phrases. Based on this choice, we next generate an aligned phrase
pair from Pba , or an unaligned phrase pair from Pbu

For Pba , we follow DeNero et al. (2008) in using the geometric mean of unidi-
rectional IBM Model 1 probabilities, defined according to the probabilities in (6)
and (7):

Pba(〈e, f 〉) = M0(〈e, f 〉)Ppois(|e|; λ)Ppois(|f |; λ) (6)

M0(〈e, f 〉) = (Pm1(f |e)Puni (e)Pm1(e|f )Puni (f ))
1
2 . (7)

Ppois is the Poisson distribution with the average length parameter λ, where k
represents the phrase length |f | or |e|, as in (8):

Ppois(k|λ) = (λ − 1)k−1

(k − 1)! e−(λ−1). (8)

λ was set to a relatively small value (10−2 in our experiments), which allows us to
bias against overly long phrases.

Puni is the unigram probability of a particular phrase, and Pm1 is the word-based
Model 1 (Brown et al. 1993) probability of one phrase given the other. Model 1
probabilities are word-based translation probabilities that help to indicate whether the
words in each phrase are good translations of each other. The phrase-based Model 1
probability is calculated as in (9):

Pm1(e|f ) =
|e|∏

i=1

1

|f | + 1

|f |∑

j=0

Pm1(ei | f j ) (9)

where ei and f j are the i-th and j-th words in phrases e and f respectively, and f0 is
a token for null alignments. The word-based probabilities Pm1(ei | f j ) and Pm1( f j |ei )

are parameters of the model, and can be calculated efficiently using the expectation
maximization algorithm (Brown et al. 1993) before starting phrase alignment. Follow-
ing Liang et al. (2006), we combine the Model 1 probabilities in both directions using
the geometric mean, which assigns a high probability to spans where both models
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agree, and lower probability to any span where any one of the models assigns a low
probability.

For Pbu , in the case of |f | = 0, we calculate the probability as in (10):

Pbu(〈e, f 〉) = Puni (e)Ppois(|e|; λ)/2. (10)

The probability can be calculated similarly when |e| = 0. Note that Pbu is divided by
2 as the probability is considering null alignments in both directions.

5.2 Substring-based prior probabilities

While the method suggested in the previous section is effective, it is also highly
dependent on the quality of the IBM Model 1 probabilities. However, for reasons
previously stated, these methods are less satisfactory when performing character-
based alignment, as the amount of information contained in a character does not
allow for proper alignment. In this section, we propose a novel method for using
raw substring co-occurrence statistics to bias alignments towards substrings that often
co-occur in the entire training corpus. This is similar to the method of Cromières
(2006), but instead of using these co-occurrence statistics as a heuristic align-
ment criterion, they are incorporated as a prior probability in a statistical model
that can take into account mutual exclusivity of overlapping substrings in a sen-
tence.

We define this prior probability using three counts over substrings ce, cf , and
c〈e,f 〉. ce and cf count the total number of sentences in which the substrings e and
f occur, respectively. c〈e,f 〉 is a count of the total number of sentences in which
the substring e occurs on the target side, and f occurs on the source side.5 We
can perform the calculation of these statistics using enhanced suffix arrays, a data
structure that can efficiently calculate all substrings in a corpus (Abouelhoda et al.
2004).6

While suffix arrays allow for efficient calculation of these statistics, storing
all co-occurrence counts c〈e,f 〉 is an unrealistic memory burden for larger cor-
pora. In order to reduce the amount of memory used, each count is discounted
fixed value d, which is set to 5. This has a dual effect of reducing the amount
of memory needed to hold co-occurrence counts by removing values for which
c〈e,f 〉 < d, as well as helping to prevent overfitting the training data. In addition,
we can heuristically prune values for which the conditional probabilities P(e|f ) or
P(f |e) are less than some fixed value, which is set to 0.1 for the reported experi-
ments.

In preliminary experiments designed to determine how to combine ce, cf , and c〈e,f 〉
into prior probabilities we tested a number of methods proposed by previous research

5 It should be noted that we are not counting duplicate occurrences of substrings in a single sentence. This
was a design choice to prevent the over-counting of one-character or very short strings that tend to occur
many times in a single sentence.
6 Using the open-source implementation esaxx http://code.google.com/p/esaxx/.
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including plain co-occurrence counts, the Dice coefficient, and Chi-squared statistics
(Cromières 2006). As a result of these experiments, we found the most effective to be a
new method of defining substring pair probabilities to be proportional to bidirectional
conditional probabilities; as in (11) and (12):

Pcooc(e, f ) = Pcooc(e|f )Pcooc(f |e)/Z (11)

=
(

c〈e,f 〉 − d

cf − d

)(
c〈e,f 〉 − d

ce − d

)
/Z (12)

for all substring pairs where c〈e,f 〉 > d and where Z is a normalization term equal to
that in (13):

Z =
∑

{e,f ;c〈e,f 〉>d}
Pcooc(e|f )Pcooc(f |e). (13)

The motivation for combining the probabilities in this fashion is similar to that of
the base measure in Eq. (7), finding highly reliable alignments that are supported by
both models. The preliminary experiments showed that the bidirectional conditional
probability method gave significantly better results than all other methods, so this
method will be adopted for the remainder of the experiments.

It should be noted that as we are using discounting, many substring pairs will
be given zero probability according to Pcooc. As the prior is only supposed to bias
the model towards good solutions and not explicitly rule out any possibilities, we can
instead linearly interpolate the co-occurrence probability with the one-to-many Model
1 probability, which will give at least some probability mass to all substring pairs, as
in (14):

Pbase(e, f ) = λPcooc(e, f ) + (1 − λ)Pm1(e, f ). (14)

In order to find an appropriate value, we put a Beta prior (α = 1, β = 1) on the
interpolation coefficient λ and learn it during training.

6 Experiments

This section describes experiments over a variety of language pairs designed to test
the effectiveness of the proposed substring-based translation method.

6.1 Experimental setup

Evaluation was performed on a combination of four languages with English, using
freely available data. The first three language pairs, French–English, German–English,
and Finnish–English, used data from EuroParl (Koehn 2005), with development and
test sets designated for the 2005 ACL shared task on machine translation.7 Experiments

7 http://www.statmt.org/wpt05/mt-shared-task/.
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Table 1 The number of sentences and words in each corpus for TM and LM training, tuning, and testing

Type de-en fi-en fr-en ja-en

Sent Word Sent Word Sent Word Sent Word

TM (en) 457k 2.80M 467k 3.10M 457k 2.77M 286k 2.13M

TM (other) 2.56M 2.23M 3.05M 2.34M

LM (en) 751k 16.0M 717k 15.5M 688k 13.8M 440k 11.5M

LM (other) 15.3M 11.3M 15.6M 11.9M

Tune (en) 2.00k 58.7k 2.00k 58.7k 2.00k 58.7k 1.24k 30.8k

Tune (other) 55.1k 42.0k 67.3k 34.4k

Test (en) 2.00k 58.0k 2.00k 58.0k 2.00k 58.0k 2.00k 26.6k

Test (other) 54.3k 41.4k 66.2k 28.5k

were also performed with Japanese–English Wikipedia articles from the Kyoto Free
Translation Task (Neubig 2011) using the designated training and tuning sets, and
reporting results on the test set. These languages were chosen as they have a variety
of interesting characteristics. French has some level of inflection, but among the test
languages has the strongest one-to-one correspondence with English, and is generally
considered to be easy to translate. German has many compound words, which must
be broken apart in order to translate properly into English. Finnish is an agglutinative
language with extremely rich morphology, resulting in long words and the largest
vocabulary of the languages in EuroParl. Japanese does not have any clear word
boundaries, and uses logographic characters, which contain more information than
phonetic characters.

With regards to data preparation, the EuroParl data was pre-tokenized, so the exper-
iments simply used the tokenized data ‘as is’ for the training and evaluation of all
models. For word-based translation in the Kyoto task, training was performed using
the tokenization scripts provided. For character-based translation, no tokenization was
performed, using the original text for both training and decoding. For both tasks, all
sentences for which both source and target were 100 characters or less were selected
as training data, the total size of which is shown in Table 1.8 In character-based trans-
lation, white spaces between words were treated as any other character and not given
any special treatment. Evaluation was performed on tokenized and lower-cased data.

For alignment, GIZA++ (Och and Ney 2003) was used as an implementation of
one-to-many alignment, with pialign used as an implementation of the ITG models9

modified with the proposed improvements. For GIZA++, the default settings were used
for word-based alignment, but for character-based alignment the training process was
stopped at the HMM model, omitting IBM Models 3 and above, as the more advanced

8 The 100-character limit results in the use of somewhat shorter sentences than when using limits based on
words. For example, using a more traditional limit of a maximum of 40 words on both sides for Japanese-
English results in a total of 5.91M words of English, 2.7 times greater than when a 100-character limit is
used. The 100-character limit was mainly for efficient experimentation in the character-based models, and
we describe possible directions for raising this limit in the future work section.
9 http://phontron.com/pialign/.
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models caused training to fail for longer sentences. For pialign, default settings were
used except for character-based ITG alignment, which used a probability beam of 10−4

instead 10−10. Decoding was performed with the Moses decoder (Koehn et al. 2007),
with the default settings except for the stack size, which was set to 1000 instead of
200. Minimum error rate training (Och 2003) was performed to maximize word-based
BLEU score for all systems.10 For language models, word-based translation used a
word 5-g model, and character-based translation used a character 12-g model, both
smoothed using interpolated Kneser–Ney smoothing (Kneser and Ney 1995).11

6.2 Quantitative evaluation

This section presents a quantitative analysis of the translation results for each of
the proposed methods. As previous research has shown that it is more difficult to
translate into morphologically rich languages than into English (Koehn 2005), exper-
iments are performed to test the accuracy translating in both directions for all lan-
guage pairs. Translation quality is evaluated using BLEU score (Papineni et al. 2002),
both on the word and character level, as well as METEOR (Denkowski and Lavie
2011) on the word level. For METEOR, we used the language-independent setting
for Japanese and Finnish, and the language-dependent settings for the remaining lan-
guages.

Table 2 shows the results of the evaluation. It can be seen that in general,
character-based translation with all of the proposed alignment improvements greatly
exceeds character-based translation using the IBM models, confirming the hypoth-
esis that substring-based information is necessary for accurate alignments. In gen-
eral, the accuracy of character-based translation is comparable or slightly inferior
to that of word-based translation. The evaluation of character-based BLEU shows
that character-based translation is superior, comparable, or inferior depending on the
language pair, word-based METEOR shows that character-based translation is com-
parable or inferior, and word-based BLEU shows that character-based translation is
inferior.

For translation into English, character-based translation achieves higher relative
accuracy compared to word-based translation on Japanese and Finnish input, fol-
lowed by German, and finally French. This is notable in that it confirms the fact that
character-based translation is performing well on languages that have long words or
ambiguous boundaries, and less well on language pairs with a relatively strong one-
to-one correspondence between words in both languages.

10 This setup was chosen to minimize the effect of the tuning criterion on the comparison between the
baseline and the proposed system, although it does imply that we must have access to tokenized data for
the development set.
11 We also performed experiments in which we incorporated a word-based language model in character-
based translation, but found that this consistently gave neutral to negative results, a similar finding to that of
Vilar et al. (2007). We suspect that this is due to the fact that word-based language models assign a sudden,
large penalty when a word completes, hurting decoding. In addition, the modeling of unknown words is
not trivial, and while we provided a fixed penalty for each unknown word (tuned using MERT), a more
sophisticated unknown word model is probably necessary.
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Table 2 Translation results for word-based BLEU (wBLEU), character-based BLEU (cBLEU), and
METEOR for the GIZA++ and ITG models for word and character-based translation, with bold numbers
indicating a statistically insignificant difference from the best system according to the bootstrap resampling
method at p = 0.05

wBLEU cBLEU METEOR wBLEU cBLEU METEOR

de-en en-de
GIZA-word 24.58 64.28 30.43 17.94 62.71 37.88

ITG-word 23.87 64.89 30.71 17.47 63.18 37.79

GIZA-char 08.05 45.01 15.35 06.17 41.04 19.90

ITG-char 21.79 64.47 30.12 15.35 61.95 35.45

fi-en en-fi
GIZA-word 20.41 60.01 27.89 13.22 58.50 27.03

ITG-word 20.83 61.04 28.46 13.12 59.27 27.09

GIZA-char 06.91 41.62 14.39 04.58 35.09 11.76

ITG-char 18.38 62.44 28.94 12.14 59.02 25.31

fr-en en-fr
GIZA-word 30.23 68.79 34.20 32.19 69.20 52.39

ITG-word 29.92 68.64 34.29 31.66 69.61 51.98

GIZA-char 11.05 48.23 17.80 10.31 42.84 25.06

ITG-char 26.70 66.76 32.47 27.74 67.44 48.56

ja-en en-ja
GIZA-word 17.95 56.47 24.70 20.79 27.01 38.41

ITG-word 17.14 56.60 24.89 20.26 28.34 38.34

GIZA-char 09.46 49.02 18.34 01.48 00.72 06.67

ITG-char 15.84 58.41 24.58 17.90 28.46 35.71

Table 3 METEOR scores for alignment with and without look-ahead and co-occurrence priors, bold
numbers indicate a statistically insignificant difference from the best system according to the bootstrap
resampling method at p = 0.05

fi-en en-fi ja-en en-ja

ITG +cooc +look 28.94 25.31 24.58 35.71

ITG +cooc −look 28.51 24.24 24.32 35.74

ITG −cooc +look 28.65 24.49 24.36 35.05

ITG −ooc −look 27.45 23.30 23.57 34.50

6.3 Effect of improvements to the alignment method

This section compares the translation accuracy for character-based translation using the
ITG model with and without the proposed improvements of substring co-occurrence
priors and look-ahead parsing as described in Sects. 4 and 5.

METEOR scores for experiments translating Japanese and Finnish are shown in
Table 3.12 It can be seen that the co-occurrence prior probability provides gains in all

12 Character-based BLEU and word-based BLEU showed similar relative gains.
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Table 4 An adequacy
evaluation of word- and
character-based MT (0–5 scale)

fi-en ja-en

ITG-word 2.851 2.085

ITG-char 2.826 2.154

Table 5 The major gains of character-based translation, source-side unknown words (Src), target-side
unknown words (Trg), and rare words (Rare)

Type # Reference ITG-word ITG-char

Src 13 directive on equality tasa-arvodirektiivi equality directive

Trg 5 yoshiwara-juku station yoshiwara no eki yoshiwara-juku station

Rare 5 world health organisation world health world health organisation

# Indicates the total number of occurrences of each gain

cases, indicating that the using substring statistics over the whole corpus are providing
effective prior knowledge to the ITG aligner. The introduced look-ahead probabilities
improve accuracy significantly when substring co-occurrence counts are not used, but
only slightly when co-occurrence counts are used. More importantly, they allow for
more aggressive beam pruning, increasing sampling speed from 1.3 sent/s to 2.5 sent/s
on the Finnish task, and 6.8 sent/s to 11.6 sent/s on the Japanese task.

6.4 Qualitative evaluation

This section presents the results of a subjective evaluation of Japanese–English and
Finnish–English translations. In the evaluation, two raters evaluated 100 sentences
each, assigning an adequacy score of 0–5 based on how well the translation conveys
the information contained in the reference translation. The raters were asked to rate on
shorter sentences of 8–16 English words to ease rating and interpretation. The results
of this evaluation are shown in Table 4. It can be seen that the results are comparable,
with no significant difference in average scores for either language pair.

A breakdown of the types of sentences for which character-based translation was
given a score of at least two points more than word-based is shown in Table 5. It can be
seen that character-based translation is, in fact, properly handling a number of sparsity
phenomena. On the other hand, word-based translation was generally stronger with
reordering and lexical choice of more common words.

6.5 Phrases used in translation

This section presents an analysis of the phrases used in the translation of 50 sentences
using word- and character-based ITG alignment for the Finnish–English and Japanese–
English tasks. First, Table 6 shows the number of phrases where the phrase used by one
of the two systems was subjectively better than the phrase used by the other system. It
can be seen that there are a greater number of accurate translations at the phrase level
for the character-based system than for the word-based system across both languages.
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Table 6 The number of phrases
that were the same, different but
of equal quality, or subjectively
better translations in one of the
two models

fi-en ja-en

Same phrase 220 215

Equal quality 209 217

ITG-char better 67 96

ITG-word better 35 69

Table 7 A phrase-by-phrase analysis of gains and losses for Finnish–English translation categorized by
errors due to misalignment (Mis), conjugation (Conj.), deletion of a word (Del.), insertion of a word (Ins.),
compound words (Comp.), and lexical choice (Lex.)

# Type Source ITG-char ITG-word

ITG-char better

19 Mis. itsenäisille independent
(pos./all.)

independent for economic reform

18 Conj. perustuslaillisempi
constitution (comp.)

constitution more perustuslaillisempi

12 Del. kuuluisi belong (cond.) would include would

12 Comp. yleismietintöä
the general report

the general report, yleismietintöä

10 Ins. myös also also will also be

8 Lex. pelkojen fears/emotions fears emotions

ITG-word better

19 Del. itsellemme
ourselves (all.)

space ourselves

15 Ins. haluan i would like to i would like to make i would like to

6 Lex. jo in/already already in

5 Mis. on vastattava is answer must be is answer

4 Conj. vertailuanalyysiä
benchmarking

comparative analysis benchmarking

# The total number of instances of each class

In order to examine the types of phrases where one of the two systems is more
accurate than the other, Tables 7 and 8 provide more detailed break-downs by type
of the mistranslated phrases used by each of the models for Finnish–English and
Japanese–English translation, respectively. It can be seen that character-based trans-
lation naturally handles a number of phenomena due to unknown words that are not
handled by word-based systems, such as those requiring transliteration, decompound-
ing, and division of morphological components. It should also be noted that this process
is not perfect; there are a number of cases where character-based translation splits or
transliterates words that would be more accurately translated as a whole, although the
total number of correctly translated compounds and inflected words is more than twice
the number of incorrectly translated ones.

With regards to Finnish–English, it is interesting to note that character-based trans-
lation also succeeded in discovering a number of inflectional suffixes that have a clear
grammatical function in the language (Karlsson 1999). Examples of the most common
sub-word units used in translation are shown in Table 9. It can be seen that all but one
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Table 8 A phrase-by-phrase analysis of gains and losses for Japanese–English translation categorized by
errors due to transliteration (Tran.), insertion of a word (Ins.), deletion of a word (Del.), insertion of a
word (Ins.), misalignment (Mis.), lexical choice (Lex.), compound words (Comp.), or partial transliteration
(Part.)

# Type Source ITG-char ITG-word

ITG-char better

38 Tran. kigen

19 Ins. half year six months between

19 Del. due to his illness illness

17 Mis. seeking the

2 Lex. lay commonly called

2 Comp. face washing

ITG-word better

28 Del. . was also used.

11 Ins. invited cont invited

11 Tran. mujo vanity

10 Mis. the written

5 Part. os osaragi

2 Lex. and in

# The total number of instances of each class

Table 9 Common Finnish
sub-word phrases along with
their grammatical function

String # Grammatical function

n 564 Genitive (“of X”)

a 467 Partitive (“some X”)

i 307 Plural, non-nominative (“Xs”)

t 241 Plural, nominative (“Xs”)

sta 235 Elative (“out of X”)

e 156 Similar to “e” in “played”

lle 134 Allative (“onto X”)

s 133 –

ä 121 Partitive (“some X”)

in 114 Plural, genitive (“of Xs”)

ssa 94 Inessive (“in X”)
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have a clear grammatical function in Finnish. The only exception “s” is used in the
transliteration of unknown words, as well as part of some morphological paradigms
(similarly to “e”). This demonstrates that despite using no sort of explicit morpholog-
ical knowledge, character-based translation is able to handle, to some extent, the more
common morphological paradigms in morphologically rich languages.

One significant area for improvement in the character-based model is that it has a
tendency to create alignments of actual content words on the source side to the white
space character on the target side, effectively deleting content words. While deleted
words are a problem in the word-based model as well, the problem is more prevalent
in the character-based model, so it will be worth examining the possibilities of giving
space characters a special status in the translation model in the future.

Finally, we note that the character-based model helps not only with unknown words,
but also words that do exist, but are misaligned by the word-based model because
they are rare, or do not have a consistent translation. In fact, this was the single most
common error category for Finnish–English, and a significant portion of the Japanese–
English errors. This indicates that simply applying character-based methods to process
unknown words will not be sufficient to overcome the sparsity issues of the word-based
model.

6.6 Character-to-word and word-to-character translation

Up until now, we have mainly considered the traditional combination of translation
from words to words, and translation from characters to characters. However, it is easy
to imagine the translation from word strings on the source side to character strings on
the target side, or vice-versa. In order to examine the effect of character-to-word or
word-to-character translation, we performed additional experiments where only the
source or target side was divided into characters, and the other parts of the text were
left as words.

The results of these experiments for Finnish–English and Japanese–English trans-
lation are shown in Table 10.13 From this table, it can be seen that there is no clear
strategy for obtaining the highest accuracy across all language pairs. In general it can
be seen that the largest positive effect of character-based translation can be obtained
by dividing Japanese or Finnish on the source side. This is a reasonable result given
the features of the languages, as well as our previous analysis, which showed that the
largest number of gains from character-based translation were for unknown words on
the source side.

6.7 Effect of the reordering limit

Finally we examine the effect of the reordering limit on word- and character-based
translation for Finnish and Japanese to and from English. The reordering limit is a
hard constraint on the length of reorderings allowed by phrase-based translation that is

13 These numbers were produced with a different version of Moses than the numbers in previous sections,
so should not be directly compared.
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Table 10 Translation results in word-based BLEU (wBLEU), character-based BLEU (cBLEU), and
METEOR for the ITG model for word- or character-based input and output

wBLEU cBLEU METEOR wBLEU cBLEU METEOR

fi-en en-fi
Word → word 20.58 60.86 28.47 13.06 60.14 27.20

Char → char 17.97 61.30 28.71 11.92 58.86 25.09

Word → char 16.48 57.23 25.73 11.18 58.41 24.70

Char → word 19.44 61.94 29.09 10.78 56.49 24.85

ja-en en-ja
Word → word 17.07 56.52 24.73 19.96 28.15 38.26

Char → char 15.41 58.06 24.57 17.59 28.51 35.74

Word → char 14.98 55.64 23.37 19.08 27.35 37.08

Char → word 15.65 56.62 24.42 17.60 28.72 36.04

Bold indicates a statistically insignificant difference from the best system p = 0.05

Fig. 5 Accuracy for four language pairs at each reordering limit

essential for producing translations efficiently (Koehn et al. 2005). All previous exper-
iments used Moses’ default reordering limit of 6 elements, which is often a reasonable
limit for word-based translation, especially for similar language pairs. However, for
character-based translation, a limit of 6 characters will often only translate into the
reordering of a single word (or less). Thus, it could be expected that the effect of
different reordering limits will have different effects on word- and character-based
translation.

In order to examine the effect of the reordering limit, in Fig. 5 we show results for
ITG-word and ITG-char over four language pairs with reordering limits of 0, 6, 12,
18, and 24. First, examining the results for word-based translation, we can see that a
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reordering limit of 6 is ideal for all language pairs except Japanese–English, which
achieves the highest accuracy with a reordering limit of 12.

On the other hand, the results are much less consistent for character-based trans-
lation. For translation to or from Japanese, a large reordering limit generally helps
character-based translation, with limits of 18 and 24 achieving ideal results for
Japanese–English and English–Japanese, respectively. This is a somewhat expected
result, as we require a larger reordering limit to handle the same types of reorder-
ing that may be covered by the character-based model. However, for English–Finnish
translation there is no clear improvement by increasing the reordering limit, and for
Finnish–English translation accuracy actually decreases significantly for any limit
over 0. This indicates that the search space for character-based translation is too large,
and the lexicalized phrase-based reordering models are too weak to find an appropri-
ate reordering within this search space. Given this, it is likely that improved methods
of decoding or constraining the search space within the character-based translation
framework could further improve translation accuracy quite significantly.

7 Conclusion

This paper demonstrated that given improvements to alignment, character-based trans-
lation is able to act as a unified framework for handling a number of difficult problems
in translation: morphology, compound words, transliteration, and word segmentation.
It also presented two advances to many-to-many alignment methods that allow them to
be run on much longer sentences, and improve accuracy through substring-based prior
probabilities. However, while this is a first step towards moving beyond the concept
of words in MT, there are still a number of remaining challenges.

One of the major challenges for the future is the development of efficient decoding
methods for character-based translation models. As shown in the analysis of phrase
quality in the system, the character-based model is able to produce better translations
on the phrase level, but nevertheless achieves results that are approximately equal to
those of the word-based systems. The major reason for this gap is that the word-based
model tends to be better at reordering, as it is able to treat whole words as single
units, which gives it both more freedom to handle reorderings over long distances
and a more constrained search space that only considers more reasonable reorderings.
Given more effective and efficient decoding methods, it is likely that we will be able
to further close this gap in reordering quality, resulting in a clear advantage of the
character-based models over word-based models.

In addition, there are still significant improvements that could be made to alignment
speed to scale to longer sentences. This can probably be achieved through methods
such as the heuristic span pruning of Haghighi et al. (2009) or sentence splitting of
Vilar et al. (2007).

Finally, an interesting future direction is the consideration of discontiguous spans
in character-based alignment. As noted in Fig. 1, the proposed model was able to
capture a rudimentary concept agreement by learning phrases that combine the plural
suffix of nouns with the plural form of a verb. Learning discontiguous spans (possibly
with a method similar to that of Levenberg et al. (2012)) could further allow for
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the entirely unsupervised learning of morphological agreement, even when there are
words intervening between the words that must agree.
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