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Sequence-Based Pronunciation Variation Modeling for
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SUMMARY  The performance of English automatic speech recogni-
tion systems decreases when recognizing spontaneous speech mainly due
to multiple pronunciation variants in the utterances. Previous approaches
address this problem by modeling the alteration of the pronunciation on
a phoneme to phoneme level. However, the phonetic transformation ef-
fects induced by the pronunciation of the whole sentence have not yet been
considered. In this article, the sequence-based pronunciation variation is
modeled using a noisy channel approach where the spontaneous phoneme
sequence is considered as a “noisy” string and the goal is to recover the
“clean” string of the word sequence. Hereby, the whole word sequence and
its effect on the alternation of the phonemes will be taken into considera-
tion. Moreover, the system not only learns the phoneme transformation but
also the mapping from the phoneme to the word directly. In this study, first
the phonemes will be recognized with the present recognition system and
afterwards the pronunciation variation model based on the noisy channel
approach will map from the phoneme to the word level. Two well-known
natural language processing approaches are adopted and derived from the
noisy channel model theory: Joint-sequence models and statistical machine
translation. Both of them are applied and various experiments are con-
ducted using microphone and telephone of spontaneous speech.

key words: spontaneous speech, noisy channel approach, joint-sequence
models, statistical machine translation

1. Introduction

State-of-the-art automatic speech recognition (ASR) sys-
tems perform satisfactory in closed environments. However,
under more relaxed constraints when people speak freely,
the recognition rates decrease [1]. In natural conversations
people pronounce differently, tend to combine or even miss
words out. Discourse particles (e.g. “like”) or hesitation
sounds (e.g. “ahm”) are used to structure the sentence and
have no semantic meaning. However, Riley et al. [2] con-
sider multiple pronunciation variants as being one of the
main problems of spontaneous ASR.

Several approaches have been made to resolve the mul-
tiple pronunciation problem. One attempt is to extend the
dictionary manually with further pronunciation variants or
to improve it by applying rule-based algorithms [3]. Nev-
ertheless, both approaches are very time consuming and
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the latter one needs a significant amount of expert knowl-
edge. Alternatively, data driven approaches may be used to
model the alteration of the pronunciation on a phoneme-to-
phoneme level. Decision-tree-based approaches applied by
Bates et al. [4] have improved the ASR performance. Chen
et al. [5] examine the effect of prosody on pronunciation and
propose to use artificial neural networks (ANN) to model
pronunciation variation. Livescu et al. [6] propose a feature-
based pronunciation model based on a dynamic Bayesian
Network (BN). Sakti et al. [7] also uses a BN technique to
model the variation of the base form and the surface form
of the phoneme. After applying the Bayesian Network a
small performance improvement of the ASR was gained.
Since the realization of the current phone does not only de-
pend on neighboring phones the observation window should
be extended. Fosler-Lussier [8] proposes to take syllabifica-
tion into consideration and investigate decision tree models
based on syllables. However, the word error rate increases
slightly. This may be because the phonetic transformation
effects induced by the pronunciation of the whole sentence
are not considered yet.

In this paper, we model the sequence-based pronunci-
ation variation using a noisy channel approach where the
spontaneous phoneme sequence is considered as a “noisy”
string and the goal is to recover the “clean” string of the
word sequence. Two well-known natural language process-
ing (NLP) approaches are adopted and derived from the
noisy channel model to map from the phoneme to the word
level: Joint-sequence models and statistical machine trans-
lation. By applying those approaches the whole word se-
quence and its effect on the alternation of the phonemes
will be taken into consideration. Moreover, the system not
only learns the phoneme transformation but also the map-
ping from the phoneme to the word directly. In this study,
first the present ASR system recognizes the phonemes and
afterwards the phonemes are mapped onto the word level
with the two proposed pronunciation variation models.

In the next section the noisy channel model and its de-
rived attempts, the joint-sequence models and the statisti-
cal machine translation, are explained. Section 3 describes
the conducted experiments where the approaches have been
applied on various spontaneous speech corpora (clean and
telephone speech data) and evaluated. Afterwards, the ex-
perimental results are presented, both approaches compared
and finally conclusions are drawn.

Copyright © 2012 The Institute of Electronics, Information and Communication Engineers
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2. The Noisy Channel Approach
2.1 The Noisy Channel Model for ASR

As illustrated in Fig. 1 spoken language processing may be
considered as a noisy channel problem. Here, a word se-
quence W considered as “clean” input is transmitted via a
noisy channel where it gets modified and transformed onto
a different domain, the speech signal X.

The goal of the ASR is to decode the speech signal
output of the noisy channel to recover the most likely input
word sequence W. Mathematically, this task can be formu-
lated as follows:

W= argmax P(W|X). @9)
WweQ

In this Equation, Q denotes the set of word sequences.

Under constraint conditions, i.e., read speech with
high-quality microphone recordings, the ASR task to re-
cover the most likely input word sequence W can be done
straightforwardly. However, the “noisy” speech variability
increases significantly in case of spontaneous speech. Con-
sequently, the ASR may not be able to recover the “clean”
word string W anymore. Therefore, additional efforts have
to be made to support the ASR. Those efforts will be de-
scribed in the following section.

2.2 The Proposed Noisy Channel Model for Spontaneous
ASR

In this study, we propose to split the task P(W|X) into two
subtasks as follows (see Fig. 2):

The first task is used to handle the acoustic variability
of the spontaneous speech signal which is achieved by the
ASR. Here, the ASR task is only to recover the most prob-
able phoneme sequence F given the “noisy” spontaneous
speech signal X according to Eq. (2):

F = argmax P(F|X) )
Fed
where @ denotes the set of phoneme sequences F.

The second task is to deal with the present pronuncia-
tion variability. In this case, the task is to recover the most
probable word sequence W, given the phoneme sequence F
from the ASR output, according to Eq. (2):

Noisy W%&

t  Channel ASR
w P(X|W) X W

1 went there.” | went there.”
— e

Fig.1  The Noisy Channel Model for ASR.

| went there.” Noisy »m‘ - Jay/ Iw/ .. .| went there.”
—» Channel ASR P2W / SMT
A N
w P(X|W) X F w

Fig.2  Applying the noisy channel approach on spontaneous ASR.
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W = argmax P(W|F). (3)
weQ

In order to solve the second task on handling the pro-
nunciation variation, we attempt to adopt two well-known
NLP approaches which will be explained in the next two
subsections.

2.2.1 Joint-Sequence Model

By applying Bayes’ rule, Eq. (3) can be rewritten to':

. P(W, F)
W =argmax P(W|F)=argmax =argmax P(W, F).
WeQ WeQ P(F) WeQ
“)

We adopted the idea of Bisani et al. [9] who tried to find the
most likely pronunciation of a certain word given its written
form. In their report, they search for the most likely pronun-
ciation F given its orthographic form G. This task can also
be formalized using Bayes’ rule:

. P(F,G
F =argmax P(F|G)=argmax ( ) =argmax P(F,G)
Fed Fed P(G) Fed
(5)

where @ denotes the set of phoneme sequences and £ de-
notes the most likely phoneme sequence. Bisani et al. use
joint-sequence N-gram models to achieve the mapping from
the orthographic to the phoneme level which is known as
G2P.

By reversing Bisani et al’s idea and using phoneme se-
quences as a source language and word sequences as a target
language, the joint-sequence N-gram models can be used to
compute the most probable word sequence W € Q given an
input phoneme sequence F (as formalized in Eq. (4)). From
now on, we call this approach P2W.

The joint-sequence N-gram models are trained with
parallel matching pairs of text data from the input and the
output language. A phoneme-word joint multigram is a pair
0 =(F,W)eT c dxQ of aphoneme sequence and a word
sequence of possibly different lengths. The terms ¢y, f; and
wy, are used to described the k-th component of Q = (F, W).
For example, a possible sequence Q of phoneme-word pairs
for the short utterance “we will go to get her” is illustrated
in Fig. 3.

As can be seen in the example, the words and the

“we willgo to get her” . |
[wiy wihl gow tuw geht hher] "~

‘;

%J

Fig.3  Co-segmentation 1 of the example utterance.

In Eq. (3) F is used instead of F. The following sections use
F as variable denoting the phoneme sequence output of the ASR.
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" together |
“we will go to get her” i
[wiy wihl gow tuw geht hher] :

i tuwgehthher |

= )

Fig.4 Co-segmentation 2 of the example utterance.

phoneme sequences are grouped in an equal number of seg-
ments which is called co — segmentation. For a given input
and output string there might be different ways to segment
the entities. Therefore the segmentations may not be unique.
A different segmentation of the above example is shown in
Fig.4.

Because of this ambiguity the joint probability P(W, F')
of Eq. (6) is computed by summing over all probability val-
ues of the matching sequences Q:

PW,F)= PO (©)

QeC(E,W)

Q € T is a sequence of phoneme-word pairs and
C(F, W) is the set of all existing co-segmentations of F and
w:

— fql"fqzv"'

C(F,W): {QE‘I’I Wy, — gy = ...
where V = |Q| denotes the length of the phoneme-word pair
sequence and — symbolizes the concatenation of the single
entities. The probability distribution P(W, F) can now be
computed with the probability distribution P(Q) over sev-
eral phoneme-word pairs sequences Q. Those sequences

0 =4qi,-..,qy can be modeled with a standard N-gram ap-
proximation:
V+1
Pq)) = [ | P@igirs- - qinen), (8)

i=1

To model special phenomena at the beginning and at the end
of an utterance, positions i < 1 and i > V are also taken
into consideration. The segmentation algorithms and model
estimation can be adopted from the original grapheme-to-
phoneme approach without any modification. Further de-
tails about these algorithms can be found in [9].

2.2.2 Machine Translation

To derive the second approach, again, Eq. (3) has to be sim-
plified to:

W = argmax P(W|F) = argmax P(F|W)-P(W)  (9)
weQ weQ
A similar formulation has been applied by Koehn et
al. [10] who define a phrase translation model based on the
noisy channel approach. The authors translate a foreign sen-
tence f into an English sentence e using the following for-
mula:
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Parallel
Text Corpora

Monolingual
Text Corpora

Statistical
Analysis
Translation Language
Models Models

Source Decoding Algorithm Target
Language Language
Input max P(src|trg)+P(trg) Output

Fig.5 Basics of SMT framework.

argmax P(e|f) = argmax P(fle) - P(e). (10)

In their report, the right hand side of Eq. (10) can be repre-
sented as a translation model P(f|e) and a language model
(LM) P(e).

In our work, this idea is adopted and instead of trans-
lating one language into another, statistical machine trans-
lation (SMT) is used to translate the recognized phonemes
into words. According to the very right hand side of Eq. (9),
the SMT has to compute the most probable word sequence
W given an input phoneme sequence F. In this case, P(W)
represents the probability of the word sequence W provided
by the SMT LM of the target language. P(F|W) denotes
the likelihood of the phoneme sequence F given the word
sequence W, represents the transition from the phonemic
to the word representation and is computed by the transla-
tion model. The framework of the SMT system is shown in
Fig.5.

The SMT system is trained with parallel matching pairs
of text data from the input and the output language. While
testing the translation system the SMT evaluates each pro-
posed hypothesis by assigning a score according to the sta-
tistical model probabilities. During the translation process
all possible hypotheses are considered and finally the path
with the highest score is chosen as a result.

3. Experimental Setup
3.1 Applied Tools in the Experiments

3.1.1 ASR

NICT’s ASR system uses the following features and algo-
rithms for training and testing: A frame length of a 20 ms
Hamming window, a frame shift of 10 ms and 25 dimen-
sional feature parameters consisting of 12-order MFCC,
delta MFCC and log power, are used. For building the
acoustic model (AM), at the beginning each phoneme con-
sists of a 3-state HMM. By applying a successive state
splitting (SSS) algorithm based on the minimum description
length (MDL) the optimum state level HMnet is obtained.
Further information about the MDL-SSS algorithm may be
obtained from [11].
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Table2  Buckeye corpus data composition of this experiment.
Speech Type Data Set Hours | Words Usage
. Spont. Speech AM & LM Train,
Buckeye Train. Set 36 8741 Read Speech AM Adapt

Spontaneous | Buckeye Train. Set 7-10 50-250 SMT & P2W Train
Spont. & Read Speech ASR Test,

Buckeye Test Set 0.2 50-250 POW & SMT Test

Table 1 ~ Wall Street Journal data composition of this experiment.
Speech Type Data Set Hours | Words Usage
WSI Train. Set | 60 | 4ogo | Read Speech
ASR Train
Read Read Speech
WSIJ Test Set 0.2 4989 ASR Test
3.1.2 P2W

The phoneme-to-word conversion system is based on Se-
quitur G2PT open source tools which is restricted to 255
words. While training, the order of the N-gram LM can be
increased by ramping up the system iteratively.

3.1.3 SMT

The SMT system applies phrase-based SMT tech-
niques [10]. It utilizes a 3-gram LM which can be tuned
up onto a 5-gram LM. The statistical models of our sys-
tem were trained with special toolkits for language model-
ing [12] and word alignment [13]. The translation process is
performed by a tool called CleopATRa [14].

3.2 Data Corpora

Three speech data corpora have been used for our research.
The Wall Street Journal (WSJ) corpus consists of recordings
of read speech data. The Buckeye corpus contains sponta-
neous speech data recorded using high-quality microphones
and the Switchboard corpus is based on spontaneous speech
recorded from telephone conversations.

3.2.1 Wall Street Journal

The WSJ corpus (WSJO and WSJ1)[15] provides speech
data by different English speakers who had to read news-
paper texts paragraphs. The recordings were conducted in
prepared rooms and the speakers wore headset microphones,
therefore, the sample rate is 16 kHz.

The training set consists of 60 hours of speech and the
so-called WSJ test consists of 215 utterances [16]. The WSJ
test is a Sk Hub test set.

The WSJ corpus is used for two purposes in our work.
First, it serves as baseline to show how well the ASR per-
forms when recognizing speech recorded under constrained
conditions such as read speech. Second, it is used to build
a base AM which will be later adapted to and retrained on
spontaneous speech. The data composition and its usage can
be obtained from Table 1.

3.2.2 Buckeye

One of the spontaneous speech corpora is the Buckeye
Corpus[17]. It is one of the richest sources of clean
speech data including pronunciation transcriptions in con-
versational speech that is available in English. This corpus
is composed of 40 native American English speakers from
Ohio who had free conversations and expressed their opin-
ions about everyday topics such as politics, sports, traffic,
schools. The work of Fasold [18] suggests that such a sam-
ple is large enough to cover the interspeaker variability of
the speech community. The 16 kHz recorded conversations
have been transcribed and phonetically labelled. The cor-
pus contains approximately 300k words and 9600 different
words in total.

The original audio files consist of entire conversations
of the speakers. Therefore, in this study, for convenience,
we segmented the audio files at reasonable positions into
phrases or segments in record length. As a result approx-
imately 40k utterances (roughly 40 hours of speech) were
obtained which are divided into 36 speakers (36390 utter-
ances) used for training and 4 speakers (3385 utterances)
used for testing.

Due to the word restriction of the used P2W engine, the
data set has been segmented statistically into three different
small vocabulary tasks: 50, 100 and 250 words'™. In each
case, 200 utterances were randomly selected from the data
set partition and were used for evaluation.

As shown in Table 2 the Buckeye corpus is used for
several purposes in our work. The whole training set has
been employed to built an ASR (AM and LM) based on
spontaneous speech. Furthermore, it is utilized to adapt and
to retrain the read speech AM to spontaneous speech. The
small vocabulary training set selection has been used to train
the P2W engine. To compare the results properly the SMT
has also been trained on the small vocabulary training set.

With the 200 test set utterances, the new ASR systems
and the proposed approach have been tested on spontaneous
speech data.

3.2.3 Switchboard

The second spontaneous speech data set used for our work,

Thttp://www-i6.informatik.rwth-aachen.de/web/Software/g2p.
html

fAlthough the SMT engine can handle a large vocabulary
range the segmentations are also used for testing the SMT since
comparable results are desired.
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Table3  Switchboard corpus data composition of this experiment.
Speech Type Data Set Hours | Words Usage
. . Spont. Speech AM & LM Train,
Hand Transcribed Switchboard 4 3843 Read Speech AM Adapt
Spont. Speech LM Train,
Spontaneous SVitchboard]l C&D&E 4-7 50-250 Read Speech AM Adapt
P " P2W & SMT Train
. Spont. & Read Speech ASR Test,
SVitchboardl A&B 50-250 POW & SMT Test

was obtained from two subsets of the Switchboard cor-
pus [19]. It consists of spontaneous telephone conversations
(sample rate 8 kHz) and has a significant amount of pronun-
ciation variability [7]. The first subset has been phonetically
hand-transcribed by ICSI" and consists of 4 hours (5117 ut-
terances) of data. The talkers spoke approximately 4k words
in total. The second one is SVitchboard1 (The Small Vocab-
ulary Switchboard Database) [20] which consists of statisti-
cally selected utterances from the whole Switchboard cor-
pus. SVitchboard]l only contains word transcriptions of the
spoken utterances. This data set has already been segmented
in small vocabulary tasks from 10 words up to 500 words.
Each segmentation has been further partitioned into 5 sub-
sets (A-E).

Table 3 shows the data composition and its usage of
the Switchboard data corpus in our work. Due to the P2W
word restriction we only use the three subsets 50, 100 and
250 of SVitchboardl. To adapt the read speech base AM
the ICSI subset and the SVitchboard! partitions C, D and E
have been used. The new spontaneous ASR system has also
been built based on the ICSI and the SVitchboard]l subset.
The new spontaneous LM has been created based on both
data sets. However, since SVitchboardl does not provide
phonetical transcriptions only the ICSI subset has been used
for training the spontaneous AM. The SMT and the P2W
system have only been trained on partitions C, D and E of
Svitchboard1 because of the vocabulary restriction of P2W.

The partitions A and B of SVitchboardl have been em-
ployed to test the different ASR systems and the proposed
approach on spontaneous speech. 200 utterances from each
word range subset were selected for testing.

3.3 Model Training

3.3.1 ASR Training

As described in Sect.2.2, the ASR task is to recover the
most likely phoneme sequence £ given the speech signal.
However, as the phoneme recognition accuracy of the ASR
system is unsatisfactory, in practice, the phoneme string £
is obtained from the recognized word sequence of the ASR.
Two different types of AMs were built:

(a) Baseline AM
Read speech AMs based on the WSJ corpus, described
in Sect. 3.2.1, were built to obtain a baseline model. The
WSIJ corpus contains 16 kHz sampled speech data. An

8 kHz WSJ data set has been created by down sampling
the data to 8 kHz. Based on those data sets (see Table 1),
two baseline AM sets were trained, consisting of a to-
tal number of approximately 2000 states (denoted as
“WSJ”).

(b) Adaptation
Each of the two WSJ based AMs were adapted to
the conversational speech data of the Buckeye and the
Switchboard corpus using the data described in Table 2
and 3 by applying the standard maximum a posteri-
ori (MAP) adaptation (denoted as “WSJadaptBuck” and
“WSJadaptSWB”).

(c) Spontaneous AMs
Two AMs based on spontaneous speech data (see Ta-
bles 2, 3) were trained, consisting of less than ap-
proximately 1000 states. (denoted as “Buckeye” and
“Switchboard”).

For each of the 6 AMs four variants with different
Gaussian mixture numbers (5, 10, 15, 20) were built. In
total, 32 AMs were created during training.

The LM of the read speech ASR is based on the read
speech training data. When tests are conducted which in-
clude AMs built on the Buckeye corpus, a LM based on the
data of Table 2 is used. When an ASR is tested which uses
an AM based on the Switchboard data, the applied LM is
trained on the data of Table 3.

3.3.2 P2W Training

The P2W system was trained on the spontaneous text data
(see Table 2 and 3) with the phoneme as a source and
the word as the target. Here, dictionary based canonical
phoneme sequences and hand-labelled surface phoneme se-
quences were used (see Tables 2 and 3). While increasing
the order of the P2W N-gram LM, better results could be
achieved. The best results were obtained when using a 7-
gram or §-gram model. Further incrementation of the order
led to a saturation level.

3.3.3 SMT Training

The SMT was trained on the spontaneous text data with the
phoneme as a source and the word as the target. Again,

International Computer Science Institute,
http://www.icsi.berkeley.edu/
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Table 4  Recognition accuracy of different acoustic models in %.
Mixtures
AM Testset 3 10 15 20
WSJ WSJ 88.7 | 89.1 | 89.2 | 90.8
WSJ Buckeye 295 | 29.6 | 334 | 29.6
WSlJadaptBuck Buckeye 383 | 39.7 | 433 | 415

Buckeye Buckeye 55.6 | 556 | 579 | 545
WSJ Switchboard | 35.8 | 38.6 | 36.9 | 40.1
WSJadaptSWB | Switchboard | 51.2 | 51.3 | 49.7 | 50.1
Switchboard Switchboard | 55.2 | 58.3 | 58.7 | 58.1

dictionary based canonical phoneme sequences and hand-
labelled surface phoneme sequences are used. The used data
sets are illustrated in Tables 2 and 3. The SMT engine only
allows a trigram or a 5-gram model. By testing, it was re-
vealed that the 5-gram model achieved better results and was
used for the further experiments.

3.4 Results
3.4.1 Baseline ASR System

To determine the best baseline the new AMs have been
tested on spontaneous speech. As reference the WSJ AM
has also been tested on the WSJ test set. The word accuracy
(WA) results of the different AMs tested on read speech and
the Buckeye 50 words test set are shown in Table 4.

According to Table 4 the adaption helped to improve
the read speech AM. The AMs which have been trained
only on spontaneous speech data (“Buckeye” and “Switch-
board”) achieved the best results. In average across all vari-
ants, the Buckeye AM raised the WA from 30.6% to 55.9%
and achieved a relative improvement of 83.2%. The Switch-
board AM enhanced the WA from 37.8% to 57.6% which
accords to a relative improvement of 52.4%.

The results showed the same characteristics for both
corpora. Presenting all results would go beyond the scope
of this paper, therefore, only a representative sample of the
results will be illustrated.

3.4.2 Performance of the Proposed Approach

Before P2W and SMT can be applied on the ASR output
the performance on correct phoneme transcriptions has to
be determined. Here, the input utterances were dictionary
based canonical phoneme sequences obtained from the test
utterances. They have to be mapped on the word level by
the proposed approach. Although while training, we mixed
canonical and surface form phoneme sequences, the P2W
and SMT performs well on correct phoneme sequences of
the test data. The spontaneous phoneme sequences only
cause little confusion and the P2W still reaches up to 96%
accuracy and the SMT up to 97%. By increasing the word
range from 50 to 250 words the performance decreases only
slightly and seems to reach a saturation level (see Fig. 6).
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Word Accuracy (%)

50 100 250 50 100 250

(a) P2W trained and testedon  (b) SMT trained and tested on
Buckeye. Buckeye.

Fig.6  Results of testing the P2W on correct phoneme transcriptions of
the different test sets.
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(a) Results of the tests based on “WSJadaptBuck” AM.
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2

A wsy B Buckeye
B8 pow (50best)

N pow (1best) I 2w (10best)

M P2w (CF 50best) P2W (UpperBound)

(b) Results of the tests based on “Buckeye” AM.
Fig.7  P2W test results based on the SOwords Buckeye test set.

3.4.3 ASR Improvement with the Proposed Approach

In this evaluation setup, P2W and SMT are applied after the
ASR is conducted. The ASR outputs the most likely words
sequence and also the according phoneme sequence. How-
ever, for further processing only the phoneme strings are
used. First, the results when applying P2W are presented,
followed by the results of SMT.

(a) ASR Improvement Using P2W

For the 50 words test set the results of all mixture variants
(based on the “WSJadaptBuck” and the “Buckeye” AM) are
illustrated in Fig.7. Given the first best path of the ASR
output (P2W (lbest)) the system achieves to improve all
mixture variants of “WSJadaptBuck”. Concerning “Buck-
eye”, the Smix and the 10mix variant could be improved.
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However, here is only the best result of the speech recogni-
tion considered and mapped onto the word level. For fur-
ther improvement we keep the whole lattice of the ASR re-
sult. Here, we apply the P2W on the n-best (10best and
50best) list generated from the ASR which results in unique
word sequences (P2W (10best) and P2W (50best)). Now,
all mixture variants of both AMs could be improved. In
the 50words test set, the 10mix variant of “WSJadaptBuck”
achieves with 16.4% the highest relative improvement. In
average, 12.1% of relative improvement are gained. Using
the “Buckeye” AM, only 4.6% of averaged relative improve-
ment were achieved. Higher orders still improve the accu-
racy but converge to a saturation level.

Analyzing the error rate of the ASR output revealed
that mainly utterances with low recognition accuracy can be
improved by the proposed approach. To further enhance the
performance, we assess the reliability of the ASR output by
using the generalized word posterior probability (GWPP)
approach [21]. We enumerate various thresholds and send
only utterances with lower confidentiality (CF) values than
the threshold to the P2W (P2W (CF 50best)). Thereby,
in case of “WSJadaptBuck” a relative improvement to the
adapted AM of 13.8% could be achieved in average. The
15mix variant performs best and reaches up to 47.8%. In the
tests with the “Buckeye” AM, only a relative improvement
of 4.9% to the pure spontaneous AM could be achieved.
Again, the 15mix variant performs best and achieves up to
62.6% WA. Additionally, the upper bound of our proposed
system is shown in Fig. 7 when sending only the utterances
to the P2W which can be improved by the system (P2W
UpperBound). The upper bounds show that there is only
little space left for further improvements (average relative
improvement to P2W (CF 50best): 6.7% in case of “WS-
JadaptBuck” and 5.6% in case of “Buckeye”).

The results of Fig.7 (a) and 7 (b) show that P2W con-
sistently improves the performance on both, the adapted AM
and the pure spontaneous AM. The improvement on the
adapted AM is higher than the pure spontaneous AM. This
may be due to the fact that the pure spontaneous AM al-
ready covers a higher amount of pronunciation variation of
spontaneous speech than the adapted AM. Therefore, P2W
could help more to improve the adapted AM. To further in-
vestigate the effectiveness of P2W on the adapted AM, we
conducted additional experiments on adapted AM for vari-
ous word ranges.

Figure 8 shows the performances of “WSJadaptBuck”
when increasing the word range. Only the results of the
15mix variants are presented since those AMs performed
best in average across the experiments.

Increasing the word range, the WA could still be im-
proved with the proposed approach. However, the improve-
ments start to saturate slightly. The performance satura-
tion for larger word ranges can be reflected in the perfor-
mance saturation of the proposed approaches when testing
on “clean” transcriptions (see Fig. 6 (a)). This may be due
to the lack of training data for larger word ranges.
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Fig.8 Results of testing the P2W system on the 15mix variant of “WS-
JadaptBuck” for all word ranges.
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(a) Results of the tests based on “WSJadaptBuck” AM.
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(b) Results of the tests based on “Buckeye” AM.
Fig.9  SMT test results based on the S0words Buckeye test set.

(b) ASR Improvement Using SMT

Similar results have been achieved when applying the sec-
ond approach. Again, for the 50 words test set the results of
all mixture variants (based on the “WSJadaptBuck” and the
“Buckeye” AM) are illustrated in Fig. 9.

Given the first best path of the ASR output (SMT
(1best)), only the 10mix variant of the adapted AM could
not be improved. In case of the pure spontaneous AM, none
of the AMs could be improved. Keeping the lattice helps
to improve all variants of “WSJadaptBuck™ and an aver-
aged relative improvement of 8.2% to the adapted AM is
achieved. Here, the Smix variant achieves with 11.1% the
highest relative improvement. As for the “Buckeye” AM,
keeping the lattice only helps to improve the Smix variant.

When the reliability is assessed, using the adapted AM
only the Smix and the 20mix variant could be further im-
proved. The 15mix variant performs best and reaches up
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Fig.10  Results of testing the SMT system on the 15mix variant of “WS-
JadaptBuck” for all word ranges.
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Fig.11  Comparison of P2W and SMT based on the 15mix variant of
‘WSJadapt-Buck”.

to 46.0%. By assessing the reliability of the “Buckeye” AM
results, finally all mixture variants were improved and an av-
erage relative improvement of 2.2% was gained. The 15mix
variant performs with 58.1% WA best.

The upper bound shows that there is only little space
for improvement (average relative improvement to P2W (CF
50best): 3.2% in case of “WSJadaptBuck™ and 3.1% in case
of “Buckeye”).

Again, only the results of testing the SMT on “WS-
JadaptBuck” are presented in detail in the following.

In Fig. 10 the performances of the 15mix “WSJadapt-
Buck” AMs are illustrated when the word range is increased.
When using SMT, the WA could still be improved for larger
word ranges but the improvements start to saturate.

3.5 Discussion

Figure 11 compares the performance results of the P2W and
SMT of “WSJadaptBuck”. The corresponding baseline re-
sult “WSJ” is illustrated as reference.

Both NLP techniques show similar characteristics. In
the 50words test set, the P2W achieved higher improve-
ments than the SMT. However, if the word range is in-
creased the improvements start to saturate. However, the
performance reduction of the P2W is larger than the SMT.
The lower performance for larger test sets is due to the lack
of training data.

To prove the reliability of the proposed approach for
other data sets, Fig. 12 illustrates the results of P2W and
SMT when tested on Buckeye and Switchboard. Here,
only the results of the 15mix AMs of the 250words test set
are shown. Test results based on Switchboard are gener-
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Fig.12  Comparison of P2W and SMT for both corpora based on the
15mix AMs for the 250words test set.

ally lower than on Buckeye. When P2W is applied on the
250words test set of Switchboard, the WA could not be im-
proved. In contrast, the SMT achieves to improve the WA
for both corpora, even for larger word ranges.

Joint-sequence models cannot deal with deletions and
insertions since a mistakingly inserted phoneme cannot be
‘ignored” and a missing phoneme cannot be produced by
P2W. While training, the order of the N-gram LM can be
increased by ramping up the system iteratively. The SMT
system is able to deal with insertions and deletions, as it
was developed to translate from a source language to a tar-
get language where those problems frequently occur. When
tests on Switchboard were conducted where the ASR out-
put contained many insertions, it could be revealed that the
P2W has difficulties to handle insertions. In contrast, the
SMT performed well in those cases.

4. Conclusions

This paper proposes a noisy channel model for model-
ing pronunciation variation of spontaneous speech. Two
approaches (joint-sequence models and statistical machine
translation) are derived from the noisy channel model the-
ory and applied in the experiments using the Buckeye and
the Switchboard corpus. For both corpora, the performance
results show similar characteristics and the results show that
both approaches improve the WA consistently over the con-
ventional recognition system. With the Buckeye corpus us-
ing P2W an averaged relative improvement of 13.8% to the
baseline could be achieved. When SMT was used a relative
improvement of 9.3% in average was achieved. Comparing
both approaches revealed that the SMT achieves better re-
sults for larger word range and performs more robust than
the P2W.

The results of this study point towards the positive di-
rection opening the possibility to increase the vocabulary
size and the complexity of the experiment’s topology. Hy-
brid approaches which combine the P2W and SMT systems
could also be examined.
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