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Abstract This paper proposes the use of electrode grid for Japanese vowel recognition based on surface

electromyography (sEMG). Previous studies have indicated the potential effectiveness of sEMG-based speech

recognition, not only for healthy people, but also for dysarthric patients. In these studies, however, disc electrodes

or parallel bar electrodes were used and located empirically, although there exist relatively small muscles in

proximity to each other in the face or neck region. In order to avoid missing out information about speech, we

examined the effectiveness of using an electrode grid, which consists of densely-spaced multielectrodes. In our

experiments, we measured sEMG signals from the submental region with the electrode grid during the pro-

duction of 5 vowel sounds. Continuous hidden Markov models were applied to the sEMG signals for vowel

recognition. We compared the recognition accuracies between the two methods : One was based on signals from

all channels and the other was based on virtually reconstructed single bipolar signal. The former achieved

considerably higher recognition accuracy than the latter. This result indicates that using electrode grid is more

effective in extracting information for sEMG-based speech recognition.
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1. Introduction

Automatic speech recognition (ASR) technology has

advanced to the point of being utilized in our daily lives.

However, ambient noise and usersʼ speech impairment

have caused low recognition accuracy. To overcome these

problems, surface electromyography (sEMG) based sp-

eech recognition has been investigated as an augmenta-

tive or alternative information source �1-12�. sEMG is a

procedure that measures muscle electrical activity ass-

ociated with muscle fiber contraction by using electrodes

attached on the skin. Not only in cases when a user makes

usual voiced speech, but also when voiceless mouthed

speech is made, sEMG-based speech recognition can su-

pport communication.

Over the last decade, there has been significant pro-

gress in the research on sEMG-based speech recognition.

Previous studies have indicated the potential effec-

tiveness of sEMG-based speech recognition, not only for

healthy people, but also for dysarthric patients �3� and a

laryngectomee �13�. According to Duffy �14�, dysarthria

is defined as “a collective name for a group of neurologic

speech disorders resulting from abnormalities in the

strength, speed, range, steadiness, tone, or accuracy of

movements required for control of the respiratory,

phonatory, resonatory, articulatory, and prosodic aspects

of speech production”. Deng et al. �3� proposed a speech

recognition system based on sEMG, with and without

acoustic signal, wherein they showed that a high word

recognition accuracy (over 95％) could be achieved for

dysarthric patients suffering from stroke and cerebral

palsy. Also, Fukuda et al. �13� proposed an sEMG-based

Japanese speech synthesizer system, where six Japanese

phonemes(five vowels, i.e. /a/, /i/, /u/, /e/, /o/, and one

syllabic nasal /n/) were recognized from the patterns of

sEMG signals using a probabilistic neural network, and

then words were recognized from series of phonemes

using hidden Markov models (HMM) . Although the re-

cognition accuracy of continuous speech production was

lower than that of syllable-wise speech production, eff-

ective phoneme recognition with a laryngectomee was

achieved by Fukudaʼs system. These results indicate that

sEMG-based speech recognition has the potential to be a

novel type of speech prosthesis.

To achieve a high recognition accuracy in sEMG-based

speech recognition, it is necessary to decide the appropri-

ate location of the electrodes. However, in previous

studies, disc electrodes or parallel bar electrodes were

used and located empirically, based on anatomical know-

ledge. Because there exist relatively small muscles in

proximity to each other in the face or neck region, it is

difficult to avoid the influence of cross talks and endplate

zones when conventional measurement methods are

applied.

Lapatki et al. �15� proposed a high density multichan-

nel sEMG system using electrode grid to improve signal-

to-noise ratio of sEMG signals recorded from the lower

facial muscles. To avoid missing out information about

speech in the measurement step, we examined the eff-

ectiveness of using an electrode grid, which consists of
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densely-spaced multielectrodes. In our experiment, we

measured the sEMG signals of the submental region with

the electrode grid during the production of 5 vowel

sounds.

There are multiple muscles in the submental region

that play important roles in controlling the movements of

the mandible and tongue �16�. The anterior belly of the

digastric, the mylohyoideus, and the geniohyoideus act to

pull the hyoid bone upward and forward, or to depress the

mandible. The anterior genioglossus is responsible for pu-

lling the dorsum forward and downward. The posterior

genioglossus has the function of pulling the tongue root

forward and raising the dorsum. Thus, these muscles ma-

nipulate tongue shape, which is relevant with the vowel

production.

However, the submental region was not given much

emphasis in previous studies, and only one or at most two

channels were used in these experiments. Their function

should receive considerably more attention for speech re-

cognition, especially for vowel recognition.

To investigate whether electrode grid is effective in

extracting information for sEMG-based speech recogni-

tion, we compared the recognition accuracies between

two methods : One was based on signals from all channels

(hereafter, “all-channel method”) and the other was based

on virtually reconstructed single bipolar signal (“single-

channel method”).

2. Method

2･1 Surface EMG System

We used an sEMG system developed by Hattori et al.

with few modifications made on the electrode grid�17� .

The electrodes which consisted of silver bars in Hattoriʼs

study were substituted with spring connector pins(SK

KOHKI Co., Ltd., AX-12ENR-00), with each pin having a

diameter of 0.8 mm, to absorb any dynamic displacement

of the attached site (Fig. 1). The set of electrodes were

arranged in an array of 8 rows by 8 columns, with the

interelectrode distance (IED) set to 5.08 mm, from center

to center, in both directions. To reduce skin impedance, a

voltage follower circuit was built with each electrode.

The electric potential differences between each pair of

electrodes neighboring in column direction were ampli-

fied up to 66 dB with band-pass filtering between 10 to

1500 Hz. Subsequently, the electric potential differences

were digitized with a 16-bit analog-to-digital converter

(National Instruments, NI USB-6255) and a laptop com-

puter running MATLAB with its Data Acquisition

Toolbox (MathWorks, 2010a). A microphone(KNOWLES,

SP0103 NC3-3) was also attached in front of the electrode

grid, so that acoustic signal could be simultaneously

recorded with the sEMG signals.

2･2 Data Collection

Two adult Japanese native speakers were recruited as

participants (1 female and 1 male with mean age of 33

years) . Both of the participants had no known speech

impairment. In each trial, the participants were asked to

produce each of the five Japanese vowels (/a/, /i/, /u/,

/e/, and /o/) once in a random order. The task vowels

were presented on a screen for 1 second with an interval

of 2 seconds between each of them, and the participants

were instructed to start vowel production at the onset of

the visual presentation and stop at the offset. Subject 1

conducted 50 trials in one day, while Subject 2 conducted

50 trials divided in half over two days. Subject 1 took 7

rest intervals throughout the experiment. Every time

Subject 1 wanted to take a rest, enough time was given,

while the electrode grid was removed. Though Subject 2

did not want to rest, the subject was allowed to remove

the electrode grid whenever he wanted.

During vowel production, the sEMG signals were

recorded with the electrode grid attached on the sub-

mental region as shown in Fig. 1( b ), ( c ) . The gridʼs

centerline in the column direction and the last row were

aligned with the center of the mandible and the posterior

edge of the submental triangle, respectively, by visual

inspection. Figure 2 shows the muscles in the relatively

superficial layer of the submental region and the cor-

responding positions of the electrodes. The anterior

bellies of digastrics produce the sEMG signals whose

amplitudes are relatively large. Therefore, the sEMG

signals not only from the mylohyoideus but also from

muscles in deeper layers, e.g. the geniohyoideus and the

genioglossus, tend to be masked. In addition, there are

endplate zones near the center of each muscle. Although

the endplate zones and cross talks should be taken into

account to avoid deterioration of the signal-to-noise ratio,

it seems to be rather difficult to find appropriate locations

using conventional bipolar electrodes whose diameters or
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Fig. 1 ( a ) The electrode grid. The white double-headed

arrow indicates the row direction, and the gray

double-headed arrow indicates the column direction.

( b ), ( c ) The location of the electrode grid on the

submental region : lateral view ( b ) and frontal view

( c ).



lengths are approximately 1 cm.

As preparation, the skin on the submental region was

cleaned with an alcohol swab prior to attaching the el-

ectrode grid. The electrode grid was fixed to a tripod, and

the participants grasped the tripodʼs legs, wrapped with

stainless sheets, which served as the ground reference.

Both the sEMG and acoustic signals were then captured

and digitized at 16 kHz with an analog-to-digital conver-

ter.

Written informed consents were obtained from the

participants prior to the experiments. This study was ap-

proved by the institutional ethics committee of Nara

Institute of Science and Technology.

2･3 Data Preprocessing

The sEMG signals were filtered with an 8th order low-

pass Butterworth filter having a cut-off frequency of 500

Hz, and then downsampled to 2 kHz. Examples of the

signals coming from each vowel produced by Subject 1

are illustrated in Fig. 3 and 4. The signals coming from

the anterior part seem to indicate similar patterns. In fact,

hierarchical clustering, which was conducted according

to Euclidean distances of the normalized signals, revealed

that not only the anterior part but also the middle and

posterior parts were clustered. The dendrogram of this

hierarchical clustering is shown in Fig. 5. In addition, cor-

relations between the representative channels and the

whole channels during production of/o/are shown in Fig.

6 and 7. The representative channels consist of the cha-

nnels between the 3rd and 4th rows in the 6th column and

between the 7th and 8th rows in the 7th column. He-

reafter, these channels are denoted as “3-4, 6” and “7-8, 7”.

While the channels “3-4, 6” and “7-8, 7” have positive

correlations with the surrounding channels, these two

channels have a significant negative correlation (−0.533,

p＜ 5.0×10−291)with each other. This phenomenon might

be relevant with the endplate zones of the anterior bellies

of the digastrics from where the propagation of the motor

unit action potentials starts.

In the vowel recognition process, the onsets and offsets

of the acoustic signals were used as reference to deter-

mine those of the sEMG signals. The criteria applied in

detecting the onsets and offsets of the acoustic signals

were based on a set of amplitude thresholds, and these

signals were then visually confirmed and corrected man-

ually in the two cases. With the consideration of the delay

between the sEMG signals and the acoustic signals �5�,

the onset of the sEMG signals were set to precede that of

the acoustic signals by 150 msec, although the resting

state could also be included. As for the offsets of sEMG

signals, these were set to 150 msec after the offsets of the

acoustic signals. These onsets and offsets of the sEMG

signals were used to extract data for the following feature

extraction process.

2･4 Feature Extraction

To be able to compare the single-channel method with

the all-channel method, bipolar signals from all possible

combinations of electrodes within the same column were

virtually reconstructed from original signals, by adding

signals from all channels between the two selected ele-

ctrodes. Two types of feature sets were used in this study :

( 1 ) time domain features, and( 2 )cepstral coefficients.

Features were extracted from the windowed signals of

each channel. The window length was set to 25 msec with

50 samples, while the window period was set to 12.5 msec

with 25 samples.

The time domain features consisted of the average

rectified value (ARV), root mean square (RMS) zero-

crossing rate of high-pass filtered signals, and the mean of

the raw signals, along with the Δ and ΔΔ features of these

four features. To some extent, these features were similar

to the features proposed by Jou et al. �4� except that less

contextual information was used.

The cepstral coefficients, cn, were calculated as :

cn=F −1 log  X(f)

for each channel after Hamming window was applied to

the signals. X(f) represents the short-time frequency

spectrum, while F −1 indicates the inverse Fast Fourier

transform. The real parts of the lower 15 cepstral coe-

fficients, including the 0th coefficients, were used as

features, along with the Δ and ΔΔ features. Several rese-

arches have shown that Mel-frequency cepstral coeffi-

cients (MFCC), which are derived from cepstral coeffi-

cients by applying filter bank based on the Mel-scale, can

also be used as features �3, 12� . However, there is no

physiological plausibility to use MFCCs to parameterize

sEMG signals, since the Mel-filter bank is designed to

approximate human auditory perceptual response to

acoustic signals. In addition, if the sampling rate, window

length used in this study, and spectral features of the

sEMG signals are taken into account, then the usefulness

of Mel-filter bank will be reduced. Therefore, in this study,

we employed cepstral coefficients instead of MFCC. For

the all-channel method, features from all 56 channels were

concatenated. This concatenation resulted in having more

than several hundreds of dimensional features.

Dimensionality reduction was performed using linear
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Fig. 2 Anatomy of muscles in the submental region re-

printed from �18� and corresponding positions of the

electrodes. Black dots represent the positions of the

electrodes.

“abd” : the anterior belly of the digastric

“mh” : the mylohyoideus

“sm” : seam of the mylohyoideus (raphe of the mylohy-

oideus)
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Fig. 3 The waveform of the sEMG signals. ( a ), ( b ), and ( c ) denote the signals during production of /a/, /i/, and /u/,

respectively. Waveforms of the 9th column indicate the corresponding acoustic signals.
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Fig. 4 The waveform of the sEMG signals. ( a ) and ( b ) denote the signals during production of /e/ and /o/, respectively.

Fig. 5 The dendrogram of hierarchical clustering on channels. Each label denotes the row and column of the channel, for example,

“3, 6” denotes a channel between the 3rd and 4th electrodes in the row direction within the 6th column.



discriminant analysis (LDA), which is commonly used to

map the data onto a lower dimensional subspace keeping

discriminative information as much as possible. The

resulting final dimensions were reduced to 4 in both

methods.

2･5 Vowel Recognition

Continuous HMM was adopted for vowel modeling. An

HMM represents a stochastic process that takes sequen-

tial data as the inputs, and outputs the probabilities that

the data are generated by the model. For each vowel, we

used a 9 state left-to-right HMMwith 3 Gaussian mixtures,

whose covariance matrices in each state are diagonal.

Expectation maximization (EM) algorithm �19� was uti-

lized in parameter estimation, and the word with the

maximum likelihood was adopted as the recognition re-

sult. Hidden Markov Model Toolbox �20� was used to

implement the HMMs in this experiment. A 5-fold cross-

validation was conducted to investigate the recognition

accuracy. In the 5-fold cross-validation, the data is par-

titioned into 5 groups. A single group of data is retained as

the validation data for testing the model, while the

remaining 4 groups of data are used as training data for

the models. This procedure is repeated 5 times, with each

of the 5 groups used exactly once as the test data. Then

the 5 results obtained by the repetition are averaged to

produce the recognition accuracy.

3. Results

The comparison between the recognition accuracies of

the different channels and feature conditions are shown in

Fig. 8. For the single-channel method, the best recognition

accuracies between all possible electrode combinations

are indicated. The all-channel method outperformed the

single-channel method. With respect to features, using

cepstral coefficients indicated higher recognition accur-

acies than using time domain features. The all-channel

method with cepstral coefficients achieved 85.6％ recogni-

tion accuracy for Subject 1 and 79.6％ recognition acc-

uracy for Subject 2.

Fig. 9 depicts the differences of recognition accuracies

between the used electrode locations in the single-

channel method, including the locations which were used

in Fig. 8. Fig. 9( a )shows the result of the case when the

participant was Subject 1 and the IED was 15.24 mm. The

“Row”and“Column”labels denote the positions where the

virtual bipolar electrodes in the grid were selected. In the

following, location (i-j, k)denotes the bipolar signal be-

tween two (row, column)positions : (i, k) and (j, k) . In

Fig. 9( a ), the recognition accuracy reaches a maximum

of 51.6％, at location (5-8, 2). However, it can be seen that

(4-7, 1), (4-7, 2), and (4-7, 3), which are neighbors of the

maximum point, indicate accuracies of 38.0％, 30.8％, and

38.4％, respectively. In some parts of the central locations

in rows “2-5” or “3-6”, the accuracies are at 20 to 30％. In

Fig. 9( b ), the location of the highest recognition accura-

cy is different from that of Fig. 9( a ). Yet some parts of

the central locations in the row direction still indicated

accuracies in the range of 20 to 30％. In Fig. 9 ( c ),

tendencies of Subject 2 are shown. Here, the locations

(3-5, 3) and (3-5, 6) reach the recognition accuracies of

54.0％ and 53.6％, respectively. However, the location(3-5,

7)which is a neighbor of the location (3-5, 6) indicates an

accuracy of 28.4％. In some posterior locations, the accu-

racies are at 20 to 30％.

Tables 1 and 2 illustrate the confusion matrices, in the

all-channel method and cepstral coefficients of Subject 1

and 2, respectively. The rows of the tables represent the

actual spoken vowels, while the columns represent the

vowels recognized by the HMMs. In both participants,

there is a relatively high tendency that vowels /a/ and /e/

cannot be discriminated from each other.

4. Discussion

It has been confirmed in this experiment that the all-

channel method has achieved considerably higher recog-

nition accuracies for the 5 Japanese vowels than the

single-channel method, although the oblique and lateral

directions have not been investigated in this study. This

result indicates that using electrode grid is more effective

in extracting information for sEMG-based speech recogni-

tion than using conventional electrodes.

As shown in Fig. 9, the single-channel method is

influenced by the locations of the selected electrodes. In

addition, inter-individual variability is also shown in Fig.
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Fig. 7 Correlations between the signal coming from channel

“7-8, 7” and those coming from all channels of the

electrode grid.

Fig. 6 Correlations between the signal coming from channel

“3-4, 6” and those coming from all channels of the

electrode grid.



9. Therefore, when conventional disc or parallel bar el-

ectrodes are used, it is highly important to carefully

consider those locations with respect to each subject

might be required in order to achieve higher recognition

accuracies. But, doing such tests for each and every

subject seems to be rather impractical. One of the reasons

for this inter-individual variability is that there are dif-

ferences in anatomical structures and muscular coordina-

tion patterns. To take into account the anatomical struc-

ture, magnetic resonance imaging (MRI) of the lower

position of the face and neck should be useful �21�.

From the confusion matrices, shown in Tables 1 and 2,

there is a possibility that vowels /a/ and /e/ cannot be

discriminated with high accuracy from each other when

only sEMG signals from the submental region are used.

This finding is consistent with another previous study. By

using three parallel bar electrodes, Manabe et al. �8�

conducted an experiment of Japanese vowel recognition

based on sEMG signals measured from the orbicularis

oris, the zygomaticus major, and the anterior belly of the

digastric during mouthed speech. However, only the RMS

values of the signals were used as features. Although

there seemed to be difficulty in vowel recognition using

the RMS value from the anterior belly of the digastric, the

RMS value from the orbicularis oris could contribute

significantly to the discrimination of the vowels /a/ and

/e/. Indeed, there is a difference in the condition of the

usual voiced speech and voiceless mouthed speech be-

tween our experiment and that of Manabe et al. But their

experiment implies that additional measurement from the

orbicularis oris can improve the recognition accuracy of

our proposed method in discriminating between vowels

/a/ and /e/. Moreover, consonants should also be consid-

ered in future studies. In order to achieve it, sEMG signals

from other perioral muscles must be considered as well.

On the other hand, the tradeoff for the dense measure-

ment given by an electrode grid is that it may contain

signal redundancy. It is therefore necessary to reduce this

redundancy, considering the spatial inter-individual va-

riability as well, especially when working with dysarthric

patients. To this end, experiments must be conducted

with more subjects.

5. Conclusion

This study proposed the use of an electrode grid for

Japanese vowel recognition based on surface electromy-

ography (sEMG) . We compared the recognition accur-

acies of 5 Japanese vowels between two methods : the all-

channel method which used an electrode grid, and the
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Fig. 8 Comparison of the recognition accuracies for condi-

tions with different features and channels used. All ch :

all-channel method, Single ch : single-channel method,

Ceps : cepstral coefficients, TD : time domain features.

Fig. 9 Changes of recognition accuracies with electrode

locations under the single-channel method. ( a ) to

( c ) indicate the conditions, consisting of the subject

and the IED, which is described as the following :

( a ) Subject 1 with IED ＝ 15.24 mm.

( b ) Subject 1 with IED ＝ 20.32 mm.

( c ) Subject 2 with IED ＝ 10.16 mm.

The “Row” and “Column” labels denote the rows and

columns of the electrode grid from where virtual

bipolar electrodes were selected.



single-channel method which used a virtually recon-

structed single bipolar signal. The former achieved reco-

gnition accuracies of approximately 80 to 85％, which was

higher than that of the latter. This result indicates that

using an electrode grid is more effective in extracting in-

formation for sEMG-based speech recognition than using

a conventional disc or parallel bar electrode. Furth-

ermore, future works on obtaining the findings for spatial

inter-individual variability of sEMG signals and reducing

the redundant electrodes are warranted.
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