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Abstract

An electrolarynx (EL) is a medical device that generates sound source signals to provide laryngectomees with a voice. In this article we
focus on two problems of speech produced with an EL (EL speech). One problem is that EL speech is extremely unnatural and the other
is that sound source signals with high energy are generated by an EL, and therefore, the signals often annoy surrounding people. To
address these two problems, in this article we propose three speaking-aid systems that enhance three different types of EL speech signals:
EL speech, EL speech using an air-pressure sensor (EL-air speech), and silent EL speech. The air-pressure sensor enables a laryngectomee
to manipulate the F0 contours of EL speech using exhaled air that flows from the tracheostoma. Silent EL speech is produced with a new
sound source unit that generates signals with extremely low energy. Our speaking-aid systems address the poor quality of EL speech
using voice conversion (VC), which transforms acoustic features so that it appears as if the speech is uttered by another person. Our
systems estimate spectral parameters, F0 and aperiodic components independently. The result of experimental evaluations demonstrates
that the use of an air-pressure sensor dramatically improves F0 estimation accuracy. Moreover, it is revealed that the converted speech
signals are preferred to source EL speech.
� 2011 Elsevier B.V. All rights reserved.
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1. Introduction

More than 12000 people in the United States are esti-
mated to receive the diagnosis of laryngeal cancer in 2008
(Jemal et al., 2008). There are some treatments to cure lar-
yngeal cancer such as chemotherapy, radiation therapy,
partial laryngectomy (Forastiere et al., 2003; Laccourreye
et al., 1996) or total laryngectomy. Total laryngectomy,
which removed the whole larynx including the vocal folds,
was the standard treatment for locally advanced disease
until the early 1990s (Forastiere et al., 2003). It means that
there are many total laryngectomees that have been under-
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gone the total laryngectomy.1 For example, it is said that
there are 12000 laryngectomees in Japan (Ifukube, 2003).
After laryngectomy, laryngectomees cannot speak using
the vibration of their vocal folds as shown in Fig. 1. By
undergoing a laryngectomy, the quality of life of laryngec-
tomees suffers because of the loss of their original voices
(Carr et al., 2000). Therefore, voice rehabilitation for laryn-
gectomees is an important research topic.

There are three major types of alaryngeal speech called
esophageal speech, tracheo-esophageal (T-E) shunt speech,
and artificial laryngeal speech such as electrolaryngeal
speech (EL speech) (Singer and Blom, 1980; Hashiba
1 The words of laryngectomee and laryngectomy respectively denote
total laryngectomee and total laryngectomy in this article.
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Fig. 1. Anatomical image of laryngal speakers and total laryngectomees.
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et al., 2001; Hayes, 1951; Williams and Watson, 1985;
Hočevar-Boltežar and Žargi, 2001). The main difference
among these alaryngeal speech signals is how the speaker
obtains an alternative sound source vibration to vocal fold
vibration. There are some types of artificial larynxes such
as an electrolarynx(EL) or a pneumatic artificial larynx
(also known as a whistle-type artificial larynx). An EL is
one of the most commonly used alaryngeal speech (Wil-
liams and Watson, 1985; Carr et al., 2000), and therefore,
we focus on EL speech.

When a speaker produces EL speech, an EL is pressed
against the speaker’s lower jaw, and the signals are trans-
mitted to the speaker’s oral cavity through the speaker’s
skin. Finally, the speaker produces EL speech by articulat-
ing with the sound source signals generated by the EL. One
of the advantages of using an EL is that speakers easily
learn how to produce EL speech. Another advantage is
that EL speech is possible for people with less physical fit-
ness such as elderly laryngectomees. Two problems with
EL speech that are focused on in this article are (1) the
unnaturalness of EL speech and (2) the radiation of noisy
sound source signals. One of the main defects of EL speech
is its unchangeable F0 pattern. Because of this unchange-
able F0 pattern, EL speech sounds obviously artificial and
unnatural even when speakers are proficient in using an
EL. Another defect of EL speech is the high energy of
vibrations generated by the EL itself. The sound source sig-
nals are often radiated from the location of attachment of
the EL, and the radiated noise often annoys surrounding
people; especially in quiet environments such as inside a
library. Moreover, the speaker might also be concerned
that he or she will annoy people nearby because of the radi-
ated sound source signals. Therefore, the enhancement of
EL speech quality is an important issue in ensuring the
smooth interpersonal speech communication of
laryngectomees.

Many researchers and developers have attempted to
address problems of EL speech (Uemi et al., 1994;
secom.co., 2011; Murakami et al., 2004; Saikachi et al.,
2009; Liu et al., 2006; Takahashi et al., 2001; Goldstein
et al., 2004). Uemi et al. developed an EL with an air-
pressure sensor (Uemi et al., 1994), which enables
laryngectomees to control the F0 pattern using the exhaled
air that flows from the tracheostoma that is a hole located
on the speaker’s neck for breathing. Murakami et al.

enhanced EL speech by employing a feature transforma-
tion technique (Murakami et al., 2004). In their approach,
numerous conversion rules are developed from training
data and then applied to test data. Saikachi et al. proposed
a method to control F0 of EL speech based on root-mean-
square amplitude (Saikachi et al., 2009). Their concept of
obtaining reasonable F0 contours to make EL speech nat-
urally sound is same as that of this article. Liu et al. pro-
posed a method to reduce the radiation noises based on
spectral subtraction considering auditory masking (Liu
et al., 2006). Novel artificial larynxes were also proposed.
For example, Takahashi et al. developed an intra-oral
electrolarynx for people who could not acquire common
alaryngeal speech or for early post-surgery speech rehabil-
itation (Takahashi et al., 2001). Goldstein et al. also
developed hands-free EL triggered by neck muscle electro-
myographic activity (Goldstein et al., 2004). Development
of hands-free EL is another very important mission for
improving the quality of life of laryngectomees. However,
developing new devices is out of the scope of this article.
Despite these studies for enhancing EL speech, some prob-
lems still remain. In the study of Murakami et al. (2004),
input utterances cannot be converted when no conversion
rules are found. A method proposed by Saikachi et al.
(2009) requires pre-laryngectomy speech. Moreover, not
only amplitude but also spectral information might be
needed to estimate reasonable F0 contours. The approach
of Liu et al. (2006) might remove radiation noises; how-
ever, the problem of radiation noises is not the only prob-
lem in EL speech. There are huge gaps between EL speech
and normal speech, and these gaps have not been filled by
these previous studies.

We proposed a speaking-aid system that enhanced EL
speech using a statistical voice conversion (VC) technique
with Gaussian mixture models (GMMs) to address the
unnaturalness of EL speech and the problem of radiation
noises (Nakamura et al., 2007). Our speaking-aid system
consists of four parts that (1) generate sound source sig-
nals, (2) record the produced EL speech, (3) convert the
recorded EL speech, and (4) present the converted speech.
We also introduced a new sound source device that gener-
ates signals with extremely low energy. Since the sound
source signals of EL speech is given from outside, the voice
quality of EL speech is mainly defined by the given source
signals. Existing ELs have to generate sound source signals
with high energy to make the volume of EL speech close to
that of normal speech, although the energy of the radiated
noises is also getting higher when the volume of sound
source signals is raised. Our aid system proposed in our
previous work, on the other hand, includes a VC proce-
dure, and therefore, using an existing EL is not essential.
We have had an idea to suppress the energy of radiated
noises by using a new sound source unit that generates sig-
nals with extremely low energy. The produced EL speech
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with the silent signals (silent EL speech) is also very low
energy. It is difficult to make an absolute definition what
silent EL speech is. In this article, we regard EL speech
produced with the new sound source unit generating extre-
mely low energy as silent EL speech. Although a usual air-
conductive microphone is difficult to detect the silent EL
speech owing to its sensitivity to external noises, a special
body-conductive microphone is capable of detecting it with
high quality. As a result of experimental evaluations, the
effectiveness of this system was demonstrated by using
silent EL speech produced by a laryngeal speaker (Nakam-
ura et al., 2007). However, two important problems have
still remained; (1) the system has been evaluated using
silent EL speech produced by not a laryngectomee but a
laryngeal speaker and (2) input speech data have been con-
verted into not normal speech but whispered voice that
does not have F0 information.

In this article we address two problems of EL speech;
one is the unnaturalness of EL speech, and the other
one is noisy sound source signals radiated from the loca-
tion of the EL attachment. For addressing the problem
of unnaturalness, we propose a speaking-aid system that
converts EL speech into normal speech using a VC tech-
nique. This system presents converted EL speech that
includes F0 information estimated from the EL speech.
Moreover, this system removes noisy sound source signals
using the VC technique. For more improving the natural-
ness, we propose another speaking-aid system that accepts
EL-air speech. In this system, VC effectively uses F0 infor-
mation of EL-air speech. We also propose the other
speaking-aid system that accepts silent EL speech. This
system addresses the problem of noisy sound source sig-
nals; however, the speech quality of silent EL speech is
still same as that of EL speech. Therefore, VC should be
applied to silent EL speech as well. The shared part
between these three aid systems and the aid system
described in our previous article (Nakamura et al., 2007)
is the four components constructing each system. On the
other hand, the following points are updated from our
previous work; (1) two more aid systems are proposed
to accept EL speech and EL-air speech, (2) source speech
is converted into not whispered voice but normal speech,
and (3) three aid systems are all experimentally evaluated
in the same experimental conditions, in which source
speech signals are produced by not a laryngeal speaker
but a laryngectomee. Moreover, there are three features
of our aid systems compared to other aid systems pro-
posed in previous studies described above; (1) each system
can convert an arbitrary sentence, (2) each system uses
statistics of normal speech to estimate F0 contours, and
(3) each system can address two problems focused on in
this article simultaneously.

This article is organized as follows. In Section 2, the key
techniques used in this article are explained. Our proposed
systems are described in Section 3 and experimentally eval-
uated in Section 4 and discussed in Section 5. Finally, we
conclude this article in Section 6.
2. Key techniques

2.1. VC based on maximum likelihood estimation (Kain and

Macon, 1998; Toda et al., 2007)

Not only the primary role of speech to convey linguistic
information but also secondary information conveyed by
speech such as speaker individuality play an important role
in interpersonal speech communication. VC generally mod-
ifies speech signals of a given source speaker while main-
taining the linguistic information so that it appears as if
another speaker (the target speaker) utters the speech.
VC is useful for many applications such as voice responses,
text reader systems, and so forth. It is often convenient to
specify the desired modification of source acoustic charac-
teristics with reference to an existing target acoustic
characteristic.

A statistical VC method using a GMM-based maximum
likelihood estimation is used in applicative studies such as
Toda and Shikano (2005). This VC technique consists of
training and conversion parts. In the training part, a paral-
lel data set, which consists of sentence pairs of the source
and the target speakers, is used to train a GMM. Namely,
these two speakers need to utter the same sentence set to
develop training data. In each sentence pair, time align-
ment is automatically performed by a dynamic time warp-
ing (DTW) procedure to build joint vectors of the source
and the target features. Next, the joint probability density
consisting of the source and the target data is modeled
by a GMM (Kain and Macon, 1998). In the conversion
part, the conditional probability density function of the
target data given the source data is used to generate the
converted target data (Toda et al., 2007). After the
GMM training, any sentences can be converted with the
trained GMM, even if it is not included in the training
data. A main problem in maximum likelihood estimation
is that the estimated parameters tend to be oversmoothed.
Oversmoothing of acoustic parameters tends to signifi-
cantly reduce their variations, and it causes noticeable deg-
radation in naturalness of synthetic speech quality (Toda
et al., 2007). To address the oversmoothing problem, Toda
et al. proposed the consideration of the global variance
(GV) of acoustic features over a time sequence (Toda
et al., 2007).
2.1.1. Training procedure to describe joint probability density

function (Kain and Macon, 1998)

Let xt = [xt(1), . . . ,xt(dx)]> and yt = [yt(1), . . . ,yt(dy)]> be
static source and target feature vectors at frame t where dx

and dy denote the dimensions of xt and yt, respectively, and
T denotes transposition. The joint probability density of
these vectors zt ¼ x>t ; y

>
t

� �>
is described by a GMM as

follows:

PðztjkðzÞÞ ¼
XM

m¼1

xmN zt; l
ðzÞ
m ;R

ðzÞ
m

� �
; ð1Þ



Air-pressure
sensor

Electrolarynx

Headset microphone

Fig. 2. Photograph of man using EL with air-pressure sensor.
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where m is the index of mixture components, M is the num-
ber of mixture components, xm is the weight of the mth
mixture component, and Nð�; l;RÞ represents a Gaussian
distribution including a mean vector l and a covariance
matrix R. k(z) is a model parameter set including weights,
mean vectors, and covariance matrices. The mth mean vec-
tor and the covariance matrix are written as

lðzÞm ¼
lðxÞm

lðyÞm

" #
; RðzÞm ¼

RðxxÞ
m RðxyÞ

m

RðyxÞ
m RðyyÞ

m

" #
; ð2Þ

where lðxÞm and lðyÞm represent the mean vectors of the mth
mixture component for the source and target features.

RðxxÞ
m and RðyyÞ

m represent the covariance matrices of the
mth mixture component for the source and target features,

and RðxyÞ
m and RðyxÞ

m represent the cross-covariance matrices
of the mth mixture component for the source and target
features, respectively. The model parameters are estimated
by the expectation-maximization (EM) algorithm
(Dempster et al., 1977).

The probability density of the GV of the target static
feature vectors over a time sequence is modeled by a
Gaussian distribution as

P ðvðyÞjkðvÞÞ ¼ N ðvðyÞ; lðvÞ;RðvvÞÞ; ð3Þ
where the GV v(y) = [v(1), . . . ,v(d), . . . ,v(D)]> is calculated
as follows:

vðdÞ ¼ 1

T

XT

t¼1

ytðdÞ �
1

T

XT

t¼1

ytðdÞ
 !2

: ð4Þ

The parameter set k(v) consists of the mean vector l(v) and
the diagonal covariance matrix R(vv). The GV is calculated
utterance by utterance in this article.

2.1.2. Conversion procedure considering dynamic features

(Toda et al., 2007)

Let X t ¼ x>t ;Dx>t
� �>

and Y t ¼ y>t ;Dy>t
� �>

be the source
and target joint feature vectors of the static and dynamic
feature vectors for frame t, respectively. Then, time
sequences of the source and target feature vectors are writ-

ten as X ¼ X>1 ; . . . ;X>t ; . . . ;X>T
� �>

and Y ¼ Y >
1 ; . . .

�
;Y >

t ; . . . ;Y >
T �
>, respectively. The converted static feature

sequence ŷ ¼ ŷ>1 ; . . . ; ŷ>t ; . . . ; ŷ>T
� �>

is determined by maxi-

mizing the product of the conditional probability density
of Y given X and the probability density of the GV as
follows:

ŷ ¼ arg max P ðY jX ; kðZÞÞxP ðvðyÞjkðvÞÞ subject to Y ¼Wy;

ð5Þ
where W extends the static feature vector to a joint feature
vector consisting of the static and dynamic feature vectors.
The constant x denotes the weight factor used to control
the balance between these two likelihoods. In this article
we set x as the ratio between the numbers of dimensions
of v(y) and Y, namely, 1

2T .
To efficiently perform the conversion process, we
employ the approximation method proposed in (Toda et
al., 2007). Originally, all mixture component sequences
should be considered to calculate P(Yj X,k(Z)) such as

P ðY jX ; kðZÞÞ ¼
X
all m

P ðmjX ;Y ; kðZÞÞP ðY jX ;m; kðZÞÞ; ð6Þ

where m = {m1, . . . ,mt, . . . ,mT} is a mixture component se-
quence. Eq. (6) is efficiently approximated by suboptimum
mixture component sequence m̂ as follows:

P ðY jX ; kðZÞÞ � P ðm̂jX ;Y ; kðZÞÞP ðY jX ; m̂; kðZÞÞ; ð7Þ
m̂ ¼ arg max P ðmjX ; kðZÞÞ: ð8Þ

Using this suboptimum mixture component sequence, the
target static feature sequence ŷ is estimated as

ŷ ¼ arg max PðWyjX ; m̂; kðZÞÞxP ðvðyÞjkðvÞÞ: ð9Þ
2.2. Air-pressure sensor for an EL (Uemi et al., 1994)

The air-pressure sensor shown in Fig. 2 enables laryn-
gectomees to manipulate the number of vibrations of an
EL using exhaled air from the tracheostoma. This air-pres-
sure sensor is connected to an existing EL with the name
‘yourtone’ (Hashiba et al., 2001). EL-air speech is pro-
duced by (1) drawing air into the lungs, (2) covering the
tracheostoma with the air-pressure sensor, (3) expelling this
air to drive the vibrator, and (4) articulating the sound
source signals while holding the EL and the air-pressure
sensor with both hands. Note that the location of attach-
ment of the EL and the method of articulation are the same
as those in the production of EL speech. Because this air-
pressure sensor is a closed-type that does not allow the pas-
sage of air when the air-pressure sensor covers the trache-
ostoma, the speaker needs to repeat the above process
after every pause in speech. The circuit to convert the air
pressure to the number of vibrations is built into the main
body of the EL. A threshold that defines the lower limit of
the air pressure required to turn on the vibrations is set in
this EL. If this threshold is too low, EL generates
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vibrations all the time. On the other hand, if it is too high,
the speaker needs very strong air pressure to generate the
vibrations. Therefore, a suitable threshold should be
adjusted for each speaker in advance.

Fig. 3 shows examples of waveforms and F0 contours of
EL speech, EL-air speech, and normal speech. The EL and
EL-air speech signals are produced by the same laryngecto-
mee, and the normal speech is produced by a laryngeal
speaker. As shown in the figure, rich F0 contours are
observed in EL-air speech, resulting in it sounding more
natural than EL speech. However, EL-air speech is still less
natural than normal speech. Moreover, it is difficult for a
speaker to intentionally switch between unvoiced and
voiced (U/V) sounds when producing EL-air speech, since
an EL always vibrates when the speaker produces EL-air
speech.
External noiseproofing

Oral cavity

Fig. 4. Location of attachment and structure of NAM microphone.
2.3. Non-audible murmur (NAM) microphone (Nakajima

et al., 2006)

Nakajima et al. defined a special speech that consists of
articulated respiratory sound without vocal-fold vibration
transmitted through the soft tissues of the head as non-
audible murmur (NAM) (Nakajima et al., 2006). Since
speech signals of NAM have extremely low energy, it is
too difficult to capture those signals with normal air-con-
ductive microphones such as a head-set microphone.
Therefore, it is required to capture speech signals of
NAM using a special microphone called a NAM micro-
phone (Nakajima et al., 2005). NAM is expected to be used
as a novel technique in silent speech interfaces, and
applicative studies on NAM and NAM microphones have
been conducted (Toda and Shikano, 2005; Nakajima et al.,
2006; Nakagiri et al., 2006; Miyamoto et al., 2009; Toda
et al., 2009).

A NAM microphone is attached to the body on the ster-
nocleidomastoid behind the neck as shown in Fig. 4. The
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waveform in Fig. 5 shows that the dynamic ranges of vow-
els and consonants are extremely different and that plosive
consonants such as /k/ can be impulsively observed. The
dynamic range of NAM microphones is larger than that
of normal air-conductive microphones; this is one advan-
tage of NAM microphones, since they can detect not only
speech signals of NAM but also those of normal speech. In
the spectrogram in Fig. 5, spectral components above
4 kHz almost disappear. It is said that this phenomenon
is caused by mainly two reasons; one reason is that the
radiation features of the oral cavity are lost and the other
one is that NAM signals are low-pass filtered when they
pass through the muscle (Nakajima et al., 2006). On the
other hand, the first and second formants, which are
important in speech processing, are clearly observed.
2.4. Sound source unit generating signals with extremely low

energy (Hosoi and Sakaguchi, 2003)

Hosoi and Sakaguchi proposed a novel unit as a new
sound source unit for silent speech communication (Hosoi
and Sakaguchi, 2003). This unit, which is available from
Toshin Co. Ltd. (http, xxxx) with the model number
BR-41, generates signals with extremely low energy, which
cannot be captured by people around the speaker. A pho-
tograph of this unit and the vibrator without the cover are
shown in Fig. 6. This unit was originally developed as a
Fig. 6. Photographs of sound source unit gen
bone-conductive receiver, and therefore, it can generate
arbitrary signals.

3. Proposed speaking-aid systems using GMM-based VC

3.1. Speaking-aid system for EL speech

3.1.1. Framework of the system

To address the problem of the unnaturalness of EL
speech, in this article we propose a speaking-aid system
for enhancing EL speech. An overview of this system is
shown in Fig. 7. This system consists of four parts that
(1) generate sound source signals, (2) record the EL speech,
(3) convert the EL speech, and (4) present the converted
normal speech. The location where the EL is attached is
the same as that where a laryngectomee usually sets the EL.

When a laryngectomee speaks with this system, listeners
would hear not only converted speech but also the source
EL speech, making the use of our proposed system limited.
In other words, it is not suitable for laryngectomees to use
this system in face-to-face conversations. This proposed
system, however, is expected to be effective in some situa-
tions where listeners do not have to hear the source EL
speech such as when used in telecommunication systems.
In telecommunication systems, listeners must understand
what a laryngectomee says from only the speech signals,
and therefore, converted speech should dominate the
source EL speech to allow the conversation to smoothly
flow. When our aid system is used in telecommunication
systems, it is enough to transfer only converted speech so
that listeners do not have to hear the source EL speech.
Regarding telecommunications, for example, conventional
telephones encode normal speech signals. In other words,
current EL speech is unsuitable for use with telecommuni-
cations, making it difficult for laryngectomees to use tele-
phones. However, our proposed system enables
laryngectomees to conduct smooth communication on the
telephone.

3.1.2. VC for EL speech

In the VC from EL speech to normal speech (EL-to-
Speech), three acoustic features of the spectral parameters,
erating signals with extremely low energy.
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Table 1
Source and target acoustic features for EL-to-Speech.

Source Target

Spectrum Spectrum
F0

Aperiodic components
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F0 , and aperiodic components (Kawahara et al., 2001) are
independently estimated from only source spectral param-
eters. Aperiodic components, which are used to construct
mixed excitation signals (Ohtani et al., 2006), indicate the
strength of noises in each frequency band.

For the source data, we set a segmental feature vector in
this article that includes information over multiple frames.
This idea originates from another VC framework used to
convert NAM to normal speech (Toda and Shikano,
2005). Fig. 8 shows a flow chart of the construction of seg-
mental feature vectors from static spectral parameter vec-
tors. Let Hx = {x1, . . . ,xt, . . . ,xT} be a set of source static
feature vectors, where xt = [xt(1), . . . ,xt(d), . . . ,xt(Dx)] is a
Dx-dimensional feature vector. Let ct ¼ ½x>t�L; . . . ; x>t ; . . . ;
x>tþL�

> be a Dc = D(2L + 1)-dimensional concatenated fea-
ture vector over the current ±L(L P 1) frames. Then, thebD-dimensional segmental feature vector Xt at frame t is
extracted from ct by principal component analysis (PCA).
For the target data, joint feature vectors consisting of static
and delta features are constructed. Delta features are
calculated from the previous and succeeding frames.

Table 1 shows the source and target acoustic features of
EL-to-Speech. The training data of the GMM to estimate
target spectral parameters are joint vectors consisting of
the segmental feature vectors of source spectra and joint
feature vectors of target spectra. In the estimation of F0

and aperiodic components, individual GMMs are trained
using joint feature vectors of the segmental feature vectors
and those of target Log-scaled F0 or aperiodic components.

In the conversion procedure, source segmental feature
vectors are constructed by the same approach as that in
the training part. Acoustic parameters are estimated by
the method described in Section 2.
3.2. Speaking-aid system for EL-air speech

3.2.1. Framework of the system

In this article we propose another speaking-aid system
that accepts EL-air speech. An overview of this system is
shown in Fig. 7. This system is expected to estimate more
natural F0 contours by using the air-pressure sensor. The
four components consisting of this system, the usage, and
the situations in which this system can be used are the same
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as those for the proposed system for EL speech described in
Section 3.1.1.
3.2.2. VC for EL-air speech

As shown in Fig. 3, the F0 contours of EL-air speech
vary more than those of EL speech. However, it is difficult
for users to intentionally switch between U/V sounds when
producing EL-air speech, and therefore, many U/V errors
are observed in the F0 contours of EL-air speech. In other
words, the F0 contours of EL-air speech are not sufficiently
accurate to present natural speech, and therefore, it is nec-
essary to convert not only the spectral parameters but also
the F0 features of EL-air speech.

Table 2 shows the relationship between the source and
target acoustic features in the VC from EL-air speech to
normal speech (EL-air-to-Speech). For the estimation of
target spectral parameters and aperiodic components, the
segmental feature vectors created from spectral parameters
of EL-air speech are used for the source data, which are
constructed by the same manner shown in Fig. 8.

For the estimation of F0 , two methods are considered
for constructing source segmental features: (1) concatenate
the static feature vectors of spectra and F0 , and then con-
struct segmental feature vectors, or (2) construct segmental
feature vectors of spectra and F0 separately, and then con-
catenate these vectors (see Fig. 9). The first method
includes a risk that the F0 information might not be pre-
sented when the segmental feature vectors are constructed.
Therefore, in this article we employ the second method.
Table 2
Source and target acoustic features for EL-air-to-Speech.

Source Target

Spectrum Spectrum
Spectrum and F0 F0

Spectrum Aperiodic components

Spectral static
feature vectors

Spectral segmental
feature vectors

Fig. 9. Flow chart of the construction of segmental fe
Log-scaled F0 values are extracted from EL-air speech
and normal speech to be used for the static F0 features.
For the target F0 features, joint feature vectors of static
and delta F0 values are constructed.
3.2.3. Data recording of training data for EL-air-to-Speech

It is essential in VC to use source and target features
that correlate with each other. To obtain these data, a lar-
yngectomee trained how to control F0 using the air-pres-
sure sensor for one month. The laryngectomee further
trained to control F0 for another three weeks so that the
pitch of EL-air speech sounds similar to that of the target
normal speech. EL-air speech was recorded after this
training.

However, we noticed that it was too difficult for the lar-
yngectomee to mimic the target pitch pattern by control-
ling F0 with exhaled air. Moreover, the F0 patterns of the
recorded EL-air speech were significantly different from
those of the target speech. Therefore, we additionally
recorded target normal speech for the recorded EL-air
speech. In this recording, a target speaker uttered target
speech while mimicking the pitch patterns of the recorded
EL-air speech as naturally as possible. Note that the F0

contours of the recorded EL-air speech are still different
from those of the re-recorded target speech. For example,
the F0 contours of the recorded EL-air speech vary discon-
tinuously, although those of the target normal speech
smoothly vary. These differences are expected to be
removed by VC in our speaking-aid system.
3.3. Speaking-aid system for silent EL speech

3.3.1. Framework of the system

The speaking-aid system for silent EL speech is shown in
Fig. 7. In our previous work, input silent EL speech was
only converted to a whispered voice (Nakamura et al.,
2007). However, in this article we convert silent EL speech
F0 static
feature vectors

F0 segmental
feature vectors

ature vectors from spectral and F0 feature vectors.
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Fig. 10. Calculation of correlation coefficients between voiced frames of
estimated and target F0 contours.

142 K. Nakamura et al. / Speech Communication 54 (2012) 134–146
to normal speech. This system addresses not only the
unnaturalness of EL speech but also the problem of noisy
sound source signals. The four components of this system
are the same as those of the other speaking-aid systems
described above. To address the problem of noisy sound
source signals, this system employs the new sound source
unit described in Section 2.4. Produced silent EL speech
is captured by the NAM microphone described in Section
2.3 as well as NAM speech signals. In this article, silent
EL speech is recorded in a sound proof room that is extre-
mely quiet space. Note that silent EL speech has energy to
provide auditory feedback to the speaker; however, the
energy is extremely low. Therefore, silent EL speech is
hardly heard by listeners, and it is easily masked by exter-
nal noises. As a result of the masking phenomenon, it is
expected that this system can be used in daily conversations
as well as with telecommunication systems.

3.3.2. VC for silent EL speech

VC from silent EL to normal speech (silent-EL-to-
Speech) is performed by the method used for EL-to-Speech
described in Section 3.1.2. Three acoustic features of spec-
tral parameters, F0 , and aperiodic components are esti-
mated from only the spectral parameters of silent EL
speech. Segmental feature vectors are constructed in the
manner shown in Fig. 8 and are set as the source features.
Joint features consisting of static and delta features are set
as the target features.

4. Experimental evaluations

4.1. Experimental conditions

The source speaker was a laryngectomee (Japanese
male), who was proficient in speaking with an EL. The tar-
get speaker was a laryngeal speaker (also a Japanese male).
Both speakers recorded 50 phoneme-balanced sentences,
which served as training data, and 30 utterances from
newspaper articles, which served as test data. The source
speaker recorded three types of alaryngeal speech: EL
speech, silent EL speech using a pulse train with a fre-
quency of 100 Hz, and EL-air speech. The source speaker
used an EL named ‘yourtone’ (Hashiba et al., 2001) to pro-
duce EL speech and EL-air speech. The target speaker
recorded normal speech. EL-air speech and normal speech
were recorded in the manner described in Section 3.2.3. The
recorded target speech data were shared among the settings
of VC for each source speech. All speech signals were
recorded in a sound proof room. Silent EL speech was
recorded with a NAM microphone. Other speech signals,
which were EL speech, EL-air speech, and the target nor-
mal speech, were recorded with a head-set microphone.

The number of mixture components of the GMMs used
to estimate spectral parameters and aperiodic components
was set to 32 and the number of mixture components of the
GMM used to estimate F0 was set to 16, 32, 64, and 128,
respectively. The 0 through 24 mel-cepstral coefficients,
which were extracted by mel-cepstral analysis (Fukada
et al., 1992), were used as the source spectral parameters,
where the 0 coefficient captured power information. The
concatenating frame length for the source segmental fea-
ture vectors was set to 8. After the concatenation of frames,
50- and 2-dimensional components were extracted frame
by frame to construct spectral and F0 segmental feature
vectors, respectively. F0 contours of the source speech sig-
nals were automatically extracted using a robust algorithm
for pitch tracking (Talkin, 1995). Acoustic features of the
target speech were extracted by STRAIGHT analysis
(Kawahara et al., 1999).

Following mel-cepstral distortion was used to measure
the spectral conversion accuracy.

Mel� cd½dB� ¼ 1

T

XT

t¼1

10
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
PD

d¼1fðtart½d� � convt½d�Þ2g
q

ln 10
;

ð10Þ

where tard[d] and convt[d] were dth coefficients of the target
and converted mel-cepstrum at the frame t, respectively. T

was the total number of frames. The accuracy of F0 was
evaluated by U/V decision error rates and the correlation
coefficient between frames for which the estimated and tar-
get frames both correspond to be voiced as shown in
Fig. 10. Target F0 contours of the test data including U/
V information were given as references for calculating U/
V decision error rates. The correlation coefficients were cal-
culated utterance by utterance in this article.

Six laryngeal speakers subjectively and independently
evaluated stimuli in terms of (1) naturalness, (2) intelligibil-
ity, and (3) preference in this order, which were all rated
using a five-point-scaled opinion score (1: Bad, 2: Poor,
3: Fair, 4: Good, 5: Excellent). Our aid systems were
expected to be used in our daily life. Therefore, we evalu-
ated the systems using not isolated words but continuous
sentences. For conducting writing test to evaluate the intel-
ligibility, we needed to prepare lots of sentences to prevent
subjects from learning the contents. On the other hand, it
was difficult for the source speaker to produce many
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sentences for each source speech. Therefore, we conducted
an opinion test on intelligibility. Five different sentences
out of 30 test sentences were randomly selected for each
speaker. Note that the subjects conducted perceptual eval-
uations for three times using different test data set. Seven
types of stimuli were evaluated: analysis-synthesized target
normal speech, three types of recorded source speech sig-
nals (EL speech, silent EL speech, and EL-air speech),
and three types of converted speech signals from each
source speech. All stimuli were randomly given using a
headphone in a sound proof room. Converted and the tar-
get speech waveforms were synthesized using a mel log
spectrum approximation filter (Imai et al., 1983). When
synthesizing the converted speech waveforms, the GV
parameters of only the converted spectra were taken into
account. F0 contours of the test data were estimated using
64 mixture components.
4.2. Experimental results

4.2.1. Objective results

Table 3 shows the results of mel-cepstral distortion. As
shown in the table, VC strongly enhances the spectra of
source speech signals. The result of spectral conversion
from EL speech or EL-air speech is better than that from
silent EL speech. The result of EL-air speech conversion
is slightly better than that of EL speech conversion in terms
Table 3
Mel-cepstral distortions without power information.

Source speech Source – Target Converted – Target
± S.D. [dB] ± S.D. [dB]

Silent EL speech 11.42 ± 0.36 4.55 ± 0.24
EL speech 8.96 ± 0.31 4.25 ± 0.26
EL-air speech 9.51 ± 0.30 4.12 ± 0.20
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Fig. 11. Correlation of F0 contours between target and converted F0

contours.
of the average and the standard deviation; however, the
performances of VC for EL speech and EL-air speech are
very close each other.

Fig. 11 shows the correlation coefficients between voiced
values of target and converted F0 contours. From this fig-
ure, the results of using silent EL speech and EL speech are
almost the same. Overtraining, however, occurred in the
result of EL speech with 128 mixture components. On the
other hand, the result using EL-air speech is better than
that using the other two speech signals, and moreover, this
result remains almost the same for different numbers of
mixture components.

Fig. 12 shows U/V decision error rates for converted F0

contours. According this figure, EL-air speech produces
fewer U/V decision errors than the other two speech sig-
nals, even though overtraining is observed when GMM
has 128 mixture components.

Fig. 13 shows examples of F0 contours of source EL-air
speech, converted speech, and the corresponding target
speech. As shown in this figure, VC is highly effective for
making the F0 contours of the EL-air speech smoothly
and continuously vary while suitably switching between
U/V decisions.
4.2.2. Subjective results

Fig. 14 shows the mean opinion score (MOS) for each
test.

The result shows that our systems dramatically improve
the naturalness of each source speech. Namely, the results
of the converted speech have the significance to the corre-
sponding source speech considering 5% significance level.
However, the results of the three converted speech does
not have the significance each other considering 5% signif-
icance level, since the naturalness of the converted silent
EL speech, the converted EL speech, and the converted
EL-air speech varies between 2.31 and 3.09, 2.94 and
3.53, and 3.08 and 3.92, respectively. This result shows that
our speaking-aid systems are highly effective for improving
the naturalness of three types of EL speech signals.

The intelligibility of the converted silent EL speech is
scored to vary between 1.77 and 2.49, and that of the
source silent EL speech is scored to vary between 1.13
and 1.47. Therefore, the converted silent EL speech has
the significance to source EL speech on intelligibility.
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However, other two VC experiments have no significance
between before and after VC procedure. Although the
mean value of the intelligiblity of the converted EL speech
is slightly degraded than that of the source EL speech, no
significant differences are observed when we consider the
95% confidence intervals. The intelligibility of the con-
verted EL-air speech is similar to that of the source EL-
air speech, although each result is better than the result
of the converted silent EL speech.

The preference for each converted speech scored higher
than that for the corresponding source speech. The prefer-
ence of the EL speech conversion also has the significance
considering 5% significance level. Namely, the preference
of the source and the converted EL speech vary between
1.68 and 2.66 and 2.67 and 3.3, respectively. It is interesting
that the preference for the source EL-air speech is similar
to that for source EL speech, although EL-air speech
includes more F0 information than EL speech. Although
the mean value of the preference of converted EL-air
speech is better than that of the converted EL speech, there
is no statistical significance considering 5% significance
level since the preference of the converted EL speech varies
between 2.67 and 3.33 and that of the EL-air speech varies
between 3.28 and 4.12.
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5. Discussion

Differences of mel-cepstral distortions after VC are not
large, on the other hand, certain tendency is appeared.
Since the target speech is shared among each VC experi-
ment, the result of the mel-cepstral distortion is caused
by the difference of the type of the source speech, namely,
the amount of information source speech has. Since the
sound source signals of EL speech and EL-air speech are
larger than those of silent EL speech, the result of VC from
EL speech or EL-air speech is better than that from silent
EL speech. Moreover, EL speech and EL-air speech signals
were captured by an air-conductive microphone, whereas
silent EL speech signals are captured by a body-conductive
microphone. Therefore, EL and EL-air speech contain
much more information than silent EL speech. On the
other hand, the difference between EL speech and EL-air
speech is only the existence of the air-pressure sensor,
which mainly affects not spectral information but F0 infor-
mation. Therefore, it is reasonable to obtain similar results
of VC between EL speech and EL-air speech.

A reason why the mean value of the intelligibility of the
source EL speech is higher than that of the source EL-air
speech is a difference of training periods to produce EL
speech or EL-air speech. The source speaker has used an
EL in his daily life for more than 10 years, and therefore,
the speaker well knows how to produce intelligible EL
speech. The source speaker trained how to produce EL-
air speech and control its F0 using his exhaled air for around
one month and three weeks. After the speech recording, the
source speaker gave us a comment that he might be able to
produce more natural and intelligible EL-air speech if he
could get more training periods. As a result, it is reasonable
that the intelligibility of the source EL speech is higher than
that of the source EL-air speech, since the duration of train-
ing of the source speaker to produce EL-air speech is
shorter than that to produce EL speech.

VC surely reduced radiation noises. However, the cur-
rent VC procedure might cause another distortion on intel-
ligibility, which is our future work. As a result, there are no
significant differences in the intelligibility before and after
converting EL speech and EL-air speech.

The subjective result of preference has a similar ten-
dency to that of naturalness than that of intelligibility. This
is because the improvement of the naturalness affected the
subjects much more than the difference of intelligibility.
Moreover, the result of preference of the converted EL-
air speech is better than that of the converted EL speech.
Considering the objective result of spectral and F0 estima-
tion accuracy, the result of preference score comes from the
improvement of F0 estimation accuracy. The gap between
the converted EL-air speech and target speech in the pref-
erence result is the combination of a defect of intelligibility
due to the spectral estimation and that of naturalness due
to F0 estimation. For more improvement of F0 estimation,
it might be effective to use more training data.
From these results of spectral and F0 estimation, we con-
clude that VC dramatically improves the spectral perfor-
mance of source speech signals, and the use of the air-
pressure sensor effectively improves the converted speech
quality.

6. Conclusion

In this article we proposed three speaking-aid systems
for EL speech, EL-air speech, and silent EL speech with
the aim of addressing two problems EL speech: its unnat-
uralness and noisy sound source signals. We introduced a
statistical VC technique for addressing the unnaturalness
of EL speech and employed a new sound source unit, which
generated signals with extremely low energy, to address the
problem of noisy sound source signals. We also introduced
an air-pressure sensor that enables laryngectomees to
manipulate the F0 contours of an EL using their exhaled
air. This device was expected to enable the estimation of
more natural F0 contours.

As the result of experimental evaluations, it was shown
that VC greatly enhanced the spectral quality. The use of
the air-pressure sensor dramatically improved the correla-
tion coefficients of F0 contours using only voiced frames
from 0.58 to 0.78 and also suppressed the proportion of
U/V decision errors from 5.44% to 4.73%. Moreover, sub-
jective evaluations indicated that our speaking-aid systems
dramatically improved the naturalness of EL speech and
converted speech is preferred to the corresponding source
EL speech.
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