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SUMMARY  The contribution of this paper is two-fold. Firstly, we con-
duct a large-scale real-world evaluation of the effectiveness of integrating
an automatic transliteration system with a machine translation system. A
human evaluation is usually preferable to an automatic evaluation, and in
the case of this evaluation especially so, since the common machine trans-
lation evaluation methods are affected by the length of the translations they
are evaluating, often being biassed towards translations in terms of their
length rather than the information they convey. We evaluate our translit-
eration system on data collected in field experiments conducted all over
Japan. Our results conclusively show that using a transliteration system
can improve machine translation quality when translating unknown words.
Our second contribution is to propose a novel Bayesian model for unsu-
pervised bilingual character sequence segmentation of corpora for translit-
eration. The system is based on a Dirichlet process model trained using
Bayesian inference through blocked Gibbs sampling implemented using an
efficient forward filtering/backward sampling dynamic programming algo-
rithm. The Bayesian approach is able to overcome the overfitting problem
inherent in maximum likelihood training. We demonstrate the effective-
ness of our Bayesian segmentation by using it to build a translation model
for a phrase-based statistical machine translation (SMT) system trained to
perform transliteration by monotonic transduction from character sequence
to character sequence. The Bayesian segmentation was used to construct a
phrase-table and we compared the quality of this phrase-table to one gen-
erated in the usual manner by the state-of-the-art GIZA++ word align-
ment process used in combination with phrase extraction heuristics from
the MOSES statistical machine translation system, by using both to per-
form transliteration generation within an identical framework. In our ex-
periments on English-Japanese data from the NEWS2010 transliteration
generation shared task, we used our technique to bilingually co-segment
the training corpus. We then derived a phrase-table from the segmenta-
tion from the sample at the final iteration of the training procedure, and the
resulting phrase-table was used to directly substitute for the phrase-table
extracted by using GIZA++/MOSES. The phrase-table resulting from our
Bayesian segmentation model was approximately 30% smaller than that
produced by the SMT system’s training procedure, and gave an increase
in transliteration quality measured in terms of both word accuracy and F-
score.

key words:  transliteration, human evaluation, machine translation,
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1. Introduction

Machine translation has to handle wide variety of proper
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nouns to achieve high translation performance. However,
it is impossible to discover all of these words from lim-
ited quantities of bilingual training data, or even to man-
ually maintain a bilingual dictionary because of the huge
number of distinct proper nouns in the real world including
new words and expression being created day by day. There-
fore, machine translation is a the promising application for
the application of transliteration technology. In this paper
we present a Bayesian technique for building transliteration
models that avoids the overfitting issues commonly encoun-
tered with non-Bayesian techniques. We evaluate this ap-
proach automatically with respect to prior work, but more
importantly we evaluate the worth of our approach in a real-
world translation system.

Automatic machine translation metrics, for example
the BLEU score [1], and the NIST score [2] often have a
natural bias towards shorter translations. That is to say, it
is often a better strategy for a machine translation system to
output nothing or an very short erroneous translation than
to output a long, incorrect translation. Within these met-
rics attempts to correct this this length bias are included, but
unfortunately they are not completely effective and some de-
gree of bias remains. As a evidence of this phenomenon, it
is common practice in competitive machine translation eval-
uation campaigns for the systems to delete untranslated un-
known words from their machine translation output, rather
than keep them or attempt to transliterate them (for exam-
ple, [3]). For this reason it is important to study the effect of
introducing transliteration into a machine translation system
through a human evaluation experiment, even though such
experiments are expensive in terms of human effort. We now
move on to motivate the Bayesian co-segmentation scheme
using in training our transliteration model.

1.1 Motivation

It is possible to couch the problem of transliteration as a
problem of machine translation at the character level. In
this paradigm, decoding is usually assumed to proceed in a
monotone order, but otherwise the technique remains essen-
tially the same, except that the tokens used in the system
are characters rather than words. Recently systems based on
phrase-based statistical machine translation technology are
being actively researched [4]-[6], and have achieved state-
of-the-art performance on this task. The approach makes no
linguistic assumptions about the data and no intermediate
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phonetic representation is required, because the transduction
is directly from grapheme to grapheme. The advantages of
this type of approach are that the only training corpus re-
quired is a set of bilingual word pairs, and the approach can
be applied directly to a wide range of language pairs without
the need to develop a set of linguistically-motivated heuris-
tics specific to the languages involved.

At the core of all phrase-based statistical machine
translation systems (SMT) is the phrase-table. This table is
the basic set of building blocks that are used to construct the
translation. The creation of a phrase-table during a typical
training procedure for a phrase-based SMT system consists
of the following steps:

1. Word alignment using GIZA++ [7]
2. Phrase-pair extraction using heuristics (for example
grow-diag- final-and from the MOSES [8] toolkit)

This approach works very well in practice, but a more
elegant solution would be to arrive at a set of bilingual
sequence-pairs (we use this term to describe analogue of the
phrase-pair at the character level) in one step, from a gen-
erative model. Unfortunately, when traditional methods that
use the EM algorithm to maximize likelihood are applied
to the task, they produce solutions that can grossly over-fit
the data. As an extreme example, the most likely segmen-
tation of a corpus into sequence-pairs, assuming no limits
on sequence-pair size would be the entire corpus as a single
bilingual sequence-pair, holding all the probability mass.

GIZA++ mitigates this problem by aligning the words
in a one-to-many fashion. The single word on one side of
the alignment acts as a constraint on the size of the bilin-
gual pairs. A similar approach can be taken in translitera-
tion, where a single character in one language is permitted to
align to multiple characters of the other, but not vice versa.
This approach is reasonable for English-Chinese transliter-
ation [9], [10], where one Chinese character can be assumed
to map to several English characters.

In GIZA++ this one-to-many alignment is done twice:
from both source-to-target and also from target-to-source. A
table of word-to-word alignments is then constructed from
(typically the intersection) both of these alignments. Addi-
tional word alignments that are not in the intersection are
added based on evidence and heuristics, and finally all pos-
sible phrase-pairs are extracted from the table of alignments
that are consistent with the table.

In [11], [12] many-to-many alignment is performed di-
rectly using maximum likelihood training, but evidence
trimming heuristics that exclude part of the available train-
ing data are required to prevent the models from overfitting
the data. [13] have successfully applied a similar Bayesian
technique to grammar induction and [14], [15] have devel-
oped a tractable Bayesian methods for the more complex
task of bilingual phrase pair extraction for SMT, which in-
volves reordering. [16] tackle the overfitting problem in
phrasal alignment by using a leave-one-out approach using a
strategy that despite being a different paradigm, shares many
of the characteristics of our approach.
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In this paper we extend existing monolingual word
segmentation models ([17], [18]) to bilingual segmentation,
and provide a simple yet elegant way to directly segment a
bilingual training corpus in a many-to-many fashion without
overfitting, using a Bayesian model.

This paper is organized as follows. In Sect.2 we de-
scribe the Bayesian model used in our transliteration system.
Here we give an overview of the Dirichlet process model,
the Chinese Restaurant process and explain how our model
relates to these two representations. We also describe the
blocked Gibbs sampling technique used to train the model.
In Sect. 4 we describe the experiments we performed to eval-
uate our model: the data sets, the baseline system and the
training procedure. Section 5 contains the experimental re-
sults, and in Sect. 7 we conclude and mention promising av-
enues for future research.

2. Methodology

Recently in the natural language processing field Bayesian
models have been proposed to tackle a variety of problems,
and have been found to be particularly effective in word seg-
mentation [17],[18]. The model we use in this paper is a
unigram Dirichlet process model. Using this approach to
perform bilingual segmentation for the general case of ma-
chine translation with re-ordering would be a challenging
undertaking, however for transliteration where the sequence
lengths are short and under the assumption that there is no
re-ordering, it is feasible to tackle the bilingual segmenta-
tion problem directly without the need for specialized op-
timization or annealing (we do use a block sampling algo-
rithm, and a dynamic programming algorithm).

2.1 Joint Source-Channel Model

Let us assume we are given a bilingual corpus consisting
of a source sequence s’1” = <s1,8,...,5y> and a target
sequence t]1V = <ty,t,...,ty>. We distinguish sequences of
characters from single characters by using a boldface font
with an overbar.

We adopt the joint source-channel model of [9] as the
underlying generative model, and we make the additional
assumption that the segments are independent of each other
(our approach can easily be extended to model these depen-
dencies at the expense of some additional complexity, see
[18]). Under this model, the corpus is generated through the
concatenation of bilingual sequence-pairs (we will use this
term repeated throughout this paper to refer to correspond-
ing sequences of source and target graphemes, as defined
below).

A bilingual sequence-pair is a tuple (s, t) consisting of
a sequence of source graphemes together with a sequence of
target graphemes (s, t) = (<s1, $2,... 8>, <t1,lp,...,1;>).

The corpus probability is simply the probability of all
possible derivations of the corpus given the set of bilingual
sequence-pairs and their probabilities.
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p(sllw’tllv) = p(sl$ SZ’ RO SM7 tl,t29 e 7tN)
=P ()
yell
where y = ((s1,t1),...,(Sk te), ..., (Sk, tg)) is a derivation

of the corpus characterized by its co-segmentation, and I is
the set of all derivations (co-segmentations) of the corpus.

The probability of a single derivation is given by the
product of its component bilingual sequence-pairs:

K
po) = [ | PG 00 @)
k=1

The corpus for our experiments is segmented into bilin-
gual word-pairs. We therefore constrain our model such that
both source and target character sequences of each bilingual
sequence-pair in the derivation of the corpus are not allowed
to cross a word segmentation boundary. Equation (2) can
therefore be arranged as a product of word-pair w deriva-
tions of the sequence of all word-pairs ‘W in the corpus.

ron=11 [] pet (3)

weW (,t)Eyw

where v, is a derivation of bilingual word-pair w.
2.2 Unigram Dirichlet Process Model

A Dirichlet process is a stochastic process defined over a set
S (in our case, the set of all possible bilingual sequence-
pairs) whose sample path is a probability distribution on S.

The Dirichlet process model we use in our approach
is a simple model that resembles the cache models used in
language modeling [19]. Intuitively, the model has two ba-
sic components: a model for generating an outcome that has
already been generated at least once before, and a second
model that assigns a probability to an outcome that has not
yet been produced. Ideally, to encourage the re-use of model
parameters, the probability of generating a novel bilingual
sequence-pair should be considerably lower then the prob-
ability of generating a previously observed sequence pair.
This is a characteristic of the Dirichlet process model we
use and furthermore, the model has a preference to gener-
ate new sequence-pairs early on in the process, but is much
less likely to do so later on. In this way, as the cache be-
comes more and more reliable and complete, so the model
prefers to use it rather than generate novel sequence-pairs.
The probability distribution over these bilingual sequence-
pairs (including an infinite number of unseen pairs) can be
learned directly from unlabeled data by Bayesian inference
of the hidden co-segmentation of the corpus. The ability of
the model to assign a probability to any unseen sequence-
pair gives the technique the ability to score candidate train-
ing data.

The underlying stochastic process for the generation
of a corpus composed of bilingual phrase pairs y is usually
written in the following from:
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Gl(l,G[) ~ DP(CY, GO)
(6 t)lG ~ G “4)

G is a discrete probability distribution over the all bilin-
gual sequence-pairs according to a Dirichlet process prior
with base measure G and concentration parameter . The
concentration parameter @ > 0 controls the variance of G;
intuitively, the larger « is, the more similar Gy will be to G.

2.2.1 The Chinese Restaurant Process

Unfortunately it is not possible to estimate G directly, since
there are an infinite number of possible bilingual sequence-
pairs, so instead we integrate over its possible values. To do
this we cast the bilingual sequence-pair generation process
as an instance of the Chinese Restaurant Process (CRP) [20].
According to this representation, every bilingual sequence-
pair corresponds to the dish served at its table in a potentially
infinite set of tables in a Chinese restaurant. The number
of customers seated at each table represents the cumulative
count of the bilingual sequence-pair. A new customer to the
restaurant can take a seat at an occupied table with a proba-
bility proportional to the number of customers at that table,
and must eat that table’s dish, or can take a seat at an unoc-
cupied table with a probability proportional to a constant, in
which case they must eat a dish (a bilingual sequence-pair)
chosen by the chef (in this analogy the chef’s choice is in
accordance with the base distribution Gy).

2.2.2 The Base Measure

For the base measure that controls the generation of novel
sequence-pairs, we use a joint spelling model that assigns
probability to new sequence-pairs according to the follow-
ing joint distribution:

Go((s, ) = p(IsDp(slis) x p(thp(ti[t)
Is| [t]
~ /l—se_l"v_lsl X A eyt (5)

T s s It]! g

where [s| and [t| are the length in characters of the source
and target sides of the bilingual sequence-pair; vy and v, are
that vocabulary (alphabet) sizes of the source and target lan-
guages respectively; and A, and 4, are the expected lengths
of source and target.

According to this model, source and target sequences
are generated independently: in each case the sequence
length is chosen from a Poisson distribution, and then the
sequence itself is generated given the length. Note that this
model is able to assign a probability to arbitrary bilingual
sequence-pairs of any length in source and target sequence,
but favors shorter sequences in both.

More sophisticated methods of defining the base mea-
sure are possible, for example [14], [15] use the IBM model
1 likelihood of one phrase conditioned on the other in the
base model to encourage the formation of bilingual pairs
that follow the word alignments in the corpus. This idea
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Input: Random initial corpus segmentation
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Output: Unsupervised co-segmentation of the corpus according to the model

foreach iter=1 to Numlterations do
foreach bilingual word-pair w € randperm(‘W) do
foreach co-segmentation y; of w do
Compute probability p(y;lh)

end
Sample a co-segmentation y; from the distribution p(y;|h)
Update counts

end

end

where £ is the set of data (excluding w) and its hidden co-segmentation

Algorithm 1: The blocked Gibbs sampling algorithm.

can be transferred to the character level and used in our ap-
proach, but remains as future work at this point.

Following [17] we assign the parameters Ay, 4, and «,
the values 2, 2 and 0.3 respectively. Ideally these parameters
should be learned from the data, however in our experiments
the settings were sufficient to give a useful co-segmentation
of the training corpus. Moreover, the system proved to be
insensitive to changes in these parameters in a set of pilot
experiments, converging to very similar final iteration sam-
ples for a range of parameter settings.

2.2.3 The Generative Model

The generative model is given in Eq. (6) below. The equa-
tion assignes a probability to the <™ bilingual sequence-pair
(s, tr) in a derivation of the corpus, given all of the other
sequence-pairs in the history so far (s_,t_;). Here —k is
read as: “up to but not including k”.

(St tDI(S—k, £1))
_ N((st, &) + aGo((Sk, t))
- N+«

(6)

In this equation, N is the total number of bilingual
sequence-pairs generated so far (the number of customers
so far), N((sk, ty)) is the number of times the sequence-pair
(Sk, tx) has occurred in the history (the number of people
seated at its table). Gy and « are the base measure and con-
centration parameter as before.

3. Bayesian Inference
3.1 Gibbs Sampling

We used a blocked version of a Gibbs sampler for training.
In [19] they report issues with mixing in the sampler that
were overcome using annealing. In [18] this issue was over-
come by using a blocked sampler together with a dynamic
programming approach. Our algorithm is similar to that of
[18], and we found our sampler converged rapidly without
annealing (see Fig.4). The number of iterations was set by
hand after observing the convergence behavior of the algo-
rithm in pilot experiments. We used a value of 30 iterations
through the corpus in all our experiments.

The sampling algorithm is shown in Algorithm 1 and
the iterative component proceeds as follows. Firstly the
training set of bilingual word-pairs is permuted randomly,
and a bilingual word-pair is sampled from this permutation
without replacement. Secondly, a probability distribution
over all possible co-segmentations of the chosen bilingual
word-pair is calculated by obtaining probabilities with re-
spect to a model that does not include the bilingual word-
pair, its previous segmentation information and respective
counts. Due to the short sequence lengths involved in
transliteration, it is possible to use a brute force approach
to calculate this distribution, however for efficiency we ex-
tended the forward filtering/backward sampling (FFBS) dy-
namic programming algorithm of [18] to deal with bilingual
segmentation. We implemented this algorithm graphically
as explained below.

We use a segmentation graph (shown in Fig. 1) to guide
the process. This directed graph is a compact representa-
tion of all possible ways in which to co-segment a bi-lingual
pair. Each node represents a set of partial co-segmentation
hypotheses of the whole sequence that share the same se-
quences of source and target tokens, and each arc repre-
sents the bilingual phrase pair used to transition from the
tail of the arc to the head. In the figure the arcs are la-
belled with the log-probability of this sequence-pair (given
by the model in Eq. (6)), therefore the log-probability of a
full segmentation hypothesis is given by the sum of the arc
labels on the respective path from the source node ‘<s>’ to
the sink node ‘abba’. The most probable co-segmentation
is indicated with bold arcs in the figure and corresponds
to the segmentation ‘a b ba’, this is reasonable since both
‘a/A’ and ‘ba/BA’ are associated with their phonetic equiva-
lents in Japanese, and the Japanese “TSU’ indicates that the
consonant immediately to the right is to be repeated. The
least probable segmentation in the graph is given by ‘abb/A
a/TSU-BA’. The log-probabilities in the graph are real val-
ues taken from the third iteration of the training, and here
the most probable segmentation is already by far the most
likely.

Nodes in the graph can have multiple in- and out-
degree. Two nodes are combined when the unsegmented
part of the bi-lingual sequence pair is the same for both, giv-
ing rise to a compact, efficient representation.

The FFBS algorithm operates directly on the segmen-
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Fig.1 A graph representing all possible co-segmentations of the character sequences “abba” in En-
glish and “A-TSU-BA” in Japanese. The « labels on the nodes represent the log-probability of subgraph
(including the node itself) to the left of the node. The labels on the arcs are the log-probabilities of
bi-lingual phrase pairs used to transition from tail-to-head, and are given by the model of Eq. (6).

INPUT:
OUTPUT:

a sequence of bilingual sequence pairs: ARRAY-of-sequence-pairs derivation
a set of all pairs formed by agglomerating the pairs in derivation

SET-of-sequence-pairs
ARRAY-of-sequence-pairs

agglomerations
chunk

= empty
= empty

FOR chunk in all subsequences of derivation

{
sequence-pair pair = concatenation of sequence pairs in chunk
IF (pair has source sequence length <= MAX_SOURCE_SEQUENCE_LENGTH AND
pair has target sequence length <= MAX_TARGET_SEQUENCE_LENGTH)
{
INSERT pair into agglomerations
}
}

PRINT all_agglomerations

Fig.2  The sequence-pair agglomeration algorithm.

tation graph, and has two steps. The forward filtering step,
calculates for each node in the graph, the probability of the
subgraph (including the node itself) to the left of the node,
back to the source node. This probability «, is stored in the
node itself (these a’s are shown in Fig. 1). This process pro-
ceeds recursively in a depth-first post-order traversal of the
graph, starting at the sink node. Nodes for which the prob-
ability has been calculated are marked as done, ensuring «
gets calculated only once for the node.

The backward sampling step samples a derivation of
the bi-lingual word pair according to the probability distri-
bution over all possible segmentations. This is done easily
using the a values stored in the graph by the forward filter-
ing process. The backward sampling also proceeds recur-
sively from the sink node. For each incoming arc, the prob-
ability of including that arc in the sample is given by the

product of the arc probability and the a value at the tail of
the arc. This value is calculated for each incoming arc, and
one arc from the set is sampled according to the probability
distribution over the arcs. The sampling procedure is called
recursively on the tail of the sampled arc until the source
node of the graph is reached. The sequence of arcs traversed
defines the sampled derivation of the bi-lingual pair for the
current iteration of the training process, and this sample is in
accordance with the probability distribution over all deriva-
tions with respect to the model.

3.2 Sequence-Pair Extraction
During the phrase-table generation process of a typical

phrase-based SMT system, GIZA++ is run twice to generate
alignments at the word level, from source-to-target and from
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Co-segmentation from final iteration of training
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Set of extracted bilingual phrase pairs

Fig.3 The sequence-pair extraction process for a single bilingual word pair, using sequence-pair

agglomeration.

target-to-source. Following this step, the grow-diag- final-
and procedure is used to extract all phrases consistent with
the word alignments arising from the two GIZA++ runs.
When building a phrase-table from the alignment achieved
at final iteration of our Gibbs sampling procedure, we use
a much simpler heuristic that is in the same spirit to de-
rive a larger set of phrases consistent with the initial co-
segmentation. Our experiments show that this is a necessary
step that considerably improves system performance.

The algorithm we use for phrasal extraction from the
co-segmented corpus is as follows: within a single bilingual
word-pair, agglomerate all contiguous bilingual sequence-
pairs in all possible ways, but limit the size of the agglomer-
ated source and target phrases to match the maximum phrase
length parameter used to train the SMT system (this was set
to 7 in our experiments). This is not strictly necessary, but
we performed this step to keep the phrase-table generated
from our Bayesian segmentation comparable to that gener-
ated by the baseline system. The algorithm used to perform
the sequence-pair agglomeration is outlined in Fig.2. An
example word pair together with its segmentation and the
set of agglomerated phrases that can be extracted from it is
illustrated in Fig. 3.

4. Transliteration Experiments
4.1 Baseline System

For our experiments we use the phrase-based machine trans-
lation techniques introduced by [8], integrating our models
within a log-linear framework [21]. Word alignment was
performed using GIZA++ [7] and sequence-pair extraction
using the MOSES [8] tools. The decoder used was an in-
house phrase-based machine translation decoder that oper-
ates according to the same principles as the publicly avail-

Table 1  Statistics of the English-Japanese bilingual corpora.
Corpus word-pairs Characters Avg. Word Len.

P p En | Ja En | Ja
Training 27993 188941 | 131275 | 6.75 4.69
Development 3606 24066 16651 6.67 4.62
Evaluation 1935 11863 8199 6.13 4.24

able MOSES [8] SMT decoder.

In these experiments 5-gram language models built
with Witten-Bell smoothing were used. The system was
trained in a standard manner, using a minimum error-rate
training (MERT) procedure [22] with respect to the BLEU
score on the held-out development data to optimize the log-
linear model weights.

Rama and Gali [23], evaluated several techniques for
sequence-pair extraction for transliteration and found the
grow-diag- final-and heuristic to be the most effective, we
therefore adopt this method in the baseline system our ex-
periments.

4.1.1 Decoding Constraints

The experiments reported in this paper were conducted us-
ing a beam width of 100, with no stack thresholding, and a
strictly monotone decoding process.

4.2 Experimental Data

Our training data consisted of 27993 bilingual single word-
pairs that were used in the NEWS2010 workshop transliter-
ation shared task. The development data consisted of 3606
bilingual word-pairs drawn from the same sample. The eval-
uation data consisted of a further 1935 bilingual word-pairs
not contained in the other two data sets. The corpus statistics
for the three corpora are given in Table 1.
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We used the data to train a phrase-based SMT system
to perform transliteration from English to Japanese. We
trained our Dirichlet process model on the same parallel data
set, and extracted transliteration phrase-tables from the co-
segmentation of the corpus at the final iteration (iteration
30).

4.3 Training Procedure

For the Gibbs sampling, we chose to start the sampling from
a random co-segmentation of the corpus. That is, for each
bilingual word-pair in the corpus, a single co-segmentation
was sampled from a uniform distribution over all possible
co-segmentations of the pair. We believe that it might be
advantageous, and certainly more efficient to start the sam-
pling from a more intelligent starting point, for example one
derived from a pre-processing pass of GIZA++. However,
the training was able to arrive at a good segmentation (by vi-
sual inspection) of the training corpus, its usefulness being
borne out by the experimental results in the next section.

4.4 Evaluation Procedure

The results presented in this paper are given in terms of of-
ficial evaluation metrics used in the NEWS2010 translitera-
tion generation shared task [24]. In our results, ACC refers
to the top-1 accuracy score, that measures the percentage of
the time the top hypothesis from the system exactly matches
the reference. F-score measures the distance of the best
hypothesis from the reference transliteration; the reader is
referred to the workshop white-paper [24] for more details.
For brevity, we only report our results in terms of ACC and
F-score in this paper, but the results in terms of the other
NEWS2010 metrics have the same character.

5. Results
5.1 Training

The convergence of the algorithm during the training proce-
dure is shown in Fig. 4 which plots the log-probability of the
sampled derivation at the end of each pass through the train-
ing corpus against iteration. It can be seen from the graph
that the system rapidly improves from the poor initial seg-
mentation, and thereafter continues to gradually improve.
The log-probability of the initial random co-segmentation
was —1.5e06 and is omitted.

5.2 Evaluation Using Automatic Metrics

Our results on the English-to-Japanese transliteration task
are summarized in Table 2. It is clear from the table that us-
ing sequence-pairs from only the sample at the final iteration
of the training produces gave lower performance than the
baseline system. The phrase-table derived in this way con-
tained only 3372 sequence-pairs as opposed to over 140,000
in the phrase-table extracted from the GIZA++ alignments.

1895
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Fig.4 The evolution of the log-probability of the sampled derivation
with respect to the training iteration.

Moreover these sequence-pairs were very short compared
to those in from the baseline system’s phrase-table: approx-
imately 3 characters in both source and target on average,
compared to around 5 characters for the baseline system.

When a phrase-table built from agglomerations of the
same set of sequence-pairs was used, a much larger phrase-
table of around 100,000 phrases resulted, with sequence-
pairs that are comparable in size to those of the baseline,
around 5 characters. On the transliteration task, this phrase-
table gave an improvement of approximately 1% in ACC
over the baseline system, from a phrase-table that was about
30% smaller in size. Moreover, since the sequence-pairs
are concatenations of 3372 component sequence-pairs, this
model could be stored very compactly if necessary. Fur-
ther gains were obtained by interpolating the agglomerated
model together with the baseline model. We believe this
gain may be due to the effect of smoothing.

Our experiments were designed to favor the baseline
model since the system was tuned using the MERT proce-
dure with its own phrase-table. It is possible that our pro-
posed system would have obtained a higher score if tuned
with its own phrase-table, however we chose not to as this
would have introduced additional variance from the differ-
ences in the two MERT search processes into the results.
However, to verify that the agglomeration step was truly
necessary, we also ran an experiment that was tuned with
respect the small unagglomerated phrase-table: ‘tuned on
Bayesian phrase-table’ in Fig. 2, rather than the baseline. As
expected, performance improved possibly due to more op-
timal weights for the length models, since the phrases are
shorter, but did not improve to the same level as the system
that used the agglomerated phrase table.

It is interesting to note that the system’s performance
was improved dramatically simply by grouping the phrases
into larger units. This highlights one of the advantages of
the phrase-based translation approach. The agglomerated
model, because of the way it was constructed, is not able
to generate anything the simpler model cannot, but when
larger sequence-pairs are used to build the target sequence
the characters in the phrase carry with them the implicit con-
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Table 2
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The experimental results for the three systems together with some statistics of their phrase-

tables. Here +agglomerated means the sequence-pairs were extracted by agglomeration from a single
sample at the end of the training. In +integrated the phrase-tables from the baseline system and the
agglomerated system were linearly interpolated with equal weights. Differences between systems were
all found to be significant by paired t-testing at a level of 0.05, except for the ACC scores for the

agglomerated and integrated systems.

Phrase Extraction Model ACC | F-score Phrase—tal.)le Phrase-table | Avg. Phrase Length
Entries | Overlap (%) En | Ja
GIZA++ and grow-diag-final-and 0.313 0.745 143382 100 541 4.80
Bayesian Segmentation (tuned on baseline phrase-table) 0.278 0.726 3372 2 2.60 2.75
Bayesian Segmentation (tuned on Bayesian phrase-table) | 0.283 0.732 3372 2 2.60 2.75
Bayesian Segmentation (+agglomerated) 0.323 0.748 102507 57 5.54 4.83
Bayesian Segmentation (+integrated) 0.329 0.752 164258 100 5.46 4.81

text of the other characters in the phrase, all of which have
occurred together in the same context in the training corpus.
In the model with the unagglomerated sequence-pairs, this
role is performed mainly by the language model. In spite
of the fact that we used a 5-gram language model the sys-
tem clearly benefited from a model that contained longer
sequence-pairs as the basic translation unit. Looking at the
phrase-table overlap figures in Fig.2 it seems that the pro-
cess of agglomeration produced a phrase table with a rea-
sonable degree of overlap (57%) with that produced by us-
ing GIZA++ and the MOSES phrase extraction procedure.
In a final experiment we collected counts for the
sequence-pairs over multiple iterations of the training pro-
cess: from iteration 5 (the burn-in) to the final iteration.
This resulted in a 37% larger phrase-table, but surprisingly
did not realize any notable improvement in performance.

5.3 Decoding Consistency

We ran an experiment to investigate the reasons for the im-
provements in system performance. Our hypothesis was that
the Bayesian system had produced a phrase table that led to
a more consistent decoding process. This was based on the
belief that the fact that the Dirichlet process model strongly
encourages reuse of the bilingual sequence-pairs it discov-
ers. This should result in a more compact phrase-table, and
should entail that similar words in the corpus are likely to be
decoded in more homogenous fashion. To test the hypoth-
esis we modified the machine translation decoder to count
the number of fypes of bilingual sequence-pair used to de-
code the evaluation data, and re-ran the English-Japanese
transliteration experiment that showed the largest gain in
performance. We found that the decoding process that used
the phrase-table generated from our Bayesian model (with
agglomerated sequence-pairs) used a total of 3496 unique
sequence-pairs, whereas decoding using the phrase-table ex-
tracted using GIZA++ and grow-diag-final-and required a
total of 3970 phrase pairs during the decoding process, sup-
porting our hypothesis. The 3496 sequence-pairs from the
Bayesian model’s phrase-table, could be further analysed
into 1289 component bilingual pairs that were present in the
segmentation in the sample taken at the end of the training
process.

5.4 Training Times

Bayesian methods are often criticized for their slow perfor-
mance. The current implementation will require optimiza-
tion to enable it to handle long sequences, but for translit-
eration data, where the sequence length is short, the pro-
cess is practicable. The full training process completed on
the NEWS2010 training data set in 15 minutes, averaging
around 30 seconds for each iteration over the data.

6. Human Evaluation using Speech-to-Speech Transla-
tion Field Data

In this subsection, we report the results from experiments
in machine translation carried out to evaluate the effective-
ness of our transliteration method with real-word data col-
lected from the application of mobile translation devices in
the field.

The test set for this evaluation was extracted from user
log data of a set of speech-to-speech translation field ex-
periments that occurred in the fiscal year 2009 [25]. As
shown in Fig.5, the field experiments were undertaken in
nationwide in Japan in five broad regions of Japan: Kanto,
Kansai, Kyushu, Hokkaido and Chubu. The field experi-
ments were undertaken as part of the Ministry of Internal
Affairs and Communications initiative titled “Field Testing
of Automatic Speech Translation Technology and its Con-
tribution to Local Tourism.” We sampled 100 sentences the
from manually transcribed user log data of the field experi-
ments from each of the five areas. Then we selected only
those sentences that contained untranslatable named enti-
ties, leaving a total of 74 sentences. All of the test sentences
contained at least one proper noun written in hiragana or
kanji characters.

The translation direction of the evaluation is from
Japanese into English. As a baseline system we used a
standard phrase-based statistical machine translation system
trained on the BTEC corpus consisting of 691,829 Japanese
and English sentence pairs. To see the upper bound of the
machine translation performance, we manually constructed
a bilingual dictionary which consists of word categories and
English translations of all proper nouns in the test set. Prior
to the translation, proper noun in source sentences are re-



Chubu area project
Period: 5th, Jan.,2010~22nd, Feb. 2010
# of facilities 120
# of devices 310
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Kansai area project,

# of facilities: 106
# of devices: 343

Period: 14th, Dec.,2009~28th, Feb. 2010

Kyusyu area project
Period: 20th, Dec.,2009~28th, Feb. 2010
# of facilities: 26
# of devices: 313

Hokkaido area project
Period: 28th, Dec.,2009~22nd, Feb. 2010
# of facilities: 92
# of devices: 403

Kanto area project
Period: 28th, Dec.,2009~22nd, Feb. 2010
# of facilities: 29
# of devices: 345

Fig.5  Overview of the five local projects.

placed with high-frequency words of the same category in
the training corpus [26]. The target sentences are then ac-
quired by translating the modified source sentences. Fi-
nally, the high-frequency words in the target sentences are
replaced with target words for the untrained words. The
reason why we use high-frequency words is that we expect
them to be already trained well, in other words, the high-
frequency words may already appear frequently in phrase
tables and therefore provide ample statistics. A single hu-
man judge was used to score the translation output, accord-
ing to a five-level scale ranging from ‘perfect’ through ‘ac-
ceptable’ to ‘nonsense’.

We evaluated the transliteration component of the sys-
tem on the transliteration task used in our field experiments.
Each source word was transliterated from kanji into romaji,
and the output evaluated against a reference set with up
to 3 references per input sequence using the same scoring
metrics as the NEWS2010 workshop. The transliteration
accuracy on this task was 19.14%, this is lower than the
NEWS2010 task scores but this is to be expected as out task
contains both multi-word sequences and also sequences that
are not transliterations of each other. Nonetheless the F-
score, which is a character level score based on the length of
the longest common subsequence, was 71.03, indicating the
performance is quite respectable at the character level.

Visual inspection of the output, showed that the biggest
single cause of errors in the system is due to the assumption
that all words should be transliterated. In reality, expres-
sions may need to be translated, or partially transliterated
and partially translated. One such example from the test cor-
pus being the expression in Kanji: #1229, This should
be correctly transliterated as “Itami Airport”, however the
transliteration system produced “itamikuukou” as output -
a perfect transcription into kana, but incorrect nonetheless.
Future research will need to address ways to identifying

0.7 ‘
0.65 [ —* baseline + dictionary + transliteration
06 —o— baseline + dictionary /_‘_/_4:/_/_4
0.55 -
2 /
B
€ 05
o B aasan
5}
§ 0.45 /
2
o 04
Q
< f/
0.35
03 /—c
0.25
02
0 02 04 06 08 1

Dictionary coverage

Fig.6  Results of machine translation evaluation.

when to transliterate and when to translated. The problem
of re-ordering was also an issue for our approach, although
these errors were found in less than 4% of the sentences in
the test corpus. An example of this type of error is & 111.
The system’s output in this case was “fujisan”, however the
correct outputs were “Mount Fuji” or “Mt. Fuji”. In this ex-
ample, both transliteration and translation are required, but
in addition the order of the words is swapped. We believe
that modeling this re-ordering process would give rise to im-
provements in system performance.

Figure 6 shows the field test translation evaluation re-
sults. The vertical axis represents the acceptance ratio which
is the ratio of better than acceptable translation sentences to
the total number of test sentences. To see the relationship
between the dictionary size and the translation performance,
we controlled the dictionary size. The horizontal axis shows
dictionary coverage, which is the ratio of the proper nouns
covered by the dictionary to the total number of occurrences
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of proper nouns in the evaluation set. o plots shows machine
translation with conventional dictionary usage [26]. While,
e plots arised from translation strategy that uses the translit-
erated results only if there is no entry in the dictionary’.

It is clear from the figure that the use of transliteration
within a machine translation system can lead to improve-
ments in translation quality from a user’s perspective. In
Fig. 6, the values at O on the x-axis represent the system per-
formance without the ability to look up the correct trans-
lations for named entities in a dictionary. The translation
performance is significantly higher at this point. The differ-
ences between the two lines on the graph gradually diminish
as the dictionary is used more and more for the translation
of named entities, and at a value of 1 on the x-axis of course
the two lines meet, as the strategies are equivalent to each
other at this point. When dictionary coverage is low, we can
expect transliteration to have a substantial impact on system
performance, however, when we look at the line “baseline +
dictionary + transliteration” at both 0 and 1 on the x-axis we
can see the effect of the errors arising from the transliteration
system. Adding the dictionary to the transliteration system
clearly improves the overall system performance. There-
fore, further work is needed to improve the quality of ma-
chine transliteration systems.

7. Conclusion

In this paper we have presented a novel Bayesian bilingual
co-segmentation scheme and applied it to the task of phrase-
table generation for transliteration by phrase-based statisti-
cal machine translation. Furthermore, we have conducted a
human evaluation to investigate the effectiveness of integrat-
ing a machine transliteration system with a machine trans-
lation system. Our results show that adding transliterations
of unknown named entities into the machine translation out-
put has a positive effect on translation quality from a user’s
perspective.

Our Bayesian model for bilingual segmentation was
motivated by the fact that traditional models of phrasal
alignment rely on maximum likelihood training coupled
with the EM algorithm, but have serious issues with overfit-
ting the training data. Because of these issues, alignment is
typically performed in a one-to-many manner from source-
to-target and from target-to-source and the phrase extrac-
tion process proceeds heuristically from an alignment table.
Our approach offers the ability to align the training data in
a many-to-many fashion directly using Bayesian techniques
that offer a simple yet elegant solution to the issues inherent
in maximum likelihood training. In addition, our approach
is symmetrical with respect to source and target, and also
with respect to the word order of the corpus.

We investigated the quality of the bilingual phrasal

To incorporate transliterated results into machine translation,
we used the same framework as the conventional dictionary-based
technique which was proposed by [26]. In this method, category of
the word must be known. In our experiments, even for the translit-
erated words, we used manually assigned category.
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alignment achievable with unsupervised Bayesian co-
segmentation, and designed experiments to compare di-
rectly to a standard GIZA++/grow-diag-final-and phrase
extraction procedure by constructing a phrase-table from
samples arising from the Gibbs sampling training procedure.
Our experiments show that the Bayesian approach is able to
produce a smaller phrase-table that can offer comparable or
higher transliteration performance than the baseline system.

Furthermore, our technique offers other benefits: one
example being that it provides a full co-segmentation of the
training corpus at the end of training which can be used to
directly train a joint sequence model. This contextual in-
formation is a key feature in joint sequence transliteration
models such as [9], and is currently missing from the phrase-
based SMT-based transliteration systems. Another virtue of
our approach stems from the fact that the Dirichlet process
model is able to assign a probability to any bilingual word
pair. We believe this type of model in has considerable po-
tential utility in transliteration mining and corpus filtering,
since it provides a principled way of scoring any potential
transliteration candidate.

In future research we would like to investigate the ef-
fect of introducing a joint sequence model feature into a
phrase-based SMT-based transliteration system. We also
plan to improve the underlying Dirichlet process model in
order to better model the data, moving to higher-order and
hierarchical models.
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