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Major Findings

Inter-connection: weighted-sum aggregation improves speech translation

» Efficient in terms of parameter size
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The simple connection method of the encoder-decoder

model is unable to utilize the information from speech SSL models. < '

Purpose

Features of speech SSL models [Pasad+2021]

« Autoencoder-like behavior
Contains a lot of useful information in intermediate layers (phonetic or linguistic

features)

Extracting and utilizing the SSL representations important for ST
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Results and Analysis

Translation Quality
Motivation: Investigate whether Inter-connection improves ST

> Train the multilingual model (En-De, Ja, Zh) by MuST-C v2
» W/ and w/o parameter freezing of HUBERT

Evaluation Results on tst-COMMON
BLEUM
En-De En-Ja En-Zh Ave.

Model

w/ Parameter Freezing

Baseline [Tsiamas+2022] 24.68 11.86 20.55 19.03
> 2.02BLEUD
Inter-connection (Proposal) 26.79 14.15 22.20 21.05
w/o Parameter Freezing
Baseline [Tsiamas+2022] 30.48 15.81 24.82 23.70
. @ 0.12 BLEUD
Inter-connection (Proposal) 30.67 16.22 24.59 23.82

Inter-connection improves ST in most language pairs

However, En-Zh w/o parameter freezing was not improved

Layer-wise Analysis

Motivation: Find out why performance dropped in En-Zh

» Train bilingual models for each language pairs (En-De, En-Ja, En-Zh)
» Compare weights of inter-connection between bilingual model and
multilingual model
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» En-Zh weights are far from multilingual model
» Sharing weights across all language pairs might have a negative effect
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Parameter-size Analysis

Motivation: Verify how efficient in terms of #parameters

#Parameters increased for each module
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@ Compare the performance in En-De w/ Parameter Freezing
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Summary

« Aggregation by weighted-sum improves performance of ST
« In the multilingual model, sharing weights has a negative impact
- Efficient in terms of increasing number of parameters

Future works
« Reduce the negative effect of weight sharing
« Application and analysis for other tasks (e.g. ASR)
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