Inter-connection: Effective Connection between Pre-trained Encoder and Decoder for Speech Translation

Yuta Nishikawa¹, Satoshi Nakamura¹

¹Nara Institute of Science and Technology, Japan

Major Findings

Inter-connection: weighted-sum aggregation improves speech translation

> Efficient in terms of parameter size

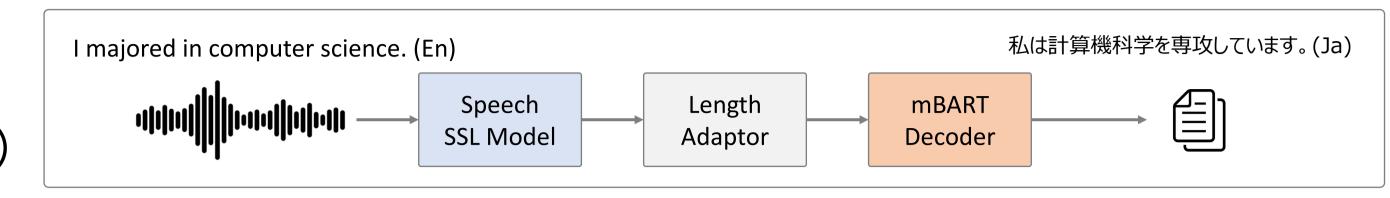
Background

A method combining self-supervised learning (SSL) models of speech with mBART decoder shows high performance in end-to-end speech translation (ST)

[Pham+2022] [Tsiamas+2022]

The simple connection method of the encoder-decoder

model is unable to utilize the information from speech SSL models.



Features of speech SSL models [Pasad+2021]

- Autoencoder-like behavior
- Contains a lot of useful information in intermediate layers (phonetic or linguistic features)

Purpose

Extracting and utilizing the SSL representations important for ST

Methodology: Inter-connection Target Text **Our Proposal Conventional Method Target Text** 2. Input to the cross attention of the decoder Selects SSL representations for ST automatically [Tsiamas+2022] mBART50 Decoder **HuBERT** mBART50 [Tang+2021] Encoder^(L) Length Adaptor Decoder Fully utilize Length Adaptor Aggregate the outputs from intermediate layers of Encoder⁽²⁾ the SSL model the SSL model with learnable weighted-sum Inter-connection Encoder⁽¹⁾ **Layer Normalization** Hubert [Hsu+2021] $\widehat{H} = LayerNorm(\sum H_l w_l)$ **Feature Extractor** Weighted Sum \widehat{H} : The output from Inter-connection H_l : The output from Encoder^(l) w_l : The weight value assigned to Encoder^(l) (learnable) <lang_id> <bos>, y_1 , y_2 Source Utterance X <lang_id> <bos> , y_1 , y_2 Source Utterance X

Results and Analysis

Translation Quality

Motivation: Investigate whether Inter-connection improves ST

> Train the multilingual model (En-De, Ja, Zh) by MuST-C v2

> w/ and w/o parameter freezing of HuBERT

Evaluation Results on tst-COMMON

Model	BLEU个				
	En-De	En-Ja	En-Zh	Ave.	
w/ Parameter Freezing					
Baseline [Tsiamas+2022]	24.68	11.86	20.55	19.03	2.02 BLEU↑
Inter-connection (Proposal)	26.79	14.15	22.20	21.05	
w/o Parameter Freezing					
Baseline [Tsiamas+2022]	30.48	15.81	24.82	23.70	○ 0.12 BLEU ↑
Inter-connection (Proposal)	30.67	16.22	24.59	23.82	

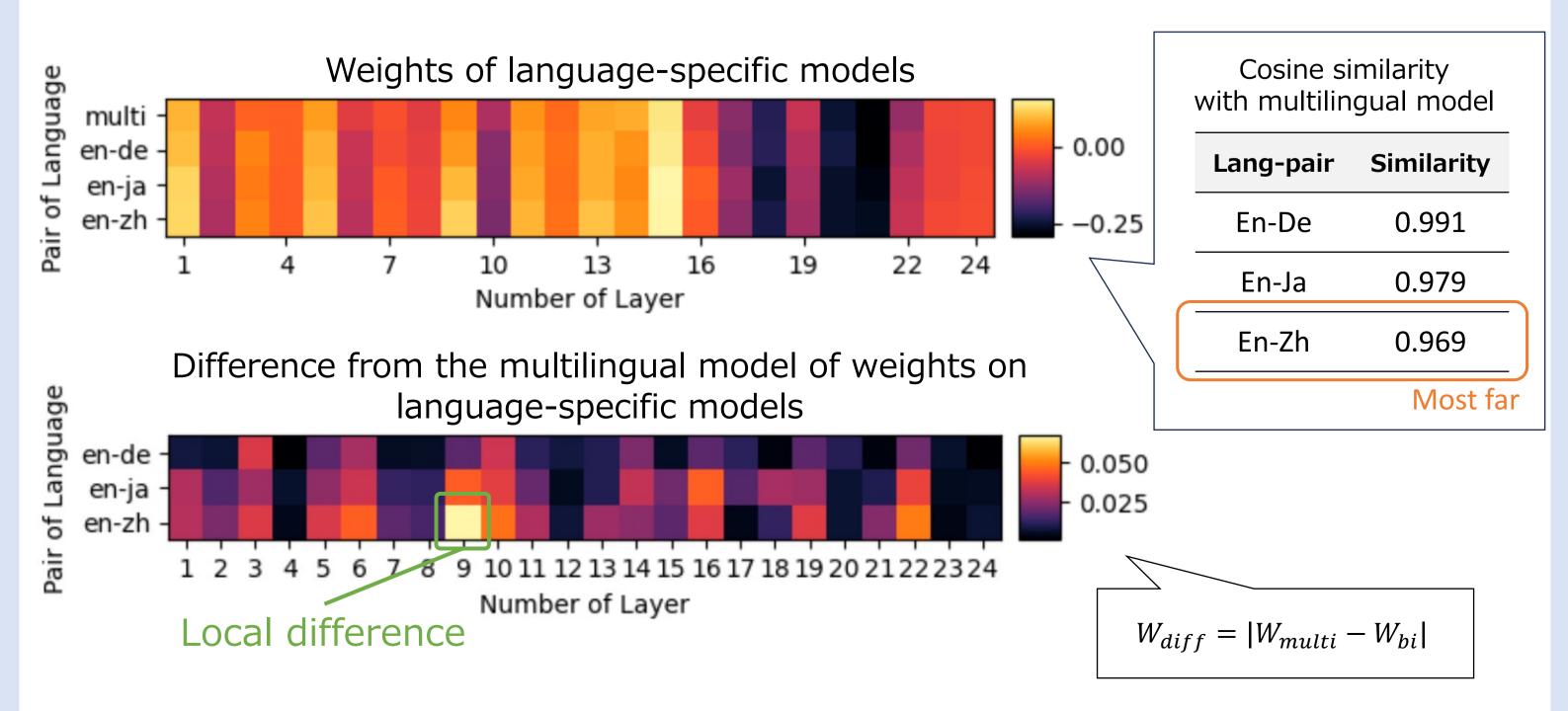
Inter-connection improves ST in most language pairs

However, En-Zh w/o parameter freezing was not improved

Layer-wise Analysis

Motivation: Find out why performance dropped in En-Zh

- > Train **bilingual models** for each language pairs (En-De, En-Ja, En-Zh)
- Compare weights of inter-connection between bilingual model and multilingual model



- > En-Zh weights are far from multilingual model
- Sharing weights across all language pairs might have a negative effect

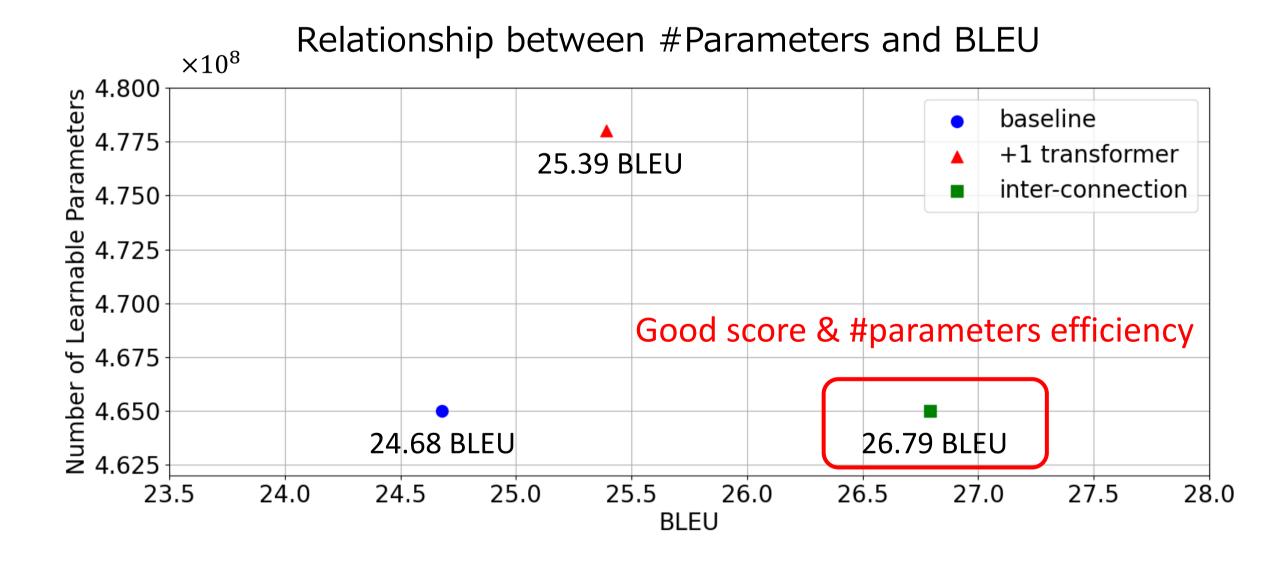
Parameter-size Analysis

Motivation: Verify how efficient in terms of #parameters

#Parameters increased for each module

Module	#Parameters		
+ 1 transformer	12M		
Inter-connection	2K		

Compare the performance in En-De w/ Parameter Freezing



Conclusion

Summary

- Aggregation by weighted-sum improves performance of ST
- In the multilingual model, sharing weights has a negative impact
- Efficient in terms of increasing number of parameters

Future works

- Reduce the negative effect of weight sharing
- Application and analysis for other tasks (e.g. ASR)

References

[Pham+2022] "Effective Combination of Pretrained Models – KIT@IWSLT2022", IWSLT2022 [Tsiamas+2022] "Pretrained Speech Encoders and Efficient Fine-tuning Methods for Speech Translation", IWSLT2022

[Hsu+2021] "HuBERT: Self-Supervised Speech Representation Learning by Masked Prediction of Hidden Units", IEEE/ACM Transactions on Audio, Speech, and Language Processing 2021 [Tang+2021] "Multilingual Translation from Denoising Pre-training", ACL-IJCNLP 2021 [Pasad+2021] "Layer-wise Analysis of a Self-Supervised Speech Representation Model", ASRU2021