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Background: Simultaneous Speech Translation (SimulST)
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‘ A Paraphrasing is important for interpretation anytime
Speaker
& A WD TEBREICE SO TEVRZ(EATTY
o Waiting until the end of sentence : High Latency
Offline ST
P SR (3 SETY BRCHBVT LWDOTH
tamn" Translate not waiting until the end like Simultaneous Interpretation (SI) : Low Latency
SimulST . « s
SI-like output using Sl data Making omission to follow the speaker
B Problem Translating in monotonic order
® Fine-tuning (FT) with Sl data causes overfitting in small S| data
B This work

® Using both offline data and Sl data
® Controlling output style with style tags
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Background: Offline and SI output

B Offline

® English words have correspondences of Japanese
® Keeping naturalness with long-distance reordering

m S|
® Some words are dropped or omitted Follow the speaker’s speech
® Translating in monotonic order Generate the words earlier

Offline Target
LML CoFEFGEEOFDOB)ETOMNHESICOVWTMIAIFA)BEIZGIELHEHERESI 2B YIFRQSHY FEA

’%f,(

———

Source

And (1)I'm (2)not here to (3)say that (4)men are to (5)blame for the (6)crisis and what (7)happened in my (8)country.

S| Target
AEED. OWEWHFTERQHYELA. FAELDOB@E®D. ERIG)EEED. S)FEFEF.
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Related work

B S| corpora (in English-Japanese)
® S| data in English-Japanese | Small amount of SI data
» Not sentence-to-sentence aligned data [Toyama+2004, Shimizu+2013, Doi+2021]
> Sentence-to-sentence aligned data [zhao+2023]

B Domain adaptation using tags | For small data training
® Mixed fine-tuning with out-domain and in-domain [chu+2017] avoids overfitting
® Tag-based NMT [Sennrich+2016]
® Zero-shot multilingual NMT [ohnson+2017]
® Tagged back-translation [Caswell+2019]
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Proposed Method: Mixed FT with style tags

B Training Motivation:
® Putting style tags at the beginning of target texts - Mitigating Sl data scarcity problem
avoiding overfitting
B Inference - Using large offline and small SI data
® Decoding in forced decoding with prefix style tags effectively
Training step Tgt Ja text (Offline+SI)
<si>FhE, Bolc. RoZ=,
Source En Speech <si>
AN~ —— PretrainedST 1T <off>FAFNZZBWNEUIZ
Model >
| bought a pen <O
<off> ...
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Experiment setting

B Baseline Model

SIFT
o Offline FT
o S| F':' Source En Speech TgtJa tex’;(nSI)
. 4 A Pretrained ST %A(j:\ =) 7:—_0 /\\/%\
® Mixed FT Model "

B Proposed Model
® Mixed FT + Style: Fine-tuning with both offline and SI data with style tags
® Mixed FT + Style + Up: Up-sampling in Sl data

. Tgt Ja text (Offline+SI)
Mixed FT + Style

<si>Fhld, BDlz. R%&,
Source En Speech <sj>
AN~ | PretrainedST || <off>FAEROEBENE LR
Model
<off> ...
<off> ...
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Offline Sl
Train 328639 65008

Experiment setting

Test 2841 511
. D ata Targ;g Text
® Offline;: MuST-C En-Ja [Di gangi+2019] HUBERT —7, ™\ mB:ﬂ\RT
® SI: NAIST-SIC-Aligned INTRA En-Ja [zhao+2023 for ST* [ Encoderd | — pecoder
m: ength ?daptor \
B Pretrained offline ST model L Encader |\ Layer Normalization
® HuBERT+mBART model Fukuda+2023] LCNN Feature Extractor 3 wed sum
B Simultaneous decoding st [lesvatptean ommection <o0s> s
® |Local Ag reement [Liu+2020] Source Utterance
® Speech segment size**: {200, 400, 600, 800, 1000}ms ' Fukudaranzs (WSLTRAST Systeml
® Style tag in inference step BLEURT
> Sl Test: output from <si> tag - The sentence semantic similarity
» Offline test: output from<off> tag between hypothesis and reference

ATD (Average Token Delay)
- Latency metric focuses on the end
timings of partial translations

B Evaluation metrics

® SimulEval

» BLEURT in ATD [kano+2023]

> BLEU in ATD * We aligned English text segments with corresponding ** We also applied 120ms and 160ms for SI FT to see the
audio in MuST-C with force aligner gentle trend in low latency regime
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Main results in Sl test

B BLEURT sentence similarity between hypothesis and reference : Mixed FT Style > SI FT

B BLEU SI FT > Mixed FT Style Proposed models were

better in sentence similarity

Why the proposed models
were lower than baselines in
BLEU ? — Next Analysis

SI test

1

3 -

) ‘__._____—-—F

Offline FT

SIFT

Mixed FT

Mixed FT + Style
Mixed FT + Style + Up

RERE

ST test
0.44 1
0.42 I 10
0.40
M 0.38 E Q
— . M
aa) ——— Offline FT .
0.36 o == SIFT ' ' 7
e i
0.34 M?xcd FT 6
=== Mixed FT + Style
032 —#— Mixed FT + Style + Up 5
200 400 600 800 1000
ATD
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Main results in Offline test (tst-COMMON)

B Offline test

® The trend was the same as Sl test | | o
> BLEURT: Offline FT < Mixed FT Style Our model can generate not only Sl-like output

, , but also offline-like output
» BLEU: Offline FT > Mixed FT Style

Offline test (tst-COMMON)

Offline test (tst-COMMON)
0.525
14
0.500
0.475 1
H
& 0.450 %
= M
bJ .
m 0.425 == Offline FT 10 == Offline FT
0.400 —+— SIFT | SI.FT
—#— Mixed FT g —#— Mixed FT
0.375 —+— Mixed FT + Style . —— Mixed FT + Style
0.350 o= Mixe p Mixe p

200 400 600 800 1000 200 400 600 800 1000
ATD ATD
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Analysis: output length

B Why proposal (Mixed FT Style) < baseline (51 FT) in BLEU =«
B High precision in SI FT @
® Small output - tend to be high BLEU - ;z
B High recall : Mixed FT Style s
® Long output — tend to be low BLEU T eghDifferne
Sl test INTEKDFEBELGLWI T 74 v I F7—T 4R KTLT=, TEMPT was one of the foremost graffiti artists in

S| FT (Baseline)

Mixed FT + Style
(Propose)

the 80s.

mfEt. / — RIEE ALY, There's no hospital that can say “No.”

MELTAHIAEE, ChzeBFED IEAHEESLIITHE>TLVET . Anybody who's paralyzed now has
access to actually draw or communicate using only their eyes.

TUTME 374 T4 7—T 4R LODIEMPT was, graffiti artists’

fbElL. ahospital . ) — :
ﬁ;g{» L,T:Ejkiglilxaparalvzed Seale 4 SI FT: Lacking the information included in Sl test reference

TUoTEF 5374 T4T7—T4RD—ATYT, TEMPT is one of graffiti artists’

ABETIE TR [FE X FH A, Inahospital, we cannot say “No.”

MELEZAGLOHTY., ey, K5EZ2 952 EMNTEFT Anybody who is paralyzed can draw a
picture and have a talk.
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Analysis: repetition by non-speech sound event label

B Why Mixed FT Style was generating long output?

® Repetitions from non-speech sound event label

® There was repetitions like (Laugher) (Laugher) ... In Japanese — Long output trend — resulted in low BLEU

» Offline ST tgt text: included
> Sl tgt text: excluded

» Resulted in repetition in proposed models

B Additional evaluation: Mixed FT + Style + Rmrep (removing repetition)

ST test

1.4

1.2

Length Ratio

1.0

0.8

\

=== SIFT
SI FT + Rmrep

d FT + Style
Mixed FT + Style
200 400 600 800 1000
ATD

ST test

11
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Repetition resulted in
lower BLEU

=+ SIFT
SI FT + Rmrep
= Mixed FT + Style
Mixed FT + Style + Rmrep
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Analysis: repetition by non-speech sound event label

B AMixed FT Style & 4 Mixed FT Style + Rmrep
® There is no large difference in semantic similarity score (A < )

» Removing repetition are not affecting in the semantic similarity
> Repetition resulted in lower BLEU, however it doesn’t effect on the content of Sl-like

output
SI test SI test
s A —
0.44 / - T~ 0.745 /
0.42 _0.740
[
» D)
o S
= 0.40 ; 3 0.735
- / —
o
~ 4 = 0.730
0.38 =—t+——SIFT =+ SIFT
SI FT + Rmrep SIFT + Rmrep
0.36 /\ : = Mixcd PT=+Style 072> —— Mixed FT + Style
. Mixed FT + Style + Rmrep Mixed FT + Style + Rmrep
200 400 600 200 1000 200 400 600 800 1000
ATD ATD
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Conclusion

B Background
® The available Sl data is limited
® The trained SimulST model tends to be overfitted to S| data

B Proposed

® Effective fine-tuning method for SimulST using mixed data of Sl-style and offline-style
translations with style tags

B Results
® [n BLEURT: our models were better than baselines both on S| test and offline test
» In BLEU: our models were lower than baseline SI FT on S| test
» Those repetitions in proposed models were not crucial for semantic translation quality

B Future work
® Extension to other language pairs
® Further verification via human evaluation
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