

Self-adaptive Incremental Machine Speech Chain for Lombard TTS with High-granularity ASR Feedback in Dynamic Noise Condition

Sashi Novitasari¹, Sakriani Sakti^{2,1}, and Satoshi Nakamura¹

¹Nara Institute of Science and Technology, Japan; ²Japan Advanced Institute of Science and Technology, Japan

I. BACKGROUND

A. TTS in noisy place

How are you' Only speaking

- Noise degrades the TTS speech intelligibility
- Common solution: Fine-tune the TTS using Lombard speech data (static noise) [Raitio et al., 2011; Paul et al., 2020]

- No auditory feedback mechanism

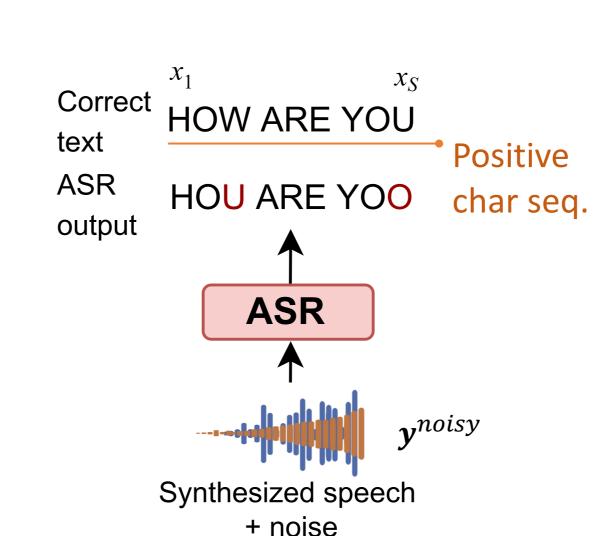
II. PROPOSED METHOD

Adapt-ITTS with high-granularity ASR feedback

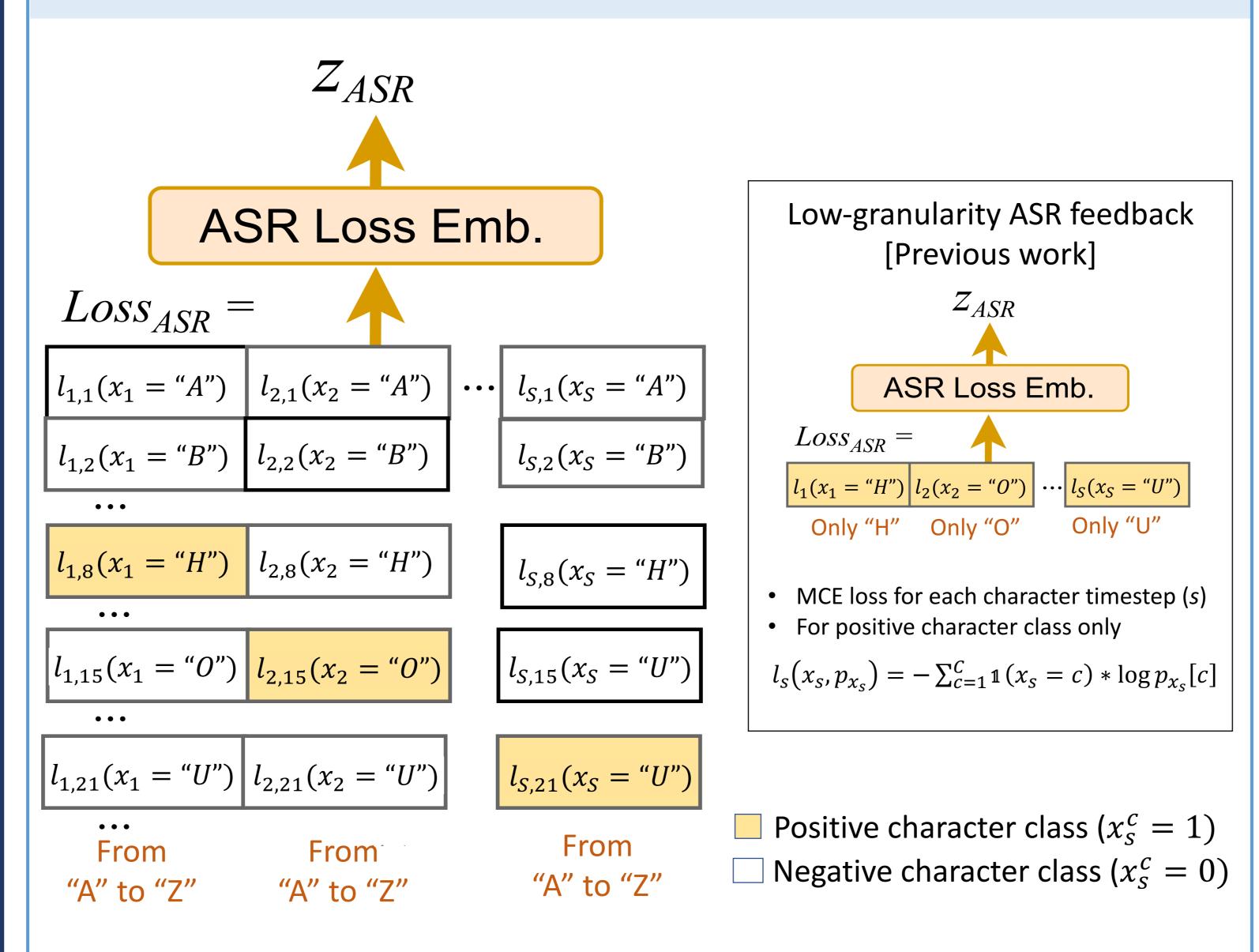
Improve the Adapt-TTS by enriching the ASR auditory feedback information

- For each incremental step, use the charactervocabulary level ASR feedback based on the losses of the positive and negative classes
- ASR feedback is an ASR loss embedding (z_{ASR})
- Character-level ASR loss
- Generated by transcribing noisy TTS speech using an ASR

$$z_{ASR} = ASR \ Loss \ Embedding \ (Loss_{ASR}(\mathbf{x}, \mathbf{p_x}))$$
$$\mathbf{p_x} = p_{ASR}(\mathbf{x}|\mathbf{y}^{noisy})$$



Proposed ASR feedback generation method



• BCE loss for each character (c) in dictionary for each character timestep(s)

$$l_{s,c}(x_s^c, p_{x_s}) = -(x_s^c * \log p_{x_s}[c] + (1 - x_s^c) * \log(1 - p_{x_s}[c]))$$

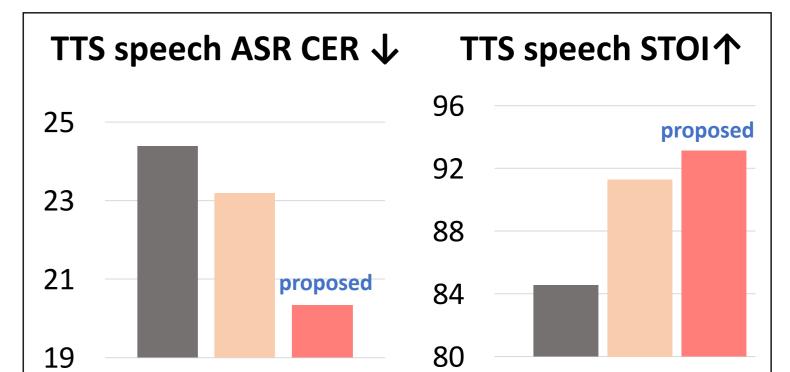
III. EXPERIMENT

A. Setting

- Training data:
 - WSJ [Paul & Baker, 1992]: Natural normal speech + synthetic Lombard speech (multispeaker)
 - Hurricane [Cooke et al., 2013]: Natural normal speech + natural Lombard speech (single speaker)
- Architecture: Autoregressive transformer + variance adaptor + feedback modules

B. Result: TTS speech intelligibility in noisy situation

Hurricane



TTS speech intelligibility measure:

 ASR CER (%): Character error rate. : Short-term objective intelligibility measure.

Babble noise and white noise

SNR: -10 dB, 0 dB, clean (no noise)

Model:

Baseline

Finetune-TTS

Adapt-ITTS

■ With ASR feedback: low granularity With ASR feedback: high granularity (proposed)

TTS speech ASR CER ↓ TTS speech STOI个

The proposed high-granularity ASR feedback improved the incremental TTS speech intelligibility

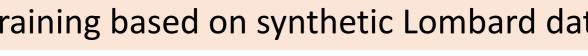
IV. CONCLUSION

Adapt-ITTS with the high-granulated ASR feedback for the selfadaptive speech synthesis in noisy conditions

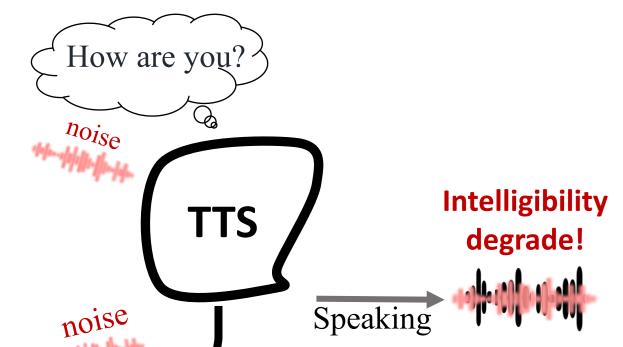
- Adapt-ITTS adapts the speech style based on noise conditions
- Short-term feedback in an incremental mechanism
- The proposed ASR feedback improved Adapt-ITTS intelligibility in noisy conditions

Scan for speech samples

https://sites.google.com/view/adapt-lombard-tts/home



Standard TTS



- TTS is commonly trained using speech data from the clean environment

TTS limitation:

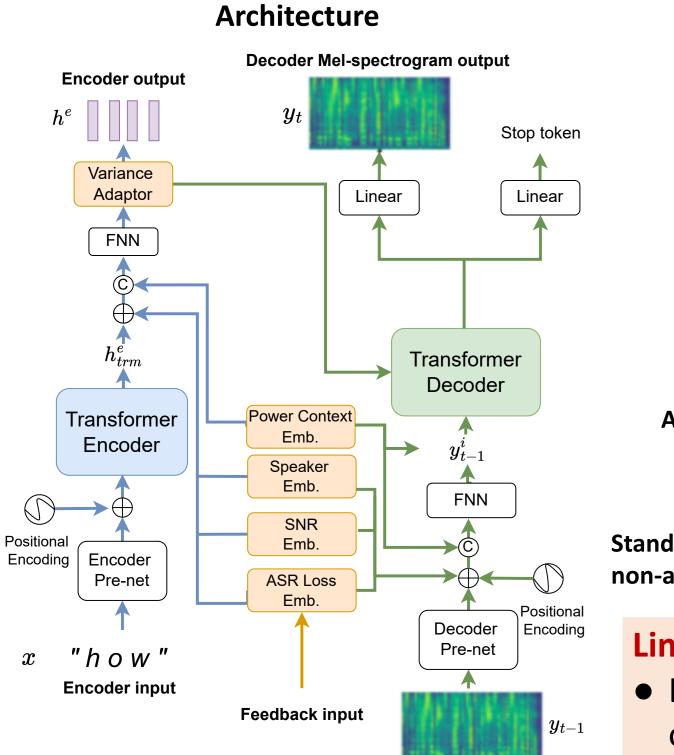
- Cannot self-adapt to noisy situation

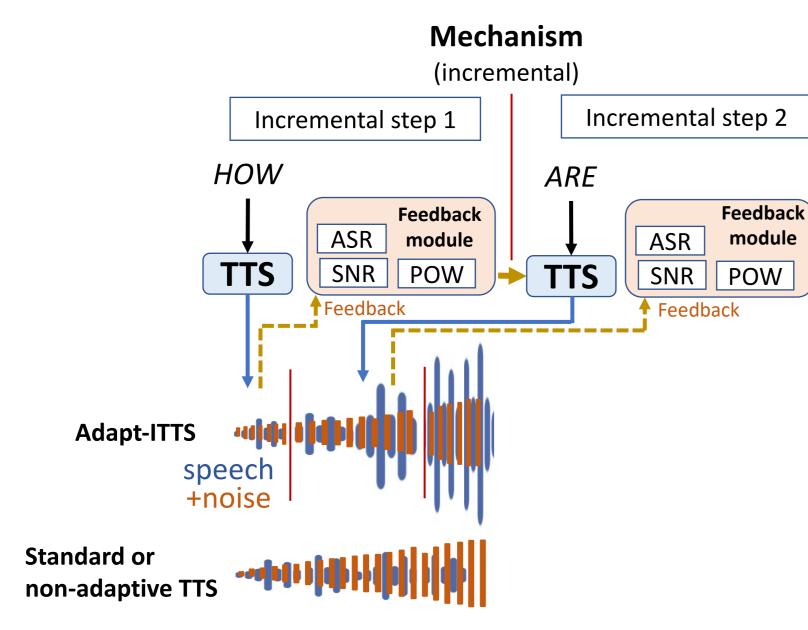
B. Adapt-ITTS: Self-adaptive incremental TTS with machine speech chain mechanism [Novitasari et al., 2022]

End-to-end incremental TTS (ITTS) that adapts the speaking style using the auditory feedback based on the prev. synthesized speech + noise

Autoregressive Transformer-based TTS with variance adaptor and feedback modules:

- ASR loss, based on the noisy synth. speech
- SNR, speech-to-noise ratio
- POW, synth. speech power





<u>Human</u>

Adapt to the situation \

Louder, slower, higher pitch, etc.

Speech chain. Speaking while listening

adjustment in noisy place to improve

[Denes and Pinson, 1993]

the speech intelligibility

Lombard effect. Speaking effort

How are you

Limitation:

- Low-granularity ASR loss feedback only based on positive character class (limited information)
- Training based on synthetic Lombard data