## Self-adaptive Incremental Machine Speech Chain for Lombard TTS with High-granularity ASR Feedback in Dynamic Noise Condition

Sashi Novitasari ${ }^{1}$, Sakriani Sakti2,1, and Satoshi Nakamura ${ }^{1}$
${ }^{1}$ Nara Institute of Science and Technology, Japan; ${ }^{2}$ Japan Advanced Institute of Science and Technology, Japan

B. Adapt-ITTS: Self-adaptive incremental TTS with machine speech chain mechanism [Novitasari et al., 2022]

End-to-end incremental TTS (ITTS) that adapts the speaking style using the auditory feedback based on the prev. synthesized speech + noise

Autoregressive Transformer-based TTS with variance adaptor and feedback modules:

- ASR loss, based on the noisy synth. speech
- SNR, speech-to-noise ratio
- POW, synth. speech power


> Standard or non-adaptive

Limitation:

- Low-granularity ASR loss feedback only based
on positive character class (limited information)
- Training based on synthetic Lombard data
II. PROPOSED METHOD


## Adapt-ITTS with

high-granularity ASR feedback
Improve the Adapt-TTS by enriching the ASR auditory feedback information

- For each incremental step, use the charactervocabulary level ASR feedback based on the losses of the positive and negative classes
- ASR feedback is an ASR loss embedding ( $z_{A S R}$ )
- Character-level ASR loss
- Generated by transcribing noisy TTS speech using an ASR
$z_{A S R}=$ ASR Loss Embedding $\left(\operatorname{Loss}_{A S R}\left(\boldsymbol{x}, \boldsymbol{p}_{x}\right)\right)$
$\boldsymbol{p}_{x}=p_{A S R}\left(\boldsymbol{x} \mid \boldsymbol{y}^{n o i s y}\right)$

| Correct text | ${ }^{x_{1}}{ }^{\text {HOW ARE YOU }}$ |  |
| :---: | :---: | :---: |
|  |  |  |
| ASR output | HOU ARE YOO | char seq. |
|  | ASR |  |
|  | $\uparrow$ |  |
|  |  |  |
|  | Synthesized speech |  |

Proposed ASR feedback generation method
 $l_{s, c}\left(x_{s}^{c}, p_{x_{s}}\right)=-\left(x_{s}^{c} * \log p_{x_{s}}[c]+\left(1-x_{s}^{c}\right) * \log \left(1-p_{x_{s}}[c]\right)\right)$

## III. EXPERIMENT

## A. Setting

Training data: \& Baker, 1992]: Natural normal speech + synthetic Lombard speech (multiSSJ (Pauk
Hurricane [Cooke et al., 2013]: Natural normal speech + natural Lombard speech (single speaker)
Architecture: Autoregressive transformer + variance adaptor + feedback modules


The proposed high-granularity ASR feedback improved the incremental TTS speech intelligibility

## IV. CONCLUSION

Adapt-ITTS with the high-granulated ASR feedback for the selfadaptive speech synthesis in noisy conditions

- Adapt-ITTS adapts the speech style based on noise conditions
- Short-term feedback in an incremental mechanism
- The proposed ASR feedback improved Adapt-ITTS intelligibility in noisy conditions

Scan for speech samples

https://sites.google.com/view/adapt-lombard-tts/home

