Speech Segmentation Optimization using Segmented Bilingual Speech Corpus for End-to-End Speech Translation

Ryo Fukuda, Katsuhito Sudoh, Satoshi Nakamura Nara Institute of Science and Technology, Japan

Segmentation for Speech Translation

Speech segmentation is essential for automatic speech translation (ST)

- splits continuous speech into short segments before translation

- existing ST systems cannot directly translate long continuous speech
- explicit segment boundaries are unavailable in speech

Related work: Pause-based segmentation

Voice Activity Detection (VAD) - traditional approach [Sohn+1999][Bangalore+2012]

- splits speech based on detected silences

- large gap with the manual segmentation

Segm. method	MuST-C en-de		Europarl en-de		MuST-C en-it		Europarl en-it	
	BLEU (\uparrow)	TER (\downarrow)	BLEU (\uparrow)	TER (\downarrow)	BLEU (\uparrow)	TER (\downarrow)	BLEU (\uparrow)	TER (\downarrow)
Manual segm.	27.55	58.84	26.61	60.99	27.70	58.72	28.79	59.16
Best VAD	21.87	66.72	18.51	78.12	22.34	66.12	20.90	69.54
Best Fixed (20s)	23.86	$\mathbf{6 1 . 2 9}$	23.27	64.01	23.20	64.24	22.28	64.57
SRPOL-like	22.26	71.10	20.49	77.61	23.12	66.27	23.26	66.19
Pause in 17-20s	$\mathbf{2 4 . 3 9}$	61.35	23.78	$\mathbf{6 3 . 1 5}$	$\mathbf{2 3 . 5 0}$	$\mathbf{6 3 . 7 6}$	22.86	63.44
+ force split	23.17	66.20	22.52	68.56	23.45	63.79	$\mathbf{2 4 . 1 5}$	$\mathbf{6 3 . 3 1}$

Table 3: Comparison between manual and automatic segmentations: VAD, fixed-length and hybrid approaches.
(quote from [Papi+2021])

Related work: Pause-based segmentation

Voice Activity Detection (VAD) - traditional approach [Sohn+1999][Bangalore+2012]

- pauses do not always match sentence boundaries
\rightarrow Over-/Under-segmentation problem

■ Long silences in a (oracle) segment \rightarrow Over-segmentation

■ Short silences between (oracle) segments \rightarrow Under-segmentation

("no he is in trouble what is the problem ")

Related work: Length-based segmentation

- Fixed-length segmentation [Sinclair+2014]
- simple but works better than pause-based segmentation [Gaido+2021]
- does not take acoustic and linguistic clues into account

- Hybrid of pause- and length-based segmentation [Potapczyk+2020][Gaido+2021][Inaguma+2021]
- heuristic concatenation of VAD segments up to a fixed length to address the over-segmentation problem
- still splits audio at inappropriate boundaries
length threshold
[min_len, max_len]

Related work: Re-segmentation of transcripts

- Re-segmenting ASR results
- punctuation restoration [Lu+2010][Rangarajan Sridhar+2013][Niehues+2015]
- language model [Stolcke and Shriberg, 1996][Wang+2016]
- corpus-based segmentation model [Wan+2021][Wang+2019][Iranzo-Sánchez+2020]

re-segmentation

Hi there.
The weather today was warm.

- difficult to use in end-to-end ST, and cannot recover ASR errors due to improper segmentation

Proposed Method

Corpus-based segmentation

Speech segmentation as a frame-level sequence labeling task

- use a bilingual speech corpus as training data for speech segmentation
- bilingual speech corpus includes speech segments aligned to sentence-like unit

Bilingual speech corpus

Corpus-based segmentation

Speech segmentation as a frame-level sequence labeling task

- use a bilingual speech corpus as training data for speech segmentation
- bilingual speech corpus includes speech segments aligned to sentence-like unit

Bilingual speech corpus

Speech segmentation model

- Model: 2D convolution + Transformer Encoder

Speech segmentation model

- Model: 2D convolution + Transformer Encoder
- Data: two consecutive segments are concatenated and assigned a sequence of label $x \in\{0,1\}$

Speech segmentation model

- Model: 2D convolution + Transformer Encoder
- Data: two consecutive segments are concatenated and assigned a sequence of label $x \in\{0,1\}$
- Training objective: cross-entropy $\mathcal{L}_{\text {seg }}(\hat{x}, x)$ with rescaling weight w_{S}

$$
\begin{aligned}
\mathcal{L}_{\text {seg }}(\hat{x}, x)=-\sum_{n=1}^{N}\{ & \left\{w_{s} \log \frac{\exp \left(\hat{x}_{n, 1}\right)}{\exp \left(\hat{x}_{n, 0}+\hat{x}_{n, 1}\right)} x_{n, 1}\right. \\
& \left.+\left(1-w_{s}\right) \log \frac{\exp \left(\hat{x}_{n, 0}\right)}{\exp \left(\hat{x}_{n, 0}+\hat{x}_{n, 1}\right)} x_{n, 0}\right\}
\end{aligned}
$$

Inference Process

1. speech is segmented at a fixed-length T and input into the segmentation model
2. fixed-length segments are re-segmented according to the labels predicted by the segmentation model

re-segmentation

Prediction

- segmentation model selects label $l_{n} \in\{0,1\}$ with the highest probability at each time n :

$$
l_{n}:=\operatorname{argmax}\left(\hat{x}_{n}\right)\left(\hat{x}_{n} \in R^{2}\right)
$$

Hybrid method

- combine the model predictions with the VAD results $\operatorname{vad}_{n} \in\{0,1\}$:

$$
l_{n}:=\left\{\begin{array}{c}
\operatorname{argmax}\left(\hat{x}_{n}\right) \wedge \operatorname{vad}_{n}(\text { segm len }<\text { maxlen }) \\
\operatorname{argmax}\left(\hat{x}_{n}\right) \vee \operatorname{vad}_{n}(\text { segm len } \geq \text { maxlen })
\end{array}\right.
$$

Experiments

Experimental Settings

Data: Multilingual Speech Translation Corpus (MuST-C) [Gangi+2019]

- English-German: 230k segments from MuST-C v1
- English-Japanese: 330k segments from MuST-C v2

Segmentation methods

- Baseline: WebRTC VAD (VAD), pre-defined fixed length (Fixed-length)
- Proposal: Segmentation model (Our model), hybrid method (VAD hybrid)

ST systems

- Cascade ST: cascade of ASR and MT models
- End-to-end ST: an ST model that directly translates English speech

Evaluation

- WER and BLEU for hypotheses re-segmented by the edit distance-based algorithm [Matusov+2005]

Overall Results

MuST-C v1 English-German			
	Cascade ST		End-to-end ST
	WER	BLEU	BLEU
Oracle	12.60	23.59	22.50
Best VAD	30.59	17.02	16.40
Best Fixed-length	20.60	19.29	17.96
Our model	20.99	20.18	19.10
+ VAD hybrid	$\mathbf{1 9 . 0 6}$	$\mathbf{2 0 . 9 9}$	$\mathbf{1 9 . 8 7}$

MuST-C v2 English-Japanese

	Cascade ST		End-to-end ST
	WER	BLEU	BLEU
Oracle	9.30	12.50	10.60
Best VAD	25.81	9.26	8.14
Best Fixed-length	18.89	9.64	8.52
Our model	16.21	9.71	8.77
+ VAD hybrid	$\mathbf{1 3 . 6 7}$	$\mathbf{1 0 . 6 0}$	$\mathbf{9 . 2 4}$

- Our model outperformed VAD and the fixed-length baselines for both cascade and end-to-end STs
- The hybrid method with VAD significantly improved translation performance
- room for improvement remains compared to the oracle segments contained by the MuST-C corpus (Oracle)

Case study (1)

Example of ASR and MT outputs with segmentation positions (\square)

Oracle (ASR) Oracle (MT)	bonobos are together with chimpanzees you aposre living closest relative Bonobos sind zusammen mit Schimpansen, Sie leben am nächsten Verwandten.
Best VAD (ASR)	bonobos are \square together with chimpanzees you aposre living closest relative that ...
Best VAD (MT)	Bonobos sind es. \square Zusammen mit Schimpansen leben Sie im Verhältnis zum ...
Our model (ASR)	bonobos are together with chimpanzees you aposre living closest relative \square
Our model (MT)	Bonobos sind zusammen mit Schimpansen, Sie leben am nächsten Verwandten. \square

- VAD resulted in over-segmentation ("bonobos are together") and under-segmentation ("relative that ...").
- our model split the speech at a boundary close to an oracle segment and obtained the same ASR and MT results

Case study (2)

Visualization of waveforms and segmentation positions

- hybrid decoding alleviated the over-segmentation problem by requiring an agreement between our model and VAD

Conclusions

Speech segmentation method based on bilingual speech corpus

- directly split speech into segments that correspond to sentence-like units

Experimental results

- our method outperformed the existing methods on both cascade and end-toend STs
- hybrid approach with VAD further improved the translation performance

Future work

- investigation on different domains and noisy environments
- integration of segmentation function into an end-to-end ST

Appendix

ST model Settings

表 3 Transformer の設定．† バージョン0．10．3．

| 設定（ESPnet \dagger の変数名） | ASR | ST | MT |
| :--- | :---: | :---: | :---: | :---: |
| エポック数（epochs） | 45 | 100 | |
| Encoder 層の数（elayers） | 12 | | 6 |
| Decoder 層の数（elayers） | 6 | | |
| FNN の次元数（eunits，dunits） | 2048 | | |
| Attention の次元数（adim） | 256 | | |
| Attention のヘッド数（aheads） | 4 | | |
| ミニバッチ数（batch－size） | 64 | | 96 |
| 勾配蓄積（accum－grad） | 2 | | 1 |
| 勾配クリッピング（grad－clip） | 5 | | |
| 学習率（transformer－lr） | 5 | 2.5 | 1 |
| ウォームアップ | | | |
| （transformer－warmup－steps） | 25000 | | |
| ラベル平滑化（lsm－weight） | 0.1 | | |
| ドロップアウト率（dropout－rate） | 0.1 | | |

Inference Process

1. speech is segmented at a fixed-length T and input into the segmentation model
2. fixed-length segments are re-segmented according to the labels predicted by the segmentation model

re-segmentation

Prediction

- segmentation model selects label $l_{n} \in\{0,1\}$ with the highest probability at each time n :

$$
l_{n}:=\operatorname{argmax}\left(x_{n}\right)
$$

Hybrid method

- combine the model predictions with the VAD results vad $_{n}$:

$$
l_{n}:=\left\{\begin{array}{l}
\operatorname{argmax}\left(x_{n}\right) \wedge \operatorname{vad}_{n}(\text { segm len }<\text { maxlen }) \\
\operatorname{argmax}\left(x_{n}\right) \vee \operatorname{vad}_{n}(\text { segm len } \geq \text { maxlen })
\end{array}\right.
$$

