Applying Syntax–Prosody Mapping Hypothesis and Prosodic Well-Formedness Constraints to Neural Sequence-to-Sequence Speech Synthesis

Kei Furukawa¹, Takeshi Kishiyama², and Satoshi Nakamura¹

¹Nara Institute of Science and Technology, Japan

²Graduate School of Arts and Sciences, The University of Tokyo, Japan furukawa.kei.fi4@is.naist.jp, kishiyama.t@gmail.com, s-nakamura@is.naist.jp

THE UNIVERSITY OF TOKYO

Summary

- We applied linguistic theories to neural sequence-to-sequence speech synthesis
- The proposed method was able to reproduce not only syntactic but also phonological phenomena
 - Phenomenon 1. initial lowering
 - Phenomenon 2. rhythmic boost

<u>Backgrounds</u>

- Advances of End-to-end text-to-speech synthesis (TTS) [1]
- Other studies
 - Incorporated information of the post-lexical level, such as
 - syntactic structure and syntactic dependency information [2] However.
 - Not objectively examined whether they can reproduce pitch patterns of phonological phenomena
- This study aims to reproduce speech sounds of syntactic and phonological phenomena

Phenomenon 1. initial lowering

- The initial lowering is the F0 rise at the beginning of a PPhrase [3]
- The degree of pitch increase in initial lowering varies in response to syntactic structure [4]

Syntax-prosody mapping hypothesis (SPMH) [5]

- Syntactic clause → be mapped to PClause
- Syntactic phrase such as NP, VP → be mapped to PPhrase
- Edge boost hypothesis (proposal): assuming that the number of edges in the PPhrases is proportional to the degree of the pitch increase in the initial lowering

- tree 1: im a murasa N noim agawayakiga omoideots U kurimash Ita tree 2: im a murasa Ngaimagawayakinoomoideots Ukurimash Ita
- baseline 2 (phonemes, accents, initial lowering, and dependency length)
- tree 1: i/mamurasaNno#1i/magawayakiga#2o/moideo#1tsU/kurima\shlta tree 2: i/mamurasaNga#3i/magawayakino#1o/moideo#1tsU/kurima\shlta proposed (phonemes, accents, and phonological structures)
- tree1: {[[imamurasaNno][imagawayakiga]][[omoideo][tsUkurima\shIta]].} tree 2: {[imamurasaNga][[[imagawayakino][omoideo]][tsUkurima\shita]].}

- Experimental settings
- The database consists of an oral transcription of the Arabian Nights and its reading voice by a single speaker
 - Japanese Tacotron 2 [8] generated a mel-spectrum, which is converted to waveforms via Griffin-Lim in ESPNet2 [9]
 - 5,453 sentences for training, and 250 each for validation and testing Result of Exp 1

Count		γp.				
model	sentence	cond	RiseSizeA		RiseSizeB	Same pattern as natural prosody?
baseline 1	1	tree 1	0.68	>	-0.26	No
baseline 2	1	tree 1	1.75	<	12.12	Yes
proposed	1	tree 1	8.17	<	11.84	Yes
baseline 1	1	tree 2	0.72	>	0.51	Yes
baseline 2	1	tree 2	14.17	>	3.50	Yes
proposed	1	tree 2	11.96	>	1.56	Yes

The proposed model and Baseline 2 showed the same pattern as the natural prosody reported earlier [9]

Phenomenon 2. Rhythmic boost

Rhythmic boost

a. Syntax

N1-GEN

- F0 is boosted on the third word in four-word sequences [10]
- But not in three-word sequences [10, 11]

N3-GEN N2-GEN N3-GEN N1-GEN N3-GEN

Proposed method and Results of xn

- N1 N2 N3 input item kinou amanashi-no moriguchi-no anivome-no waruguchi-o kouen-de tsutaeta LH*LLL tone LHH LH*LLL LH*LLL LH*LLL HHHHH LHHHH yesterday Yamanashi-GEN Moriguchi-GEN sister.in.law-GEN bad things-ACC park-in tell gloss
- 'Yesterday, I said the bad things about the sister-in-law of Moriguchi in Yamanashi in the park.'

baseline 1 (phonemes and accents)

4N: kinooyama\nashinomori\guchinoani\yomenowaru\guchiokooeNd ets Utaeta.

baseline 2 (phonemes, accents, initial lowering, and dependency length)

ki/noo#6 ya/ma\nashino#1 mo/ri\guchino#1 a/ni\yomeno #1 wa/ru\guchio#2 ko/oeNde#1 tsU/taeta.

proposed (phonemes, accents, and phonological structures) 4N: {[kinoo][[[[yama\nashino][mori\guchino]][[ani\yomeno]

[waru\guchio]]][kooeNde][tsUtaeta]].} FallSizeA FallSizeB FallSizeC s natural prosody?

Only the proposed model showed the same patterns as those of natural language [11]

General Discussions

Baseline 2

- The proposed method was able to reproduce not only syntactic but also phonological phenomena
- The proposed model efficiently synthesizes phonological phenomena in the test data that were not explicitly included in the training data

Proposed

The proposed method is applicable to other languages

Selected References

 Kaiki et al., "Using local phrase synthesis" O-COCOSDA 202 et and M. Backman 4. Selkirk et al., "Degree of initial I

ory, pp. 435-484, 2011

ace," The H Horn et al., "Keyaki Treebank segmentation and part-of speech labelling," In Pro-tice Association for Network and Language Descention 2007. edinos of the 23th M

Wang et al., "Tacotron: Towards end-to-end speech synthesis," Interspeech 2017, 2017. Watanabe et al., "ESPnet: End-to-end speech processing toolkit," Interspeech 2018, 2019 10. Kubozono, "Syntactic and rhythmic effects on downstep in Japanese," Phonology, 6(1),

Shinya et al., "Rhythmic boost and recursive m Prosody 2004, International Conference, 2004.