

Improved Consistency Training for Semi-Supervised Sequence-to-Sequence ASR via Speech Chain Reconstruction and Self-Transcribing

Heli Qi¹, Sashi Novitasari¹, Sakriani Sakti², Satoshi Nakamura¹

- 1. Nara Institute of Science and Technology, Japan
- 2. Japan Advanced Institute of Science and Technology, Japan

Table of Contents

> Research Background

- Semi-supervised ASR
- **≻**Related Work
- > Proposed Method
 - Traditional Paradigm
 - Existing Problems to be solved
 - Our solutions

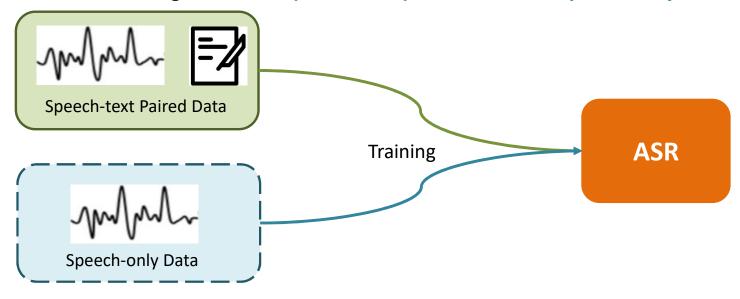
> Experiment

- Experiment Setups
- Experiment Results
- **≻**Conclusion & Future Work

Research Background—Semi-supervised ASR

Supervised ASR training with speech-text paired data

Semi-supervised ASR training with both speech-text paired data and speech-only data



Related Work—Semi-supervised ASR Strategy

Self-training [Jacob et al. ICASSP2020]

Iterative Self-training [Qiantong et al. Interspeech2020]

Noisy Student Training [Daniel S. et al. Interspeech2020]

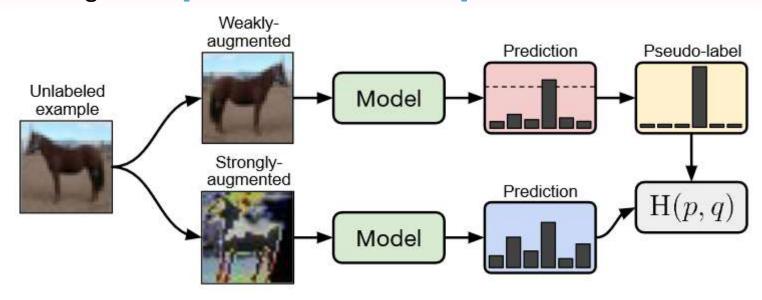
Consistency Regularization [Felix et al. Interspeech2020]

.....

Jacob et al. ICASSP2020, "Self-training for end-to-end speech recognition"
Qiantong et al. Interspeech2020, "Iterative Pseudo-Labeling for Speech Recognition"
Daniel S. et al. Interspeech2020, "Improved Noisy Student Training for Automatic Speech Recognition"
Felix et al. Interspeech2020, "Semi-Supervised Learning with Data Augmentation for End-to-End ASR"

Related Work—Consistency Regularization

FixMatch algorithm [K. Sohn et al. NIPS2020]



- Designed for semi-supervised image classification (IC)
- Make pseudo labels by the weakly-augmented image
- Train the model by the strongly-augmented image and the acquired pseudo label.

K. Sohn et al. NIPS2020, "Fixmatch: Simplifying semi-supervised learning with consistency and confidence"

Handle the difference between IC and S2S ASR

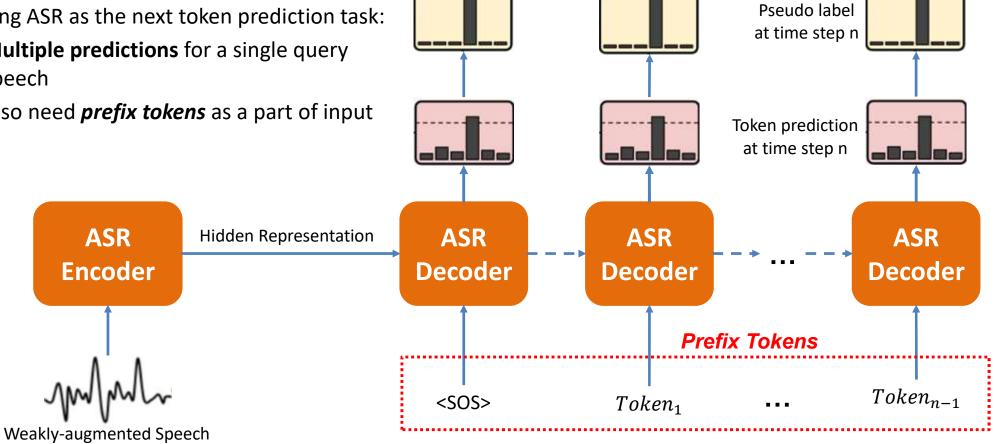
During training, we could view teacherforcing ASR as the next token prediction task:

Multiple predictions for a single query speech

ASR

Encoder

Also need *prefix tokens* as a part of input

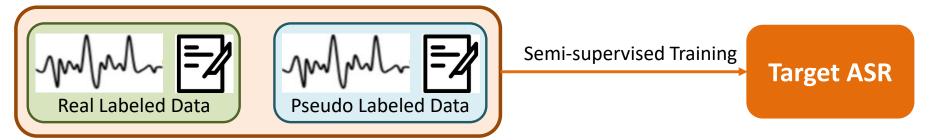


Semi-supervised ASR Training Paradigm

1. Base ASR Training on labeled data

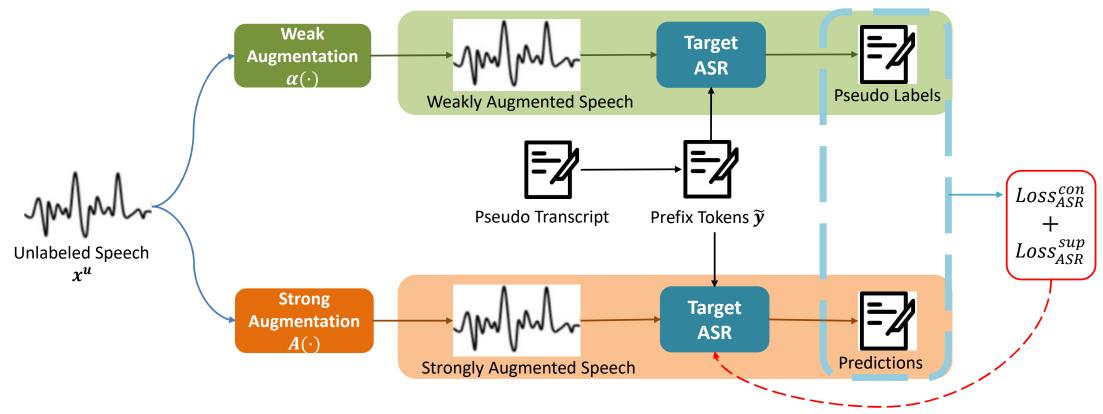
2. Pseudo Transcript Generation

3. Semi-supervised Training on the enlarged dataset



Fixmatch-based Semi-supervised ASR Training

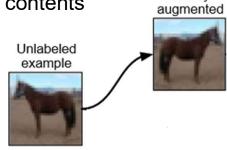
- Pseudo transcript generated by the base ASR model acts as prefix tokens at each time step
- SpecAugment [Daniel S. et al. Interspeech2019] is adopted as both weak augmentation and strong augmentation



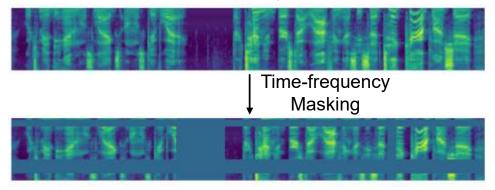
Daniel S. et al. Interspeech2019, "SpecAugment: A Simple Data Augmentation Method for Automatic Speech Recognition" 2022©Heli Qi AHC-Lab, IS, NAIST

Existing Problems to Be Solved

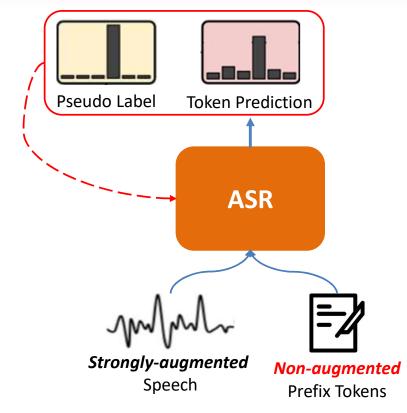
- Ideal weak augmentation for high quality pseudo labels
 - Modify the acoustic style while preserving the linguistic contents
 Weakly-augmented



- Hard to decide the masking width
 - ➤ Too narrow → Meaningless augmentation
 - ➤ Too wide → Hurt the linguistic contents



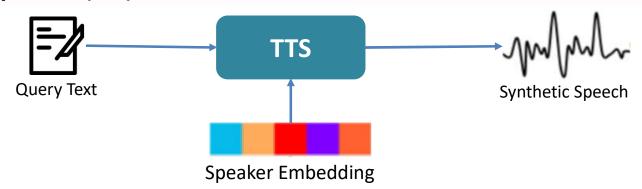
ASR Training by Teacher-Forcing:



As a part of input, the augmentation on prefix tokens also need to be considered.

Speech Chain Reconstruction

Text-to-Speech Synthesis (TTS)



Speech Chain Reconstruction [A. Tjandra et al. ASRU2017]

Unlabeled Speech Complete Linguistic Content TTS Reconstructed Speech

A. Tjandra et al. ASRU2017, "Listening while speaking: Speech chain by deep learning"

Speaker Embedding

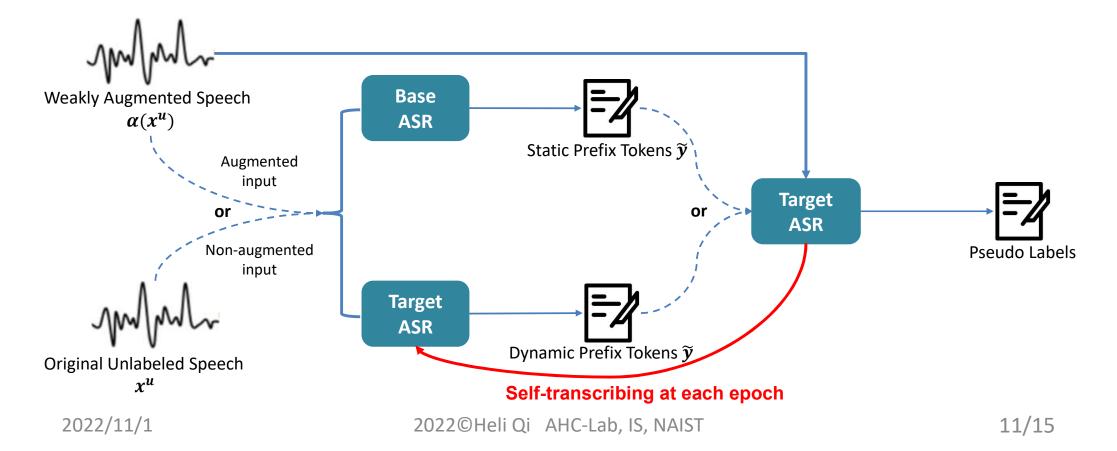
Different Prefix Token Production Strategies

Static prefix tokens \widetilde{y} produced by original speech x^u

Static prefix tokens \widetilde{y} produced by weakly-augmented speech $\alpha(x^u)$

Dynamic prefix tokens \widetilde{y} produced by original speech x^u

Dynamic prefix tokens \widetilde{y} produced by weakly-augmented speech $\alpha(x^u)$



Experiment Setups

Datasets:

- 1. LJSpeech (Single Speaker):
 - Labeled data: 6300 utterances
 - Unlabeled data: 6300 utterances
- 2. LibriSpeech-100h (Multiple speakers):
 - Labeled data: 8750 utterances (75 speakers)
 - Unlabeled data: 19968 utterances (176 speakers)

Mode Input & Output:

- 1. Acoustic Features:
 - 16,000 sampling rate
 - 50ms frame length & 12.5ms frame shift
 - 80d log Mel-spectrogram
- 2. Tokenization:
 - Character-based models
 - 26 English letters (a~z) + 3 special tokens (apostrophes, space, and "sos/eos")

ASR model:

- 1. Encoder:
 - Single-Speaker Setting: 3 Bi-LSTM layers (2 * 256 dim)
 - Multi-Speaker Setting: 5 Bi-LSTM layers (2 * 256 dim)
- 2. Decoder:
 - 1 LSTM layer (512 dim)
 - Additive Attention

TTS model:

- Same structure as Tacotron2 [J. Shen et al. ICASSP2018]
- X-vector [D. Snyder et al. ICASSP2018] for speaker embedding
- J. Shen et al. ICASSP2018, "Natural tts synthesis by conditioning wavenet on mel spectrogram predictions" D. Snyder et al. ICASSP2018, "X-vectors: Robust dnn embeddings for speaker recognition"

Experiment Results

Contrast Experiments:

- 1. Weak Augmentation $\alpha(\cdot)$:
 - SpecAugment with narrow masking width (Weak SpecAugment)
 - > Speech Chain Reconstruction
- 2. Strong Augmentation $A(\cdot)$:

SpecAugment with wide masking width

3. Different Pseudo Labeling Threshold τ :

The larger τ is, the less pseudo labels used for training

Experiment Conclusions:

- Speech Chain Reconstruction outperforms Weak SpecAugment in all scenarios.
- Static prefix tokens generate by $\alpha(x^u)$ benefit semi-supervised ASR training a lot
- No large improvement of dynamic prefix tokens has been observed

CER Results

(Red boxes represent the best performance in each scenario)

°.	ii	LJSpeech				LibriSpeech		
$lpha(\cdot)$	$\tau = 0.5$	τ =0.6	$\tau = 0.7$	τ =0.8	τ =0.9 τ =0.5	$\tau = 0.7$	$\tau = 0.9$	
Supervised Baseline								
	8.2	8.2	8.2	8.2	8.2 28.0	28.0	28.0	
Static	\tilde{y} produ	ced by x^u	the exis	ting para	digm [5])			
Weak SpecAugment	8.3	7.8	7.7	7.5	7.7 18.3	19.6	20.8	
Speech Chain Reconstruction	7.9	7.6	7.4	7.5	7.8 18.2	19.8	18.5	
Static $\tilde{\boldsymbol{y}}$ produced by $\alpha(\boldsymbol{x^u})$								
Weak SpecAugment	7.8	7.7	7.7	7.8	7.6 18.8	19.6	20.3	
Speech Chain Reconstruction	7.9	7.7	7.2	7.2	7.6 17.2	18.4	18.3	
Dynamic $ ilde{m{y}}$ produced by $m{x^u}$								
Weak SpecAugment	7.9	7.9	7.6	7.4	7.6 19.1	19.1	19.9	
Speech Chain Reconstruction	8.2	7.2	7.5	7.4	7.6 18.1	18.4	18.4	
	Dyn	amic $ ilde{m{y}}$ pr	oduced b	$y \alpha(x^u)$	H H			
Weak SpecAugment	7.5	7.4	8.1	7.6	8.0 19.8	20.5	18.9	
Speech Chain Reconstruction	7.7	7.7	7.6	7.4	7.2 20.0	19.1	18.5	

Conclusion & Future Work

Conclusion:

- 1. Speech Chain Reconstruction protects the linguistic information of the speech after augmentation.
- 2. As a part of ASR input, prefix tokens also need augmentation for the application of consistency regularization.
- 3. Updating prefix tokens during training need more smart designs to better evaluate its effectiveness, such as updating interval.

Future work:

- 1. Move from RNN-based ASR to Transformer-based ASR models.
- 2. Explore other semi-supervised ASR training strategies.
- 3. Conduct experiments on more challenging datasets, e.g. large-scale speech datasets, noisy speech dataset, and so on.

Thank you very much for listening! Really appreciate your patience so far!