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Brief Summary

e |WSLT 2022 Simultaneous Speech Translation task

* Track: Text-to-Text, Speech-to-Text

* Language: English - {German, Japanese, Mandarin Chinese}

* We applied Bilingual Prefix Alignment (Kano et al., 2022) to speech-to-text

* Boundary prediction model with adaptive segmentation policies

* Prefix-to-prefix translation model fine-tuned on bilingual prefix pairs

* Our system did not perform as well as
the other teams but did demonstrate
robustness to low latency
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Background

Simultaneous Machine Translation (SimulMT) approaches

* Fixed policy
* Wait-k (Ma et al., 2019; Elbayad et al., 2020), ...
* Adaptive policy

* RL-based (Gu et al., 2017), Monotonic attention (Arvazhagan et al., 2019; Ma
et al., 2020), Prefix Alignment (Zhang et al., 2020, Kano et al., 2022), ...

* For simultaneous speech translation (SimulST), adaptive
policies can be more effective than fixed policies
 e.g. fixed policies provide output even when speech is paused

Background Method Experiments | Conclusions




Bilingual Prefix Alighment (BPA) (kano et al., 2022)

Extract bilingual prefix pairs and use them to
(1) train a boundary prediction model and
(2) fine-tune a offline translation model

[Read SOUFCG] [ Boundary ] [translation]

words Prediction

Step 1 I = 0.9> 0.5 = FIZ
Step 2 | bought = 0.2 < 0.5 =

Step 3 | bought a = 0.3<05 =
Step 4 | bought apen = 0.7 >05 = IRV ZE -7

Step 5 | boughta pen.=>0.7>05 = FEXVEE 57T,

The translation process of SimulMT based on Bilingual Prefix Alignment.
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Bilingual Prefix Alighment (BPA) (kano et al., 2022)

Extract bilingual prefix pairs and use them to
(1) train a boundary prediction model and
(2) fine-tune a offline translation model

Read source Boundary ; It
words Prediction ransiation

Step 1 I = 0.9> 0.5 = FIZ
Step 2 | bought = 0.2 < 0.5 =

Step 3 | bought a = 0.3<05 =
Step 4 | bought apen = 0.7 >05 = IRV EZE -7

forced output prefix

Step 5 | boughta pen.=>0.7>05 = FEXVEE 57T,

The translation process of SimulMT based on Bilingual Prefix Alignment.
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BPA - Stage 1. Extracting Prefix Pairs

Prefix
pairs

Full-sentence translation FERV=ZEZE > o,

Output  FAlZs
afiy
NMT
1p

Input |

X<1
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BPA - Stage 1. Extracting Prefix Pairs

Prefix
pairs [ ??]
Full-sentence translation FERVZE 5 oo

common prefix
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BPA - Stage 1. Extracting Prefix Pairs

Prefix

pairs [, FALK]

Full-sentence translation

Output  FAlZs
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Input |
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BPA - Stage 1. Extracting Prefix Pairs

Prefix

pairs [, FAlE]
Full-sentence translation IRV ZE -5 I,
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BPA - Stage 1. Extracting Prefix Pairs

Prefix [, BT [I bought a pen, FAlFR>ZE o]

pairs N

Full-sentence translation FERVEZEE S o,
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Output  FAlZs
afiy afin
NMT NMT
1p 1p
Input | | bought | bought a
X<1 X<2 X<3 X<4
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BPA - Stage 1. Extracting Prefix Pairs

Prefix

pairs [, FALK]

Full-sentence translation

Output  FAlZs FFE > T,
aliy aliy
oy oy

Input I | bought
X<1 X<2

|

[I bought apen, FAIIRVZE D]

Experiments

Background Method
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BPA - Stage 2. Training of Models

(1) Train a boundary prediction model with prefix-{0,1} label pairs
* [I,1]
* [l bought, O]
* [I bought a, O]
* [I bought apen, 1]
* [I bought apen., 1]

(2) Fine-Tune a offline translation model with prefix pairs
o [I, FAlK]
* [I bought apen, FAIIRVZE D]

Background Method Experiments | Conclusions




SimulST based on Bilingual Prefix Alignment

Applying Bilingual Prefix Alighnment to SimulST

[Read source] [ Boundary } [translation]

words Prediction

Step 1 I => 0.9 > 0.5 = Fhi&
Step 2 | bought = 0.2 <05 =

Step 3 | bought a = 0.3<0.5 =
Step 4 | bought a pen = 0.7 > 0.5 = FIERVZE -7

Step 5 | boughta pen.= 0.7 > 05 = FERVEZE 571,

* SimulST takes the source language speech as input

* no word unit
e extremely long sequences

Background m Experiments | Conclusions




Extracting Speech Prefix Pairs

Prefix

pairs [, FALK]

Full-sentence translation

FITE - T
sl i

| bought
X<1 X<2

| bought a

*AC&"’\“/%ED TCo
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Extracting Speech Prefix Pairs

Prefix - [P, Fh(F N EE )

pairs

Full-sentence translation FERV=ZEZE > o,

Background m Experiments | Conclusions T: step size (number of frames)




Data filtering of Prefix Pairs

Unbalanced prefix pairs were sometimes extracted
* pairs of a long source speech prefix and a short target text prefix

.. frequently appear between distant language pairs such as English and Japanese
* e.g. {English prefix, Japanese prefix} would consist of {S, S}, {SV, S}, {SVO, SOV}

300 f 400 f 500 f

She took our order, and then went to the couple inthe boothnext to uss, and she i lowered her voice..

Torefix | — EX :
_EX % |
_EXEBofche _BOT— R THYTIIL

Toffine |— EX E WolcBE _B D T— X THyFLIEEVWELL_RLZBEND AL HED ICHBE LELL.

we removed such unbalanced pairs by the length ratio
* exclude if source prefix length / target prefix length > maxratio

Background m Experiments | Conclusions
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Boundary Predictor

* Training with pairs of a speech prefix and a corresponding binary label

seguence
- {, [1..1] }
o ([l [1..10..0] }
o {|—undd [1..10..00..0] }
* {{—~wa§d-o4, [1.10.00.01.1] }
¢ {|<ud-odep| [1..10..00..01..11..1] }

* The boundary predictor is trained with weighted cross-entropy loss

* The boundary predictor predicts a boundary in every T frames
* WRITE if the proportion of label 1 is larger than or equals to A;},.., otherwise READ

Background m Experiments | Conclusions 19




Experimental setting

* Data: MuST-C v2
e contained about 250k segments for En-De and 330k for En-Ja

* Models

* Speech Translation: 12 encoder + 6 decoder Transformer layers

* Boundary prediction: a 2D-convolution layer, a unidirectional
LSTM layer, and an output linear layer

e decision size: T = 100 frames

* Evaluated on MuST-C v2 tst-COMMON using SimulEval

Background Method m Conclusions
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En-De Results
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* a model fine-tuned with prefix pairs (FT) worked better than the non fine-tuned model
(w/o FT) in the range of AL < 4,000

* robust to lower latency
* non fine-tuned model worked better than the fine-tuned model in high latency

Background

Method m Conclusions




En-Ja Results
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 non fine-tuned model worked better than wait-k baselines
* large improvements in the low latency ranges

* fine-tuned model were worse than those of wait-k and non fine-tuned model
e unbalanced prefix pairs degraded the performance

Background Method m Conclusions




Data filtering for En-Ja
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* the model fine-tuned with all prefix pairs (None) preferred too short outputs

* the model fine-tuned with filtered data on maxratio = 20 (filter20) significantly improved
the performance and outperformed non fine-tuned model

Background Method m Conclusions




Conclusions

* We described our SimulST systems in English-to-German and
English-to-Japanese.

* We used Bilingual Prefix Alignment to

* train boundary predictor that judges when to READ and WRITE and
* fine-tune the offline speech translation model.

* Our system achieved some improvements compared to the wait-
k baselines in every latency regime
 especially, our system was robust to lower latency

 data filtering was important for En-Ja because unbalanced prefix pairs
frequently appeared due to differences in sentence structures

Background Method Experiments
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