
Backgrounds:
Early detection of prediabetes and improvement of lifestyle are essential
for diabetes prevention. The oral glucose tolerance test (OGTT) is a
standard method to evaluate the state of glucose metabolism. However, it
is rarely performed in non-diabetics. The models also have been
developed to detect prediabetes using medical checkup values. However,
there is no easy tool to assess the glycometabolic profiles of non-diabetics.
Aims:
• To classify glycometabolic profiles of non-diabetics into different

categories based on the OGTT results.
• To develop a model that predict the glycometabolic category using a

lifestyle questionnaire.

Characteristics of the glycometabolic categories:
Compared with category 1 (the best glucose metabolism group, 46% of the participants),
Category 2: low insulin sensitivity andhigh 120-min blood glucose levels (21%)
Category 3: low insulin-secreting capacity and rapid rise in blood glucose levels (13%)
Category 4: combination of categories 2 and 3 (20%)

Data collection:
• Participants: 977 Japanese adults aged 20-64 without diabetes
•OGTT: Blood glucose and insulin levels at 0, 30, 60, 90, and 120 minutes
• Lifestyle questionnaire (309 questions): Topics are exercise and sleep

habits, diet, family history, constitution, and physical condition.

Performances of themodels:
• Random forest provided the best performance among themodels.
•Another random forest model was developed using top 10 important variables in the

previous random forest model. Its area under the receiver operating characteristic curves
(AUCs) for classifying [category 1, 2, 3, 4] and the others were [0.68, 0.66, 0.61, 0.70].
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Table 1. Performance of the random forest model using ten variables (95% confidence interval)

Table 2. The variables and these importances of the model
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Figure 3. Mean blood glucose (a)
and insulin (b) levels of participants
in each glycometabolic category in
the oral glucose tolerance test

(a) (b)

• Japanese adults without diabetes
are classified into four categories
with each different insulin sensitivity
and insulin secretion.
• The random forest model was
developed for assessing the
glycometabolic category in non-
diabetics. It needed only 10 lifestyle
questions.
• Some of the selected factors were not

reported clear association with
glucose metabolism. Future studies
may clarify the association with
diabetes risk.
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Figure 4. The ROC curves of the model

Variable
The mean decrease

in Gini coefficient 

Body mass index 10.3

Age 8.1

Height 3.3

Wake up in the middle of the night 3.1

Which do you usually eat, rice or bread? 2.5

Frequency of tea intake at lunch 2.1

Wake up late on non-working day 1.9
Frequency of mobile phone and tablet 
computer use at bedtime 1.4

Frequency of soup intake 1.4

Frequency of toothbrush replacement 0.8
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Figure 2. Flow chart of the models development

Development of themodels:
Explanatory variables: questionnaire answers
Objective variables: glycometabolic categories
Considered models: decision tree, support
vector machine, random forest, and XGBoost

120 mPG < 126 mg/dL
and Mi > 4.97

120 mPG ≥ 126 mg/dL
or Mi ≤ 4.97

30 mPG < 157 mg/dL Category 1 Category 2

30 mPG ≥ 157 mg/dL Category 3 Category 4

Figure 1. the classification conditions for the glycometabolic categories.
Abbreviations: x mPG, x-min post-load plasma glucose level; Mi, Matsuda index

Classification of the glycometabolic category:

Category 1 vs others
Category 2 vs others
Category 3 vs others
Category 4 vs others

Yellow line:  Category 1
Green line:   Category 2
Blue line:      Category 3
Red line:       Category 4


