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State-of-the-art: End-to-end neural TTS

• Synthesizes a human-like speech in 
clean condition

• Noisy condition? 

Cannot perform well!

How about humans?

“Hello” TTS

In noisy situation, we tend to speak louder 
(Lombard effect)

● Existing work with neural TTS: 
Fine-tuning to certain noise [Paul et al., 2020]

● Human: 
No fine-tuning before speaking in noisy place
à How?
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SPEECH PRODUCTION



SPEECH PRODUCTION

Human
● Humans speak while listen to their own speech 

Speech chain[Denes, 1993]
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Speaking

noise

noise

How are you?

Auditory feedback

Adapt to the situation

TTS
● Computers only learn how to speak
● Cannot hear their own voice

Only speaking

How are you?

Speaking

Auditory feedback



MACHINE SPEECH CHAIN 

● Introduced in 2017 [Tjandra et al., 2017]
● ASR and TTS are connected via closed feedback 

loop during training

à Support each other and improve together

Limitation: Only for training mechanism

● In inference, ASR and TTS perform separately as 
in the standard manner

● Unable to dynamically adapt based on various 
conditions (unlike humans)

Machine speech chain

ASR→ TTS (speech only)

ASR

TTS

t e x t

𝐿𝑜𝑠𝑠𝑇𝑇𝑆

update

TTS → ASR (text only)

ASR

TTS

t e x t

𝐿𝑜𝑠𝑠𝐴𝑆𝑅

update

t e x t

unroll

Copyright © 2021 NAIST Japan, All rights reserved 4



PROPOSED METHOD

New Generation of Machine Speech Chain
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Dynamically Adaptive Machine Speech Chain Inference for TTS
TTS speaks louder in noisy environment by taking auditory feedback
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RELATED WORKS
TTS IN NOISY CONDITION

Parametric TTS in noise
• HMM TTS speech modification to increase speech intelligibility in noise 

while keeping the speech energy fixed [Valentini-Botinhao et al., 2014; 
Schepker et al., 2015]

• HMM TTS adapted to Lombard speech data [Raitio et al., 2014]

Neural network-based TTS in noise
• Transfer learning from a standard end-to-end TTS (clean) to an end-to-

end Lombard TTS  [Paul et al., 2020]
o Lombard TTS is trained on a small Lombard dataset

• End-to-end multi-style TTS [Hu et al., 2021]
o Synthesizable speech styles: Normal speech, whispered speech, 

Lombard speech

Our focus
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Offline fine-tuning

End-to-end Lombard TTS with 
dynamic adaptation  using auditory 

feedback, similar to human



PROPOSED METHOD
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● Basic TTS structure: Transformer TTS [Li et el., 2018]
○ Input    : Characters
○ Output : Speech features (80 dims. Mel-spectrogram)

○ Multi-speaker experiment: Multi-speaker TTS 
Transformer [Chen et al., 2020]

○ Speaker embedding: Deep Speaker [Li et al., 2017] 
(similar to TTS in the basic machine speech chain)

● Proposed TTS structure:
a) TTS + SNR embedding
b) TTS + ASR-SNR embedding
c) TTS + ASR-SNR embedding + Variance adaptor  

Multi-speaker Transformer TTS with Deep 
Speaker speaker embedding

PROPOSED TTS

TRANSFORMER TTS WITH AUDITORY 
FEEDBACK
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A. TTS with SNR embedding

Auditory feedback
• SNR embedding(𝑍!"#): SNR of noisy speech (𝑦$%&'()

o Trained as SNR recognition model first 
o Utilized in:

§ Encoder output (ℎ))

§ Decoder first layer Input (𝑦*+,& )

Transformer TTS with SNR emb.SNR emb. module

𝑍!"# = 𝑆𝑁𝑅 𝐸𝑚𝑏 (𝑦$%&'()

ℎ) = ℎ*+,) + 𝑍!-. + 𝑍!"#

𝑦*/0& = 𝑝𝑟𝑒𝑛𝑒𝑡 𝑦*/0 + 𝑍!-. + 𝑍!"# + 𝑃𝐸

𝑍!"# : speaker embedding
𝑃𝐸 : positional encoding
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B. TTS with SNR and ASR-loss embedding

Auditory feedback:
• SNR embedding
• ASR-loss embedding (𝑍-!#): Maps the ASR MSE 

loss into embedding space

• Utilized in encoder output and decoder input:

Transformer TTS with SNR and 
ASR-loss emb.

ASR-loss emb. module

𝑍-!# = 𝐴𝑆𝑅 𝐿𝑜𝑠𝑠 𝐸𝑚𝑏 𝐿𝑜𝑠𝑠-!# 𝑥, 𝑝.
𝑝. = 𝑝(𝑥|𝑦$%&'()

𝑥 : TTS input text (correct text)
𝑝$ : ASR hypothesis

ℎ) = ℎ*/0) + 𝑍!12 + 𝑍!"# + 𝑍-!#

𝑦*+,& = 𝑝𝑟𝑒𝑛𝑒𝑡 𝑦*+, + 𝑍!12 + 𝑍!"# + 𝑍-!# + 𝑃𝐸
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C. TTS with SNR, ASR-loss embedding, and variance adaptor

Auditory feedback:

• SNR embedding

• ASR-loss embedding

Prosody guide: Variance adaptor
• Based on variance adaptor in Fast Speech [Ren et al., 2020], 

modified for autoregressive Transformer decoder

• 3 components à predict character-level speech prosody:

o Intensity predictor (X = G)
o Pitch predictor (X = P)

o Duration predictor (X = D)

• Add the speech prosodies information to encoder output :

Transformer TTS with SNR, ASR-loss 
embedding, and variance adaptor

Variance adaptor

𝑣3 = 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟3(ℎ*/0) + 𝑍!12 + 𝑍!"# + 𝑍-!#)

ℎ) = 𝑣4 + 𝑣1 + 𝑣5 + (ℎ*/0) + 𝑍!12 + 𝑍!"# + 𝑍-!#)
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Experiments
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A. Clean Wall Street Journal (WSJ) speech [Paul et al., 1992]
• Multi-speaker English speech, 81 hours of speech 
• Training: SI-284 set, dev: dev92 set, test: eval93 set

B. WSJ speech with additive noise
• Clean WSJ speech combined with noisy sound

o Noise type : white noise and babble noise
o SNR : SNR 0 and SNR -10

C. Natural Lombard speech
• Clean and noisy speech recorded from single male speaker
• Text: WSJ speech transcription (dev92 + eval93)

D. Synthetic Lombard WSJ speech
• Clean WSJ speech with the intensity, pitch, and duration 

modified into Lombard speech

EXPERIMENT SETTING
DATA

clean speech (A) noise

noisy speech (B)

+

(noise)

(noise)

(noise)

Lombard speech
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EXPERIMENT SETTING
SYSTEM CONFIGURATION
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System Structure Training Data

TTS

Baseline standard TTS

Transformer- 6 Enc, 6 Dec

Clean WSJ

Baseline standard TTS
+ Fine-tuning [Paul et al., 2020]

Clean WSJ + Synthetic Lombard WSJ

Proposed TTS Clean WSJ + Synthetic Lombard WSJ

Feedback component

ASR Transformer- 12 Enc, 6 Dec 
(Speech-transformer [Dong et al., 2018]) Clean WSJ + Noisy WSJ

SNR recognition 4 convolutional + residual layers Clean WSJ + Noisy WSJ 
(class: clean, SNR 0, SNR -10)

Topline: Natural Lombard speech
Models structure and training data configuration



System Clean SNR 0 SNR -10
Baseline TTS

Standard TTS 18.32 70.54 77.07

+ modification into Lombard speech 18.32 44.68 57.86

+ Fine-tuning with Lombard speech 13.40 28.12 46.13
Proposed TTS

TTS + SNR emb. 11.58 22.82 42.00

TTS + SNR-ASR loss emb. 12.55 16.11 25.61

TTS + SNR-ASR loss emb. + var. adaptor 11.99 14.70 24.96

● Evaluation à Speech intelligibility 
metric:
o ASR Character error rate (CER) 
o ASR recognize noisy TTS speech

● Proposed TTS max. feedback loop: 4

● Best performance by TTS + SNR-ASR 
loss emb. + variance adaptor
o SNR and ASR feedback improved 

the speech intelligibility
o Variance adaptor guided the 

prosody change well by providing 
the target prosody information

How the auditory feedback 
affected the TTS performance?

Speech intelligibility measure (CER %) at different SNR levels 
using ASR trained on clean and noisy conditions.

RESULT

Topline (human natural speech)
Natural speech 7.43 22.17 58.81

+ modification into Lombard speech 7.43 13.24 15.15

Natural Lombard speech 7.43 11.46 20.56
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● Experiments by applying a coefficient to SNR embedding and ASR-loss embedding in encoder 
output and decoder input (default coefficient: 1)

The effect of auditory feedback on speech intelligibility

Result
How the auditory feedback affects TTS speech?

● Clean condition: best performance with ASR feedback only (ASR coeff 1, SNR coeff 0)
● Noisy condition: best performance by equal amount of ASR + SNR feedback (coeff 1)

Both SNR and ASR-loss information are important to synthesize Lombard speech

best!
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Result
How the feedback loop affects TTS speech?

● Loop 1 : No feedback utilization

● Improvement significantly occurs 
after the 2nd loop

TTS performed dynamic adapt in several loops; 
listen to its voice in a noisy environment and 
then speak louder (similar to humans)

The effect of feedback loop 
on speech intelligibility
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CONCLUSION

● Dynamically adaptive machine speech chain inference framework to support TTS in noisy 
conditions. 

● The proposed systems with auditory feedback and a variance adaptor produced a highly 
intelligible speech that surpassed a standard TTS with a fine-tuning method and achieved 
closer to the human performances. 

● Dynamic adaptation with auditory feedback is critical not only for human but also in speech 
generation by machines
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THANK YOU
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Appendix
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System Clean SNR 0 SNR -10
Baseline TTS

Standard TTS 18.32 70.54 77.07

+ modification into Lombard speech 18.32 44.68 57.86

+ Fine-tuning with Lombard speech 13.40 28.12 46.13
Proposed TTS

TTS + SNR emb. 11.58 22.82 42.00

TTS + SNR-ASR loss emb. 12.55 16.11 25.61

TTS + SNR-ASR loss emb. + var. adaptor 11.99 14.70 24.96

● Evaluation à Speech intelligibility 
metric:
o ASR Character error rate (CER) 
o ASR recognize noisy TTS speech

● Proposed TTS max. feedback loop: 4

● Best performance by TTS + SNR-ASR 
loss emb. + variance adaptor
o SNR and ASR feedback improved 

the speech intelligibility
o Variance adaptor guided the 

prosody change well by providing 
the target prosody information

How the auditory feedback 
affected the TTS performance?

Speech intelligibility measure (CER %) at different SNR levels 
using ASR trained on clean and noisy conditions.

RESULT

Topline (human natural speech)
Natural speech 7.43 22.17 58.81

+ modification into Lombard speech 7.43 13.24 15.15

Natural Lombard speech 7.43 11.46 20.56
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System
Clean Condition Training ASR Multi-condition Training ASR

Clean SNR 0 SNR -10 Clean SNR 0 SNR -10
Baseline TTS

Standard TTS 18.92 118.72 106.25 18.32 70.54 77.07

+ modification into Lombard speech (rule) 18.92 102.96 104.69 18.32 44.68 57.86

+ Fine-tuning with Lombard speech (SNR0) 10.76 93.19 105.01 13.19 32.71 53.35

+ Fine-tuning with Lombard speech (SNR-10) 11.73 71.88 99.36 14.26 24.47 40.62
+ Fine-tuning with Lombard speech (SNR0 + 

SNR-10) 11.25 79.94 100.44 13.40 28.12 46.13

Proposed TTS
TTS + SNR emb 10.21 83.15 101.41 11.58 22.82 42.00

TTS + SNR-ASR loss emb. 10.76 52.51 87.72 12.55 16.11 25.61

TTS + SNR-ASR loss emb. + variance adaptor 10.47 55.70 92.75 11.99 14.70 24.96
Topline (human natural speech)

Normal speech 5.77 92.56 98.98 7.43 22.17 58.81

+ modification into Lombard speech (rule) 5.77 58.40 67.78 7.43 13.24 15.15

Lombard speech 5.77 25.38 59.25 7.43 11.46 20.56

Speech intelligibility measure (CER %) at different SNR levels using 
clean- and multi-condition training ASR
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TTS with SNR, ASR-loss embedding, and variance adaptor

Variance adaptor

• Predictor training loss

• Label: character-level prosody
o Char-speech alignment: Force-alignment
o Prosody label: extracted using FastSpeech open-source code

• TTS training loss

Transformer TTS with SNR, ASR-loss 
embedding, and variance adaptor

Variance adaptor
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1𝑣 = predicted prosody
𝑣 = prosody label
𝑆 = character seq. length

𝑇 = speech length
1𝑦= pred. speech
𝑦= ref. speech
6𝑏= pred. stop token
𝑏 = stop token label

1𝑣! = pred. pitch
𝑣" = ref. pitch
1𝑣# = pred. intensity
𝑣#= ref. intensity

1𝑣$ = pred. duration
𝑣$= ref. duration



D. Synthetic Lombard WSJ speech
• Clean WSJ speech with the modified prosody

o Intensity increased to reach SNR 20 
o Pitch/duration were increased using a coefficient based on speech phoneme-level 

pitch/duration changes in natural Lombard speech (dev92) to keep speaker characteristic
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DATA PREPARATION (3)

A. Clean WSJ B. Clean WSJ + 
noise

C. Natural 
Lombard speech

D. Synthetic Lombard WSJ 
clean noisy

Speech examples (noise: from SNR -10)


