

# Improving Intelligibility of Synthesized Speech in Noisy Condition with Dynamically Adaptive Machine Speech Chain



<sup>&</sup>lt;sup>1</sup>Nara Institute of Science and Technology, Japan

E-mail: {sashi.novitasari.si3, ssakti, s-nakamura}@is.naist.jp

<sup>&</sup>lt;sup>2</sup>RIKEN, Center for Advanced Intelligence Project (AIP), Japan

<sup>&</sup>lt;sup>3</sup> Japan Advanced Institute of Science and Technology, Nomi-shi, 923–1292 Japan



#### SPEECH PRODUCTION

#### State-of-the-art: End-to-end neural TTS

 Synthesizes a human-like speech in clean condition





**Cannot perform well!** 

#### How about humans?

In noisy situation, we tend to speak louder (Lombard effect)



- Existing work with neural TTS:
   Fine-tuning to certain noise [Paul et al., 2020]
- ► Human: No fine-tuning before speaking in noisy place → How?



### **SPEECH PRODUCTION**

#### Human

Humans speak while listen to their own speech
 Speech chain[Denes, 1993]

#### TTS

- Computers only learn how to speak
- Cannot hear their own voice





#### **MACHINE SPEECH CHAIN**

- Introduced in 2017 [Tjandra et al., 2017]
- ASR and TTS are connected via closed feedback loop during training
  - → Support each other and improve together

#### **Limitation**: Only for training mechanism

- In inference, ASR and TTS perform separately as in the standard manner
- Unable to dynamically adapt based on various conditions (unlike humans)

#### Machine speech chain





#### **PROPOSED METHOD**

## **New Generation of Machine Speech Chain**

#### **Dynamically Adaptive Machine Speech Chain Inference for TTS**

TTS speaks louder in noisy environment by taking auditory feedback





# RELATED WORKS TTS IN NOISY CONDITION

#### Parametric TTS in noise

- HMM TTS speech modification to increase speech intelligibility in noise while keeping the speech energy fixed [Valentini-Botinhao et al., 2014; Schepker et al., 2015]
- HMM TTS adapted to Lombard speech data [Raitio et al., 2014]

#### Neural network-based TTS in noise

- Transfer learning from a standard end-to-end TTS (clean) to an end-to-end Lombard TTS [Paul et al., 2020]
  - Lombard TTS is trained on a small Lombard dataset
- End-to-end multi-style TTS [Hu et al., 2021]
  - Synthesizable speech styles: Normal speech, whispered speech, Lombard speech

Offline fine-tuning
Our focus

End-to-end Lombard TTS with dynamic adaptation using auditory feedback, similar to human



## **PROPOSED METHOD**



# PROPOSED TTS TRANSFORMER TTS WITH AUDITORY FEEDBACK

- Basic TTS structure: Transformer TTS [Li et el., 2018]
  - O Input : Characters
  - Output: Speech features (80 dims. Mel-spectrogram)
  - O Multi-speaker experiment: Multi-speaker TTS Transformer [Chen et al., 2020]
  - O Speaker embedding: Deep Speaker [Li et al., 2017] (similar to TTS in the basic machine speech chain)

#### • Proposed TTS structure:

- a) TTS + SNR embedding
- b) TTS + ASR-SNR embedding
- c) TTS + ASR-SNR embedding + Variance adaptor





## A. TTS with SNR embedding

#### **Auditory feedback**

• **SNR embedding**( $Z_{SNR}$ ): SNR of noisy speech ( $y^{noisy}$ )

$$Z_{SNR} = SNR \ Emb \ (y^{noisy})$$

- Trained as SNR recognition model first
- Utilized in:
  - Encoder output (h<sup>e</sup>)

$$h^e = h^e_{trm} + Z_{SPK} + Z_{SNR}$$

• Decoder first layer Input  $(y_{t-1}^i)$ 

$$y_{t-1}^{i} = prenet(y_{t-1}) + Z_{SPK} + Z_{SNR} + PE$$

 $Z_{SPK}$ : speaker embedding PE: positional encoding



SNR emb. module



Transformer TTS with SNR emb.



## B. TTS with SNR and ASR-loss embedding

#### Auditory feedback:

- SNR embedding
- ASR-loss embedding ( $Z_{ASR}$ ): Maps the ASR MSE loss into embedding space

$$Z_{ASR} = ASR \ Loss \ Emb \left(Loss_{ASR}(x, p_x)\right)$$
  
 $p_x = p(x|y^{noisy})$ 

x : TTS input text (correct text)

 $p_x$ : ASR hypothesis

Utilized in encoder output and decoder input:

$$h^{e} = h^{e}_{trm} + Z_{SPK} + Z_{SNR} + Z_{ASR}$$
  
$$y^{i}_{t-1} = prenet(y_{t-1}) + Z_{SPK} + Z_{SNR} + Z_{ASR} + PE$$





ASR-loss emb. module

Transformer TTS with SNR and ASR-loss emb.



C. TTS with SNR, ASR-loss embedding, and variance adaptor

#### Auditory feedback:

- SNR embedding
- ASR-loss embedding

#### **Prosody guide: Variance adaptor**

- Based on variance adaptor in Fast Speech [Ren et al., 2020], modified for autoregressive Transformer decoder
- 3 components → predict character-level speech prosody:

$$v^X = Predictor^X(h^e_{trm} + Z_{SPK} + Z_{SNR} + Z_{ASR})$$

- Intensity predictor (x = G)
- O Pitch predictor (X = P)
- O Duration predictor (x = D)
- Add the speech prosodies information to encoder output :

$$h^e = v^G + v^P + v^D + (h^e_{trm} + Z_{SPK} + Z_{SNR} + Z_{ASR})$$





Variance adaptor

Transformer TTS with SNR, ASR-loss embedding, and variance adaptor



# **Experiments**



# EXPERIMENT SETTING DATA

#### A. Clean Wall Street Journal (WSJ) speech [Paul et al., 1992]

- Multi-speaker English speech, 81 hours of speech
- Training: SI-284 set, dev: dev92 set, test: eval93 set

#### B. WSJ speech with additive noise

- Clean WSJ speech combined with noisy sound
  - Noise type : white noise and babble noise
  - o SNR : SNR 0 and SNR -10

#### C. Natural Lombard speech

- Clean and noisy speech recorded from single male speaker
- Text: WSJ speech transcription (dev92 + eval93)

#### D. Synthetic Lombard WSJ speech

 Clean WSJ speech with the intensity, pitch, and duration modified into Lombard speech





# **SYSTEM CONFIGURATION**

**Topline**: Natural Lombard speech

#### Models structure and training data configuration

| System                                                     | Structure                                                                         | Training Data                     |  |  |  |  |  |
|------------------------------------------------------------|-----------------------------------------------------------------------------------|-----------------------------------|--|--|--|--|--|
| TTS                                                        |                                                                                   |                                   |  |  |  |  |  |
| Baseline standard TTS                                      |                                                                                   | Clean WSJ                         |  |  |  |  |  |
| Baseline standard TTS<br>+ Fine-tuning [Paul et al., 2020] | Transformer- 6 Enc, 6 Dec                                                         | Clean WSJ + Synthetic Lombard WSJ |  |  |  |  |  |
| Proposed TTS                                               |                                                                                   | Clean WSJ + Synthetic Lombard WSJ |  |  |  |  |  |
| Feedback component                                         |                                                                                   |                                   |  |  |  |  |  |
| ASR                                                        | Transformer- 12 Enc, 6 Dec<br>(Speech-transformer [Dong et al., 2018])            | Clean WSJ + Noisy WSJ             |  |  |  |  |  |
| SNR recognition                                            | 4 convolutional + residual layers Clean WSJ + Noisy WSJ (class: clean, SNR 0, SNR |                                   |  |  |  |  |  |



#### **RESULT**

- Evaluation → Speech intelligibility metric:
  - ASR Character error rate (CER)
  - ASR recognize noisy TTS speech
- Proposed TTS max. feedback loop: 4
- Best performance by TTS + SNR-ASR loss emb. + variance adaptor
  - SNR and ASR feedback improved the speech intelligibility
  - Variance adaptor guided the prosody change well by providing the target prosody information

How the auditory feedback affected the TTS performance?

## Speech intelligibility measure (CER %) at different SNR levels using ASR trained on clean and noisy conditions.

| doing from trained on clour and notey contained |              |       |            |  |  |  |
|-------------------------------------------------|--------------|-------|------------|--|--|--|
| System                                          | Clean        | SNR 0 | SNR -10    |  |  |  |
| Baseline TTS                                    |              |       |            |  |  |  |
| Standard TTS                                    | 18.32 🗐 🤊    | 70.54 | 77.07      |  |  |  |
| + modification into Lombard speech              | 18.32        | 44.68 | 57.86      |  |  |  |
| + Fine-tuning with Lombard speech               | 13.40        | 28.12 | 46.13      |  |  |  |
| Propose                                         | Proposed TTS |       |            |  |  |  |
| TTS + SNR emb.                                  | <u>11.58</u> | 22.82 | 42.00      |  |  |  |
| TTS + SNR-ASR loss emb.                         | 12.55        | 16.11 | 25.61      |  |  |  |
| TTS + SNR-ASR loss emb. + var. adaptor          | 11.99        | 14.70 | 24.96 (>)) |  |  |  |

| Topline (human natural speech)     |      |       |       |  |  |
|------------------------------------|------|-------|-------|--|--|
| Natural speech                     | 7.43 | 22.17 | 58.81 |  |  |
| + modification into Lombard speech | 7.43 | 13.24 | 15.15 |  |  |
| Natural Lombard speech             | 7.43 | 11.46 | 20.56 |  |  |



#### Result

#### How the auditory feedback affects TTS speech?

 Experiments by applying a coefficient to SNR embedding and ASR-loss embedding in encoder output and decoder input (default coefficient: 1)

#### The effect of auditory feedback on speech intelligibility



- Clean condition: best performance with ASR feedback only (ASR coeff 1, SNR coeff 0)
- Noisy condition: best performance by equal amount of ASR + SNR feedback (coeff 1)

Both SNR and ASR-loss information are important to synthesize Lombard speech



# Result How the feedback loop affects TTS speech?



- Loop 1 : No feedback utilization
- Improvement significantly occurs after the 2<sup>nd</sup> loop

TTS performed dynamic adapt in several loops; listen to its voice in a noisy environment and then speak louder (similar to humans)

# The effect of feedback loop on speech intelligibility 50 Clean SNR 0 SNR -10 Loop 1 2 4 8



# **CONCLUSION**

- Dynamically adaptive machine speech chain inference framework to support TTS in noisy conditions.
- The proposed systems with auditory feedback and a variance adaptor produced a highly intelligible speech that surpassed a standard TTS with a fine-tuning method and achieved closer to the human performances.
- Dynamic adaptation with auditory feedback is critical not only for human but also in speech generation by machines



# THANK YOU

# Appendix



#### **RESULT**

- Evaluation → Speech intelligibility metric:
  - ASR Character error rate (CER)
  - ASR recognize noisy TTS speech
- Proposed TTS max. feedback loop: 4
- Best performance by TTS + SNR-ASR loss emb. + variance adaptor
  - SNR and ASR feedback improved the speech intelligibility
  - Variance adaptor guided the prosody change well by providing the target prosody information

How the auditory feedback affected the TTS performance?

## Speech intelligibility measure (CER %) at different SNR levels using ASR trained on clean and noisy conditions.

| System                                 | Clean        | SNR 0 | SNR -10 |  |  |  |
|----------------------------------------|--------------|-------|---------|--|--|--|
| Baseline TTS                           |              |       |         |  |  |  |
| Standard TTS                           | 18.32        | 70.54 | 77.07   |  |  |  |
| + modification into Lombard speech     | 18.32        | 44.68 | 57.86   |  |  |  |
| + Fine-tuning with Lombard speech      | 13.40        | 28.12 | 46.13   |  |  |  |
| Proposed TTS                           |              |       |         |  |  |  |
| TTS + SNR emb.                         | <u>11.58</u> | 22.82 | 42.00   |  |  |  |
| TTS + SNR-ASR loss emb.                | 12.55        | 16.11 | 25.61   |  |  |  |
| TTS + SNR-ASR loss emb. + var. adaptor | 11.99        | 14.70 | 24.96   |  |  |  |

| Topline (human natural speech)     |      |       |       |  |  |
|------------------------------------|------|-------|-------|--|--|
| Natural speech                     | 7.43 | 22.17 | 58.81 |  |  |
| + modification into Lombard speech | 7.43 | 13.24 | 15.15 |  |  |
| Natural Lombard speech             | 7.43 | 11.46 | 20.56 |  |  |

# Speech intelligibility measure (CER %) at different SNR levels using clean- and multi-condition training ASR

| System                                            | Clean Condition Training ASR |         |         | Multi-condition Training ASR |       |         |  |  |
|---------------------------------------------------|------------------------------|---------|---------|------------------------------|-------|---------|--|--|
| System                                            | Clean                        | SNR 0   | SNR -10 | Clean                        | SNR 0 | SNR -10 |  |  |
|                                                   | Baseline TTS                 |         |         |                              |       |         |  |  |
| Standard TTS                                      | 18.92                        | 118.72  | 106.25  | 18.32                        | 70.54 | 77.07   |  |  |
| + modification into Lombard speech (rule)         | 18.92                        | 102.96  | 104.69  | 18.32                        | 44.68 | 57.86   |  |  |
| + Fine-tuning with Lombard speech (SNR0)          | 10.76                        | 93.19   | 105.01  | 13.19                        | 32.71 | 53.35   |  |  |
| + Fine-tuning with Lombard speech (SNR-10)        | 11.73                        | 71.88   | 99.36   | 14.26                        | 24.47 | 40.62   |  |  |
| + Fine-tuning with Lombard speech (SNR0 + SNR-10) | 11.25                        | 79.94   | 100.44  | 13.40                        | 28.12 | 46.13   |  |  |
|                                                   | Propos                       | sed TTS |         |                              |       |         |  |  |
| TTS + SNR emb                                     | 10.21                        | 83.15   | 101.41  | 11.58                        | 22.82 | 42.00   |  |  |
| TTS + SNR-ASR loss emb.                           | 10.76                        | 52.51   | 87.72   | 12.55                        | 16.11 | 25.61   |  |  |
| TTS + SNR-ASR loss emb. + variance adaptor        | 10.47                        | 55.70   | 92.75   | 11.99                        | 14.70 | 24.96   |  |  |
| Topline (human natural speech)                    |                              |         |         |                              |       |         |  |  |
| Normal speech                                     | 5.77                         | 92.56   | 98.98   | 7.43                         | 22.17 | 58.81   |  |  |
| + modification into Lombard speech (rule)         | 5.77                         | 58.40   | 67.78   | 7.43                         | 13.24 | 15.15   |  |  |
| Lombard speech                                    | 5.77                         | 25.38   | 59.25   | 7.43                         | 11.46 | 20.56   |  |  |

#### TTS with SNR, ASR-loss embedding, and variance adaptor

#### Variance adaptor

Predictor training loss

$$Loss_{pred}(v,\hat{v}) = \frac{1}{S} \sum_{s=1}^{S} (v_s - \hat{v}_s)^2 \qquad \begin{array}{c} \hat{v} = \text{predicted prosody} \\ v = \text{prosody label} \\ S = \text{character seq. length} \end{array}$$

- Label: character-level prosody
  - Char-speech alignment: Force-alignment
  - Prosody label: extracted using FastSpeech open-source code
- TTS training loss

$$\frac{1}{T} \sum_{t=1}^{T} ((y_t - \hat{y}_t)^2 - (b_t \log(\hat{b}_t) + (1 - b_t) \log(1 - \hat{b}_t))) +$$

$$Loss_{pred}(\boldsymbol{v}^P, \hat{\boldsymbol{v}}^P) + Loss_{pred}(\boldsymbol{v}^G, \hat{\boldsymbol{v}}^G) + Loss_{pred}(\boldsymbol{v}^D, \hat{\boldsymbol{v}}^D)$$

 $\hat{y}$ = pred. speech y= ref. speech  $\hat{b}$ = pred. stop token b = stop token label

T =speech length

 $\hat{v}^P$  = pred. pitch  $v^p$  = ref. pitch  $\hat{v}^G$  = pred. intensity  $v^G$  = ref. intensity  $\hat{v}^D$  = pred. duration  $v^D$  = ref. duration



Variance adaptor

Transformer TTS with SNR, ASR-loss embedding, and variance adaptor

# **DATA PREPARATION (3)**

#### D. Synthetic Lombard WSJ speech

- Clean WSJ speech with the modified prosody
  - o Intensity increased to reach SNR 20
  - Pitch/duration were increased using a coefficient based on speech phoneme-level pitch/duration changes in natural Lombard speech (dev92) to keep speaker characteristic

#### Speech examples (noise: from SNR -10)

| A. Clean WSJ | B. Clean WSJ + | C. Natural D. Synthetic L |       | Lombard WSJ |  |
|--------------|----------------|---------------------------|-------|-------------|--|
| A. Clean WSJ | noise          | Lombard speech            | clean | noisy       |  |
|              |                |                           |       |             |  |