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Improving Intelligibility of Synthesized Speech in Noisy
Condition with Dynamically Adaptive Machine Speech

Chain

Sashi Novitasari1,2,a) Sakriani Sakti1,2,3,b) Satoshi Nakamura1,2,c)

Abstract: This paper focuses on the machine speech chain mechanism for improving the intelligibility of synthesized
speech in noisy conditions. Our proposed TTS synthesizes a speech by adapting to the situation. It will speak loudly
with high intelligibility in a noisy condition by processing auditory feedback that consists of speech-to-signal ratio
and ASR loss as a speech intelligibility measure. Our experiments show that auditory feedback improves the TTS in a
noisy environment than the standard TTS.
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1. Introduction
Recent end-to-end text-to-speech synthesis (TTS) systems suc-

cessfully produced natural-sounding speech given only the text
transcription [1], [2], [3], [4]. However, the standard systems suf-
fer from speech intelligibility degradation in noisy places because
they only learn how to speak and do not learn how to listen and
understand the situation.

In noisy places, humans speak louder to enhance their speech
audibility, a phenomenon known as the Lombard effect [5]. Lom-
bard effect not only includes the change in the speech intensity but
also the pitch and speed [6]. Human speech adaptation, as in the
Lombard effect, is enabled by the speech chain mechanism [7], a
closed-loop auditory feedback mechanism from the mouth to the
ear. This feedback connection enables speakers to monitor their
speech and improve the speech when necessary.

Inspired by the human speech chain mechanism, a machine
speech chain [8], [9], in Fig. 1(a), was proposed as a semi-
supervised learning method for ASR (ear) and TTS (mouth)
by connecting both systems with a closed-feedback loop. This
framework improved ASR and TTS in training using unpaired
speech-text data. In inference, unfortunately, the feedback con-
nection is removed, so the systems here are still unable to adapt
to their environment.

In this work, we propose a machine speech chain mechanism
for TTS inference in noisy places. Our TTS (Fig. 1(b)) syn-
thesizes speech with a Lombard effect dynamically to improve
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Fig. 1 (a) Previous machine speech chain for semi-supervised training; (b)
proposed machine speech chain for training and dynamically adap-
tive inference.

the speech intelligibility given the auditory feedback in utterance
level. Here the auditory feedback consists of the speech-to-noise
ratio (SNR) as the speech and noise intensity measurement and
the ASR loss as the speech intelligibility measurement in noise.

2. Proposed TTS in Speech Chain Framework
The proposed TTS, shown in Fig. 2(a), is a multi-speaker

Transformer TTS [2], [3] extended with auditory feedback com-
ponents (ASR-loss embedding and SNR embedding) and a vari-
ance adaptor. Given character sequence x = [x1, x2, ..., xS ]
with length S , TTS generates the corresponding speech Mel-
spectrogram y = [y1, y2, ..., yT ] with a length T and the prosody
based on the auditory feedback in SNR (ZS NR) and ASR loss
(ZAS R) embedding. In noisy situations, the proposed TTS per-
forms a dynamic adaptation with a feedback loop in several iter-
ations until the ASR loss converges.

We construct three TTS systems with different feedback con-
figurations. All systems are trained using normal speech and
Lombard speech in various noise conditions.

2.1 TTS with SNR feedback
TTS generates speech based on text input and SNR feedback

embedding. In noisy conditions, TTS re-synthesizes speech to
achieve a higher SNR (≥ 20 dB) by integrating the SNR embed-
ding into the encoder output and the decoder input. We imple-
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Fig. 2 Architecture: (a) proposed TTS with a Transformer-based encoder-decoder structure, extended
with (b) ASR-loss embedding, (c) SNR embedding, and (d) variance adaptor [10] modules.

Table 1 Speech intelligibility measure (CER %) at different SNR levels us-
ing clean- and multi-condition training ASR.

System Multi-condition training ASR
Clean SNR 0 SNR -10

Baseline TTS
Standard TTS 18.32 70.54 77.07
+ Rule-based modification into Lombard speech 18.32 44.68 57.86
+ Fine tuning with Lombard speech (SNR 0) 13.19 32.71 53.35
+ Fine tuning with Lombard speech (SNR -10) 14.26 24.47 40.62
+ Fine tuning with Lombard speech (SNR 0 + SNR -10) 13.40 28.12 46.13

Proposed TTS
TTS in speech chain framework 18.32 70.54 77.07
+ SNR feedback 11.58 22.82 42.00
+ SNR-ASR feedback 12.55 16.11 25.61
+ SNR-ASR feedback + variance adaptor 11.99 14.70 24.96

Topline (human natural speech)
Natural speech 7.43 22.17 58.81
+ Rule-based modification into Lombard speech 7.43 13.24 15.15
Natural Lombard speech 7.43 11.46 20.46

ment the SNR embedding module using convolution network lay-
ers (Fig. 2(c)), which generate the embedding ZS NR from noisy
speech features ynoisy.

2.2 TTS with SNR-ASR feedback
TTS synthesizes speech based on text input and feedback from

the SNR and ASR-loss embedding. The ASR-loss embedding
(Fig. 2(b)) represents the speech intelligibility measurement in
the presence of noise. ASR-loss embedding vector ZAS R is gener-
ated by transcribing the noisy TTS speech using ASR and feeding
the ASR recognition loss to the embedding module.

2.3 TTS with SNR-ASR feedback and variance adaptor
In addition to the SNR and ASR-loss embedding feedback,

the proposed TTS applies a variance adaptor [10] that guides the
prosody adaptation by predicting the speech intensity, duration,
and pitch (Fig. 2(d)). The prosody attributes are predicted from
the encoder Transformer output fused with feedback embeddings.
The module output is utilized to produce the encoder final output.

3. Experiment
We experimented on using Wall Street Journal (WSJ) corpus

[11]. Here we also recorded natural Lombard speech in noisy

conditions with a single male speaker. The noises in the record-
ing were simulated by generating noises of SNR 0 dB and SNR
-10 dB based on WSJ clean speech data first. From the prosody
attributes changes observed in the recorded Lombard speech, we
constructed synthetic Lombard WSJ speech by modifying the
original WSJ speech pitch, duration, and intensity into a target
SNR 20 dB. The original WSJ speech and the synthetic Lombard
WSJ speech were used for TTS training and testing. Here our
baselines are (1) the standard TTS, (2) the standard TTS with the
rule-based speech modification into the Lombard speech, and (3)
the standard TTS fine-tuned to Lombard speech [12]. The rule-
based speech modification into Lombard speech was the same
method as the synthetic Lombard WSJ construction method. The
topline is the natural human speech.

The proposed SNR feedback and ASR feedback mechanism
significantly improved the TTS speech intelligibility in noisy con-
ditions, shown in Table 1. SNR feedback made the TTS aware
of the environmental noise and speak with the Lombard effect,
and ASR feedback helped the TTS improve the speech intel-
ligibility further. Here the variance adaptor guided the speech
prosody adaptation and resulted in a better intelligibility enhance-
ment. The results here reveal that the machine can also dy-
namically adapt in several loops; listen to its voice in a noisy
environment and then speak louder to improve it. For fur-
ther information on speech samples, see the following reference:
https://sites.google.com/view/lombard-dynamic-tts/home.

4. Conclusions
We constructed a dynamically adaptive machine speech chain

inference framework to improve TTS intelligibility in noisy con-
ditions. Our results reveal that dynamic adaptation with auditory
feedback is important not only for humans but also for machines
to generate a highly audible speech in various conditions.

Acknowledgments Part of this work is supported by JSPS
KAKENHI Grant Numbers JP17H06101 and JP21H03467.

© 1992 Information Processing Society of Japan



IPSJ SIG Technical Report

References
[1] Y. Wang, R. Skerry-Ryan, D. Stanton, Y. Wu, R. J. Weiss, N. Jaitly,

Z. Yang, Y. Xiao, Z. Chen, S. Bengio et al., “Tacotron: Towards end-
to-end speech synthesis,” in Proc. INTERSPEECH, 2017, pp. 4006–
4010.

[2] N. Li, S. Liu, Y. Liu, S. Zhao, and M. Liu, “Neural speech synthesis
with Transformer network,” in Proc. AAAI Conference on Artificial
Intelligence, vol. 33, no. 01, 2019, pp. 6706–6713.

[3] M. Chen, X. Tan, Y. Ren, J. Xu, H. Sun, S. Zhao, and T. Qin, “Mul-
tiSpeech: Multi-speaker text to speech with Transformer,” in Proc.
INTERSPEECH, 2020, pp. 4024–4028.

[4] J. Donahue, S. Dieleman, M. Bińkowski, E. Elsen, and K. Simonyan,
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