Clustering of Human Movement Trajectories based
on Distributional Representations Derived from
Bi-directional LSTM Network with Geographical
Coordinates

Hiroki Tanaka, Takeshi Saga, Satoshi Nakamura
Center for Advanced Intelligence Project, RIKEN
Nara Institute of Science and Technology
Ikoma, Nara, Japan
hiroki-tan @is.naist.jp, saga.takeshi.sn0@is.naist.jp, s-nakamura@is.naist.jp

Abstract—As the ubiquity of such wearable devices as smart-
phones continues to deepen its presence in modern societies, it has
become possible to analyze and visualize people who are moving
as part of a trajectory of big data. In this study, we cluster
human movement trajectories using time-series distributional
representations. For the clustering, we calculated the distance of
the representation vectors derived from neural network models.
Previous work leveraged the Long short-term memory (LSTM)
network to train the next mesh prediction. In this study, we
propose using the Bi-directional LSTM (Bi-LSTM) network and
the integrated additional geographical coordinates (latitude and
longitude information) in models to accurately predict the next
mesh and construct user clusters. As a result, we improved the
accuracy of the next mesh prediction and obtained and visualized
clusters of human movement trajectories.

Index Terms—transportation, trajectory, bi-directional LSTM,
user clustering

I. INTRODUCTION

These days almost every person carries their own mobile
phone. Such mobile phones are also being widely applied
as human movement monitoring devices for health mainte-
nance and behavior pattern analysis. The rapid advance of
location acquisition technologies has boosted the acquisition
of trajectory data that track the traces of moving objects. Past
works analyzed and modeled human movement trajectories
[51, [7]. Our aim is to cluster human movement trajectories
using time-series distributional representations to analyze and
model them.

Ermagun et al. applied an econometric approach called
Nested Logit, which is highly interpretable for predicting
behavioral tendencies during travel, and Random Forest, which
is a machine learning method that has high generalizability [3].
Hirota et al. applied Word2Vec, which has been used in natural
language processing, to user route prediction by dividing maps
into mesh-like sections, assigning IDs, and expressing user
moving routes [6]. However, since Word2Vec only uses the
IDs before and after the prediction position, there is room
for improvement by exploiting the time-series information.
Crivellari et al. analyzed the similarity of each landmark and

each movement route by applying cosine similarity and t-
Distributed Stochastic Neighbor Embedding (t-SNE) to dis-
tributed representations corresponding to each landmark ac-
quired by Word2Vec [1]. This work described the applicability
of distributed expressions by Word2Vec to cluster human
movement trajectories. In a subsequent work, Crivellari et al.
used Long short-term memory (LSTM) network to predict the
next location from input human movement trajectories [2].
Since LSTM network propagates all the information in the
input series as a hidden state, such information can be used
more efficiently than Word2Vec. Lastly, Liu et al. identified a
problem, arguing that the temporal and positional linearity be-
tween each sequence point was ignored in behavior sequence
predictions. They dealt with this problem by constructing a
prediction model by adding both position and time information
as the input features of recurrent neural networks [10].

Our idea is to train recurrent neural networks and use their
distributional representations to find user clusters. This paper
applied a Bi-directional LSTM (Bi-LSTM) network to predict
the next mesh-ID in a time series, where Bi-LSTM learns
semantic similarity in both the forward and backward direction
of the non-uniform length trajectory in terms of the fixed-
size vectors. Additionally, mesh-ID is a code given when
subdividing Japanese landscapes into rectangular sub-regions.
Mesh-ID is defined by the Ministry of Internal Affairs and
Communications, Japan.

As in [2], ID series were used for the modeling, their
physical distance and relative position was not used properly.
Here, we proposed an approach using the Bi-LSTM network
and the integrated additional geographical coordinates (latitude
and longitude information) in the models to accurately predict
the next mesh.

This paper describes the details of the model’s architecture,
the training method, and the clustering result using embedded
vectors after learning. We visualize the clusters obtained from
the distributional representations of the trained models.



II. PROPOSED METHOD
A. Model architecture

We attempt to cluster the users who have an undefined
number of visiting places. In order to cluster such data, we
have to define distance. We used fixed-length embedding
vectors for the distance calculation of the cluster. To estimate
the user’s next mesh-ID, Bi-LSTM needs to compress the
information into the hidden state in the hidden layer then
extract related information from it. Therefore, the hidden state
vector, so-called embedding, is a compact and fixed-length
information vector corresponding to the user’s trajectory. The
background assumption is that a precise prediction model
contains better embedding vectors to be used for clustering.
Hence we tried to get better prediction accuracy to get better
clustering results. This approach has mostly been applied in
Natural Language Processing.

Figure 1 shows a schematic diagram of our model structure,
based on the LSTM network used in previous studies [2]. Since
mesh-IDs were assigned, their physical distance and relative
position were not leveraged. Therefore, effectively training
the model might be difficult just using mesh-IDs. In this
paper, we used additional latitude and longitude information
for training in addition to the Bi-directional LSTM network
and LSTM’s baseline. We extended the past study to Bi-LSTM
network and to add latitude and longitude as input vectors.
Each prediction in Figure 1 is composed of fully connected
layers. The output of the latitude/longitude prediction is a one-
dimensional scalar value, and the output of the last mesh-
ID prediction is a one-hot vector whose dimensions are the
number of classes of training data (the mesh-IDs in the
training data). We used python with Keras framework to train
the networks. The total number of parameters representing
model complexity are as follows: (1) Mesh-ID-only (LSTM
network): 51,689,005, (2) Mesh-ID-only (Bi-LSTM network):
78,932,905, (3) Mesh-ID plus latitude/longitude (LSTM net-
work): 51,689,007, (4) Mesh-ID plus latitude/longitude (Bi-
LSTM network): 78,938,907.

In the model in which latitude and longitude are added to
mesh-IDs, we must simultaneously learn the mesh-IDs, which
are discrete values, and the latitude and longitude, which
are continuous values. However, since the loss functions for
the discrete values and the continuous values are different,
integrated loss Li,tq; Was calculated by formula (1) and used
as a loss function for the entire training:

Ltotal =a X Lmesh + ﬂ X (Llat + Llong) . (1)

Here L,,es, is the cross-entropy loss for the mesh-IDs,
Lt and Ljo,g are the mean squared error (MSE) for the
latitude and longitude, and « and 3 are hyper-parameters that
adjust the balance of the loss values. We defined formula
1 empirically to equally consider both factors: meshID and
coordinates.

We used Adam with a learning rate of 0.001 as the opti-
mization function. The number of dimensions of the hidden
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Fig. 1. Model structure of Bi-LSTM network with geographical coordinates

layer of Bi-LSTM network was set to 300 for each layer (since
each is 300 dimensions in the forward and reverse directions,
it becomes 600 dimensions when connected to the entire Bi-
LSTM layer), and drop out was set to 0.5. For a and 3, we
used the combination of 1 and 1 because it had the highest
accuracy for the validation data.

Since the range of the change in latitude and longitude is
very small, the values are standardized so that the average
value is 0 and the variance is 1, and then they are input.

B. Clustering based on distributional representations

The embedding is a compressed information vector of the
user’s trajectory trained to estimate the next mesh-ID. Same as
Bi-LSTM application in the Natural Language Processing field
[9], we tried to train this model to get a compressed meaning
representation of each trajectory bi-bidirectionally.

Agglomerative hierarchical clustering was performed on
the distributed representations obtained by the mesh-ID and
latitude/longitude model. We assumed that we could obtain
semantically similar trajectories based on the embedding. We
clustered based on the 600 dimensional embedding vectors
of the last layers of the Bi-LSTM. For the distributed repre-
sentation for the input series, we combined the hidden states
of the Bi-LSTM network in the final layer in the forward and
reverse directions for a total of 600 dimensions. Agglomerative
hierarchical clustering by the Ward method [11] using cosine
similarity of the embedding vectors was used as the clustering.
The distance between clusters was empirically set to 1.2 when
the final cluster was created.

C. Experimental evaluation

The data, provided by Agoop Corp, include the trajectory
obtained from smartphone apps. It is a chronologically ordered
set of lat/long pairs. It contains not only start and end but
also every sampling point that is labeled as departure or
arrival. The sequence of mesh-ID is denoted as follows:
{start, {departure :, arrival :},{departure :,arrival
},...,end}. Departure is tagged when departing after staying
in a certain place for a certain period of time in smartphone
users. Since our sampling is based on the event that staying



at a place for a certain period of time, we don’t consider the
data while moving. However, it would be better to consider
the trip type for better prediction. For training the models, we
used the daily time-series history of smartphone users from
January to March 2021.

To perform an accurate analysis, we filtered the data of
users who have 30 or more series with position error of 100
m or less with respect to the original data. To reduce the
amount of calculation, we only analyzed the data of iPhone
users tagged as departures or arrivals. After the above filtering,
the total number of target users was 35,888. These data were
respectively divided into 8:1:1 ratios for training, validation,
and testing. Finally, we calculated the accuracy of the number
of correct predictions divided by the number of mesh-IDs in
the testing data.

For the clustering, if we use all the data for the mesh-ID
estimation, visualizing and interpreting the result becomes too
complicated. Thus, we filtered the data with a series length
of 200 or more, and the number of target users became 36.
We calculated the cophenetic correlation coefficient to show
how faithfully a dendrogram preserves the pairwise distances
among the original, unmodeled data points [4].

ITI. RESULTS
A. Last mesh prediction

Table I compares the last mesh ID prediction by the Mesh-
ID-only model (LSTM network and Bi-LSTM network) and
the Mesh-ID plus latitude/longitude model. The accuracy was
the higher when the Bi-LSTM network and latitude/longitude
information was added than the accuracy when training only
with Mesh-ID with LSTM network (baseline [2]). Although
for this last mesh prediction task, the accuracy was the highest
when the uni-directional and latitude/longitude information
was applied, bi-directional LSTM might be better for clus-
tering since it learns semantic similarity in both the forward
and backward direction of the non-uniform length trajectory
in terms of the fixed-size vectors. We think this accuracy
is meaningful although it is not very high. Because the
total number of mesh-IDs in Tokyo prefecture is 21939, for
example, the random prediction would obtain about 0.004%
of accuracy. We had another experiment in data of the Kyoto
area where the total number of mesh-IDs is around 8000. In
such data, we obtained more than 50% of accuracy [8].

A training curve was analyzed to investigate the effect of
adding latitude and longitude. The learning transitions for the
mesh-IDs are shown in Figures 2.

We confirmed that although the loss value for the mesh-
IDs gradually declined, the loss value for the latitude did
not improve after a large decrease in the early stages. This
shows that the latitude and longitude information was used
at the early stage of training and suggests that the mesh-ID
information might be used for training as it progressed.

Furthermore, comparing the transition of the cross-entropy
loss of the mesh-ID predictions for the models with lati-
tude/longitude (Figure 2) and without them (Figure 3), we
confirmed that the addition of latitude/longitude reduced the
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Fig. 2. Mesh-ID cross entropy loss in a model of Mesh-ID plus lati-
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loss faster in the early stage. The addition of the latitude and
longitude information, which explicitly indicates the relative
positional relationship between the mesh-IDs, fueled faster
decrease in the loss value in the early learning stages. To
confirm the validity, the training was conducted three times,
and the same tendency was confirmed in all three trials.

TABLE I
ACCURACIES IN TESTING DATA FOR EACH MODEL

Model Accuracy %
Mesh-ID-only (LSTM network) 21.5
Mesh-ID-only (Bi-LSTM network) 29.0
Mesh-ID plus latitude/longitude (LSTM network) 338
Mesh-ID plus latitude/longitude (Bi-LSTM network) 30.8

B. Clustering

Figure 4 shows the clustering results based on the distributed
representations obtained by the Bi-LSTM network of the
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Fig. 4. Clustering in a model of Mesh-ID plus latitude/longitude: four clusters

Mesh-ID plus the latitude/longitude model. The values of the
cophenetic correlation coefficient (0.525) are shown at the top
of the figure. When the clusters are divided at the distance
between clusters of 1.2 (the dotted line) for the model with
latitude and longitude added to the mesh-ID, they are divided
into four clusters.

IV. VISUALIZATIONS

We developed the system to process the daily data and
train the prediction model every day. The system visualizes
based on pre-computed data containing clustering numbers
and K-centroid users, which is calculated every day. We
calculated the centroid vectors by averaging the distributional
representations of each cluster. Then we calculated the nearest
K users from the centroid vectors based on cosine similarity.
Users can interactively change and filter some parameters
(e.g., time, the index of the cluster) on the system. Based
on the obtained clusters, we can see the actual route of a
representative users or all the users who belong to the clusters.
The demonstration visualized an example of the actual route
and different characteristics of obtained clusters. Different
users are represented by different colors. The system works
with python on Windows/Mac/Ubuntu.

Figure 5 shows a map of the top three nearest users to
the centroid vectors in cluster number 2. These users moved
around Itabashi-Ku and route 264. Figure 6 shows a map of
the top three nearest users to the centroid vectors in cluster
number 3. These users moved around Hachioji and Nishi-
Hachioji station.

V. CONCLUSION

We proposed Bi-LSTM network and integrated additional
geographical coordinates (latitude and longitude information)
into models to accurately predict the last mesh and constructed
clusters based on distributional representations.

Since the current method must conduct a heuristic analysis
while comparing the map information and the action sequence,

! S 1 y 0

= Iy o 2
i P2 55 Batie -
4 )
} e 15\t Route 254 (7, )
L 1L = N
///Q%}H P:'l ¢ 2\
R 4 )
g
e 3 1
A AT RS
< // Itabashi &
20 5 ALY RN
1% e (& %

=0 Gy 4 A

Fig. 5. Clusters number 2 with top three nearest

Fig. 6. Clusters number 3 with top three nearest

researchers need to observe it, which is time-consuming and
expensive. To solve this problem, an objective analysis method
must be studied that incorporates such landmarks as points of
interest (e.g., popular stores) and geographical features that are
likely to be useful for predicting human movement tendencies.
In the future, transportation types such as walking, driving,
etc., should be considered. We will explore the comparison
with other approaches in terms of modeling and clustering.
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