
Simultaneous Neural Machine Translation with Constituent Label
Prediction

Yasumasa Kano1 Katsuhito Sudoh1,2 Satoshi Nakamura1,2

1Nara Institute of Science and Technology (NAIST), Japan
2Center for Advanced Intelligence Project (AIP), RIKEN, Japan

{kano.yasumasa.kw4, sudoh, s-nakamura}@is.naist.jp

Abstract

Simultaneous translation is a task in which
translation begins before the speaker has fin-
ished speaking, so it is important to decide
when to start the translation process. However,
deciding whether to read more input words or
start to translate is difficult for language pairs
with different word orders such as English and
Japanese. Motivated by the concept of pre-
reordering, we propose a couple of simple de-
cision rules using the label of the next con-
stituent predicted by incremental constituent
label prediction. In experiments on English-
to-Japanese simultaneous translation, the pro-
posed method outperformed baselines in the
quality-latency trade-off.

1 Introduction

Simultaneous machine translation is a task in which
the machine starts outputting a translation before
reading the entire input sentence. This task is more
difficult than full-sentence translation because it
translates the initial part of a sentence without the
context of the latter part. This involves a trade-off
between delay and quality of the translation; using
a longer context should improve translation quality
at the cost of a longer delay, and vice versa. In
practice, we should control the latency so that it’s
not too large, but we may also need to allow a long
latency depending on the situation.

Most of the recent simultaneous translation mod-
els (Ma et al., 2019; Arivazhagan et al., 2019; Raf-
fel et al., 2017; Arivazhagan et al., 2019; Ma et al.,
2020b; Dalvi et al., 2018; Gu et al., 2017; Alinejad
et al., 2018; Cho and Esipova, 2016; Zheng et al.,
2020, 2019; Zhang et al., 2020) are based on neural
machine translation (NMT), although earlier stud-
ies were based on statistical machine translation
(Rangarajan Sridhar et al., 2013; Grissom II et al.,
2014; Oda et al., 2014, 2015). In simultaneous
NMT, there are two major approaches: those in
which a latency hyperparameter is given before the

training and those in which it is given at the time
of inference.

The former approach requires training a model
individually for each pre-defined latency setting,
while the latter approach uses a single model for
different latency conditions. Most human simulta-
neous interpreters would not need such long train-
ing to slightly adjust latency, while it takes much
more time to learn other languages to develop their
translation skill. Therefore, the latter approach is
closer to the learning process of human simultane-
ous interpreters.

wait-k (Ma et al., 2019) is a simple simultaneous
NMT method of the former approach that waits
k tokens before starting to translate. It also has
variants within the latter approach called test-time
wait-k, in which k is determined at the inference
time. wait-k had better performance than test-time
wait-k in that study’s experiments.

There is another method in the latter approach
that uses Meaningful Unit (Zhang et al., 2020).
In this model, chunk-based incremental decoding
is done at inference time by segmentation with
a boundary predictor. This model outperformed
baselines of the former approach. They refined
their basic boundary predictor to deal with sentence
pairs in which full-sentence translation needs long-
distance reordering. However, its training process
is very complicated: It first generates monotonic
translations, fine-tunes the NMT model with them,
then generates an oracle boundary with the model,
and finally fine-tunes a boundary-prediction model
based on BERT (Devlin et al., 2019).

Simultaneous translation is still difficult for lan-
guage pairs such as English-Japanese, which of-
ten require long-distance reordering. To tackle
the reordering problem, we propose an input-
segmentation method for simultaneous translation,
using a couple of simple rules and incremental pre-
diction of the label of a syntactic constituent com-
ing immediately after the input existing so far. This



Source sentence I bought a pen.
Monotonic translation watashi wa katta pen wo.
Full-sentence translation watashi wa pen wo katta.

Table 1: Translation from English (SVO) to Japanese (SOV)

Boundary prediction I / bought a pen.
Simultaneous translation watashi wa / pen wo katta.

Table 2: Example of English-to-Japanese translation using proposed method with segment-boundary prediction

is not dependent on the trained NMT. Therefore,
once we create it, it is reusable for other models.

Our proposed method is inspired by Head Final-
ization (Isozaki et al., 2010). Head Finalization re-
orders words of the source sentence before translat-
ing from an SVO (Subject-Verb-Object) language
to an SOV language in full-sentence statistical ma-
chine translation. This method moves a syntactic
head into a later position so that the word order of
the source language (e.g., English) becomes similar
to that of the target language (e.g., Japanese). This
enables us to monotonically translate from English,
which is a typical SVO language, to Japanese, a
typical SOV language.

Recent NMT models like Transformer (Vaswani
et al., 2017) works well on reordering in general,
so this kind of pre-reordering is not usually used.
However, simultaneous translation monotonically
reads input words one by one, and therefore the
difference in word order remains a problem. As
shown in Table 1, monotonic translation often be-
comes unnatural compared to full-sentence trans-
lation. The part “bought a pen” should be trans-
lated to pen wo katta by reversing the word order.
Therefore, after reading the word “bought,” it is
important to wait for future words without starting
to translate it. In this case, “I” is the last word that
does not require reordering. This word is regarded
as a segment boundary to start a partial translation.

Table 2 shows an example of our proposed seg-
mentation. Suppose we predict the next constituent
label as a verb phrase (VP) after reading an input
word “I.” This shows the possibility that the next
words should be reordered, so the “I” becomes
the boundary. Once detecting the boundary, NMT
model starts to translate “I” into “watashi wa.” Af-
ter that, the model restarts to read the remaining
input words, then translates “bought a pen” into
“pen wo katta.” The total output of simultaneous
translation based on the proposed segmentation is
the same as that of full-translation in this simple

example. By ensuring that the Verb and its Ob-
ject of the source sentence are included in a single
segment, it is possible to output translation while
maintaining the SOV-like structure of the target
language.

In experiments on English-to-Japanese simul-
taneous translation, the proposed method outper-
formed baselines in the quality-latency trade-off.

2 Related work

In statistical machine translation, there are several
approaches to finding boundaries of segments for si-
multaneous translation. Oda et al. (2014) proposed
a method to choose segment boundaries that max-
imize the BLEU score. Rangarajan Sridhar et al.
(2013) proposed segmentation strategies based on
lexical cues.

In NMT, there have been many studies on si-
multaneous translation. The amount of latency is
decided either before training or at inference time.
wait-k (Ma et al., 2019) is the simplest variant using
fixed latency: It simply waits for k tokens before
starting translation (Ma et al., 2019). The latency
policy can be learned from a parallel corpus to-
gether with an NMT model. MILk (Arivazhagan
et al., 2019) and other approaches (Raffel et al.,
2017; Ma et al., 2020b) used a latency-augmented
loss function in training to balance latency and ac-
curacy.

In contrast, the latency policy can be learned
with a pre-trained NMT model, such as test-time
wait-k (Ma et al., 2019) and STATIC-RW (Dalvi
et al., 2018). These have fixed policies that wait for
the fixed number of tokens before translation, but
there are other models that learn a more flexible
policy for a given pre-trained NMT model. Some
studies use reinforcement learning to learn an adap-
tive READ/WRITE policy (Grissom II et al., 2014;
Satija and Pineau, 2016; Gu et al., 2017; Alinejad
et al., 2018). Training by reinforcement learning
can be unstable depending on the condition. One



method that does not use reinforcement learning is
wait-if-* (Cho and Esipova, 2016), which translates
and segments jointly to maximize the translation
quality. Zheng et al. (2020) extended wait-k to an
adaptive policy by adaptively choosing the strategy
at inference. There is another method that gener-
ates oracle READ/WRITE actions by a pre-trained
NMT model and predicts actions using a neural
network model (Zheng et al., 2019). Meaningful
Unit (Zhang et al., 2020) works along the same
lines and has outperformed baselines such as MILk
and wait-k.

With respect to the use of syntactic clues for
simultaneous translation, Oda et al. (2015) pro-
posed a method to incrementally parse an incom-
plete sentence by predicting unseen syntactic con-
stituents on the right and left side of each segment.
They concatenated the predicted constituents and
the words in a segment and then input the result
into tree2string translation. They decided to wait
for more tokens or output the translation depending
on where the constituents appear in the translation
result.

Our proposed method is based on chunk-based
simultaneous translation using chunk boundary de-
tection with simple rules on next-constituent labels.
It basically segments an input before a verb phrase.
This is much simpler and easier to implement than
the work by Zhang et al. (2020) and Oda et al.
(2015).

3 Proposed Method

Figure 1 shows a step-by-step example of our pro-
posed method described in this section.

3.1 Standard Simultaneous Translation
A standard NMT for full sentences is represented
by the following equation:

pfull(Y |X) =

|Y |∏
t=1

P (yt|X, y<t), (1)

where X = x1, x2, ..., xn is an input sentence con-
sisting of n tokens and Y = y1, y2, ..., ym is a
predicted target language sentence consisting of m
tokens.

A simultaneous NMT uses only a prefix of the
input to predict a target language token:

psimul(Y |X) =

|Y |∏
t=1

P (yt|xg(t), y<t), (2)

where g(t) is a monotonic non-decreasing function
representing the number of read source tokens to
output the tth target token.

3.2 Chunk-based Simultaneous Translation
We use chunk-based incremental decoding for our
simultaneous translation model and a full-sentence
NMT model trained in a standard manner. How-
ever, at the time of inference, we translate the cur-
rent prefix upon chunk segmentation while keeping
the previously translated output unchanged.

Suppose we have already translated input
chunks Xi−1 = X1, X2, ..., Xi−1 into an out-
put prefix also represented by chunks: Ỹ i−1 =
Ỹ1, Ỹ2, ..., Ỹi−1, while translating the next input
chunk Xi into Ỹi. We restart the translation
from the beginning using all of the available input
chunksXi

1. This is similar to an approach called re-
translation that generates translations from scratch
for every new input word (Niehues et al., 2016; Ari-
vazhagan et al., 2020), but we apply forced decod-
ing to Ỹ i−1 in the output prefix. The probability
of the prefix Ỹ i can be denoted as follows:

pprefix(Ỹ
i|Xi) =

pfull(Ỹ
i−1|Xi)× pchunk(Ỹi|Xi, Ỹ i−1). (3)

The first term is calculated in the same way as the
standard full-sentence NMT in Eq. (1) through
forced decoding, and the second term is decom-
posed as follows, letting Ỹi = yi1, y

i
2, ..., y

i
|Ỹi|

:

pchunk(Ỹi|Xi, Ỹ i−1) =

|Ỹi|∏
t=1

P (yit|Xi, Ỹ i−1, yi<t).

(4)
This can be more efficient than an incremental

Transformer (Ma et al., 2019) that refreshes the
encoder for every input word, since our chunk-
based translation refreshes the encoder for every
input chunk, which usually consists of multiple
words.

3.3 Chunk Segmentation
We use constituent labels for our rule-based chunk
segmentation as follows.

3.3.1 Incremental Constituent Label
Prediction

We predict the label of a syntactic constituent com-
ing after a sentence prefix at the current time-step.
We call this process Incremental Constituent La-
bel Prediction (ICLP). Here, we define this next



ICLP

I  bought 

watashi wa

ICLPNMT

VP

ICLP

I I bought a I  bought  a pen

NN

I bought a pen  . 

ICLP

NP .

NMT

(src) I bought a pen. 
(prefix) watashi wa

watashi wa pen wo katta .

I   

g =1     g =2                                                 g = 3                  g = 4                            g = 5    

Result of full-sentence parser                     (S (NP (PRP I )) (VP (VBD bought) (NP (DT a) (NN pen))))

Output                      watashi wa                                                                                       pen wo katta.                    

Figure 1: One look-ahead ICLP gives constituent labels. When a boundary is detected based on the label and rules,
NMT starts to translate the source subsequence. The previous translation, which is red in the figure, is used as
prefix words for the next translation. EOS is omitted for simplicity in the figure.

segmentation You / can save time by / doing this .
constituent label VP VP NP PP S NP .
syntax tree (S (NP (PRP You)) (VP (MD can) (VP (VB save) (NP (NN time))

(PP (IN by) (S (VP (VBG doing) (NP (DT this))))))) (. .))

Table 3: Example result of one look-ahead ICLP with a minimum segment size of one.

constituent as the one coming next to the sentence
prefix in pre-order tree traversal. However, this
label prediction is not easy without observations
on the next constituent. In this work, we allow one
look-ahead, where we read one more word and pre-
dict the label of the constituent starting from that
word. This causes an additional delay by one word
but improves the prediction accuracy. Suppose we
have an input sequence W = [w1, w2, ..., w|W |].
The one look-ahead ICLP predicts the constituent
label ci upon the observation of wi, as follows:

ci = argmax
c′∈C

p(c′|w≤i), (5)

where C is a set of constituent labels. Only a prefix
word subsequence is fed into the ICLP, so previous
label predictions do not affect later ones.

We can train the ICLP model as a multi-
class classifier using a set of training instances
in the form of prefix-label pairs. One sen-
tence generates several instances for training
data: (w1, c1), (w1, w2, c2), (w1, w2, w3, c3),
(w1, w2, w3, w4, c4), and so on. We implemented
the ICLP model in two different ways using LSTM
(Hochreiter and Schmidhuber, 1997) and BERT
(Devlin et al., 2019).

3.3.2 Segmentation Rules
Table 3 shows an example of a result by the one
look-ahead ICLP. We use one basic and two sup-
plemental rules for chunk segmentation as follows.

• Segment the input coming just before con-
stituents labeled S and VP.

• If the previous label is S or VP, do not segment
the input.

• If the chunk is shorter than the minimum
length, do not segment the input.

In incremental translation from Subject-Verb-
Object to Subject-Object-Verb, the subject can be
translated before observing the verb coming next,
but the verb should be translated after observing the
object. Therefore, the chunk boundary should be
between the subject and verb, not between verb and
object. To achieve this, we employ a simple rule to
segment a chunk just before VP. We also include
S in the rule just as with VP because S (simple
declarative clause) often appears in the form of a
unary branch “(S (VP ...))” as shown in Table 3.

However, in cases such as “can save” in the ex-
ample, VP occurs again immediately after the seg-
mentation before “can.” The basic rule suggests
segmentation before “save,” but it does not seem
appropriate. Therefore, we introduce the minimum
segment size to avoid such over-segmentation as
a hyperparameter to control the accuracy-latency
trade-off. If the hyperparameter is larger than one,
the chunk segmentation after “You” in the example
does not occur.



4 Experimental setup

4.1 Dataset and preprocessing

We conducted experiments on English-Japanese
(En-Ja) translation. We also tried English-German
(En-De) translation to investigate the difference in
language pairs.

For En-Ja, the model was trained on 17.9 M
sentence pairs from WMT2020 and fine-tuned on
223 K sentence pairs from IWSLT2017. We used
5312 sentence pairs for the development set from
dev2010, tst2011, tst2012, and tst2013 of IWSLT.
We evaluated the model on 1442 sentence pairs
from dev2021 of IWSLT.

For En-De, the model was trained on 4.5 M
sentence pairs from WMT2014 and fine-tuned on
206 K sentence pairs from IWSLT2017. We used
5589 sentence pairs for the development set from
dev2010, tst2011, tst2012, and tst2013 of IWSLT.
We evaluated the model on 1,080 sentence pairs
from tst2015 of IWSLT.

We tokenized English and German sentences
with tokenizer.perl in Moses (Koehn et al.,
2007) and Japanese sentences with MeCab (Kudo,
2005). For each language pair, we used subwords
based on Byte Pair Encoding (BPE) (Sennrich et al.,
2016) with a shared vocabulary of 16 K entries. To
develop the subword vocabulary, we used all of
the in-domain training sentences (IWSLT) and one
million out-of-domain sentences (WMT).

We trained the ICLP models using Penn Tree-
bank 3 (Marcus et al., 1993) for training, exclud-
ing a randomly selected one percent of sentences
reserved for the development set. We used NAIST-
NTT TED Talk Treebank (Neubig et al., 2014) for
the evaluation set. The number of training, develop-
ment, and test instances (e.g., the number of labels
to be predicted) were 2.8 M, 27.9 K, and 21.9 K,
respectively. Note that multiple ICLP instances are
induced from what a single parse tree generates.

4.2 Model settings

We compared the following four models. All of
them were based on the Transformer-base (Vaswani
et al., 2017).

wait-k
The range of k is [2, 4, 6,..., 30].

Meaningful Unit
The hyperparameter is p, which is the thresh-
old of the probability of a boundary. The

ranges of p are [0.5, 0.1, 0.15,..., 0.95],
[0.99, 0.991, 0.992,..., 0.999], and [0.9991,
0.9992,..., 0.9999]. Monotonic translation
of Meaningful Unit was generated from the
fine-tuning dataset by the fine-tuned NMT
model. We used their refined Meaningful Unit
method, which improved the translation qual-
ity at low latency (Zhang et al., 2020)1. They
used a two look-ahead boundary predictor in
their experiments. We additionally tried a one
look-ahead predictor because it is not certain
how many future words should be used for the
predictor.

Fixed-size segmentation This simply segments
an input with a fixed length specified by a
hyperparameter f, which means the boundary
comes every f subwords or words. The range
of f is [2, 4, 6,..., 30] for words and [4, 8,
12,..., 60] for subwords.

ICLP
The hyperparameter is m, which means the
minimum number of words in one segment.
The range of m is [1, 2, 3, . . . , 29].

We controlled hyperparameters to adapt to a
wide range of latency. The hyperparameter is given
both in the training and at the inference time for
wait-k, but it is given only at the inference time
for other models. Therefore, we trained the wait-k
model for each kwhile in other approaches a single
NMT model is commonly used.

We used fairseq (Ott et al., 2019) to implement
these models and basically followed the official
baseline for IWSLT 20212,3 to set the hyperparam-
eters. We saved checkpoints every 5000 updates
for pre-training and every 200 updates for fine-
tuning. Other hyperparameters were the same for
pre-training and fine-tuning. We stopped training
early with patience 4. The max-tokens for the mini
batch size was 4096, and weights were updated

1Zhang et al. (2020) removed the monotonic translations
with a lower score than full-sentence translation. However, it is
rare for a monotonic translation to have a higher score than full-
sentence translation. Consequently, few sentences remained in
our setting. Therefore, we improved the translation quality by
preventing over-translation instead of removing it. Once the
same words are output four times continuously or the target
length becomes four times longer than the source length, we
expand the source prefix.

2https://github.com/pytorch/fairseq/
blob/master/examples/simultaneous_
translation/docs/enja-waitk.md

3https://github.com/pytorch/fairseq/
issues/346

https://github.com/pytorch/fairseq/blob/master/examples/simultaneous_translation/docs/enja-waitk.md
https://github.com/pytorch/fairseq/blob/master/examples/simultaneous_translation/docs/enja-waitk.md
https://github.com/pytorch/fairseq/blob/master/examples/simultaneous_translation/docs/enja-waitk.md
https://github.com/pytorch/fairseq/issues/346
https://github.com/pytorch/fairseq/issues/346


every 4 mini batches. We set the learning rate to
0.0007 and trained the model on a single GPU. The
last three models used the same NMT model. We
used beam search within chunks in a standard way
and chose 1-best hypotheses at the end of chunk
translation. The beam size was four for the chunk-
based and full-sentence models. We used greedy
decoding for wait-k.

We implemented two types of ICLP models as
mentioned earlier. For the LSTM-based ICLP, we
used two-layered unidirectional LSTMs to encode
an input sentence with a fully connected layer
for the constituent label prediction. The numbers
of dimensions for embedding and hidden states
are 512. We tokenized English sentences using
tokenizer.perl in Moses and Byte Pair En-
coding (Sennrich et al., 2016) with a vocabulary of
16 K entries. For the BERT-based ICLP, we used a
BERT-based classifier with an additional fully con-
nected layer over the [CLS] token, implemented
using Huggingface transformers (Wolf et al., 2020)
with a pre-trained model bert-base-uncased
and the corresponding subword tokenizer. For both
models, the input was a subword sequence, so the
constituent label prediction was made upon the
observation of an end-of-word subword. The fol-
lowing training conditions were commonly applied
to both models: learning rate of 5e-5, training batch
size of 512 instances, checkpoints saved at the end
of every epoch, and early stopping with the pa-
tience of three epochs.

4.3 Evaluation

We used SimulEval (Ma et al., 2020a) to evaluate
the quality and latency of simultaneous translation.
BLEU (Papineni et al., 2002) was used to evaluate
quality. We used Average Lagging (AL) (Ma et al.,
2019) to evaluate the latency. AL is widely used
and defined by the following equation:

ALg(X,Y ) =
1

τg(|X|)

τg(|X|)∑
t=1

g(t)− t− 1

γ
. (6)

τg(|X|) is the decoding step when the source sen-
tence finishes. It counts latency up to the τg(|X|)
th target token predicted just after reading the final
source token. γ is defined as |Y |/|X|. When the
source length |X| equals target length |Y |, AL of
wait-k equals its k. In this experiment, the latency
was calculated on character level for En-Ja, and
word level for En-De.

2 4 6 8 10 12 14 16
AL

8

10

12

14

16

18

BL
EU waitk

MU1
MU2
fixed (subword)
fixed (word)
VP (BERT)
VP+S (BERT)
full-sentence

Figure 2: Scatter plot of BLEU and AL (En-Ja). MU1
and MU2 correspond to Meaningful Unit with one and
two look-ahead respectively.

2 4 6 8 10 12 14 16
AL

1.0

1.1

1.2

1.3

1.4

ra
tio

waitk
MU1
MU2
fixed (subword)
fixed (word)
VP (BERT)
VP+S (BERT)
full-sentence

Figure 3: Scatter plot of length ratio and AL (En-Ja)

4.4 Results

We illustrate the results of English-Japanese trans-
lation in Figure 2. Our proposed method outper-
formed baselines in a wide range of AL. Most of
the points of the proposed method appear to the
upper-left of the other methods, thus showing the
best performance. We compared the use of seg-
mentation rules based on VP and VP+S. The points
shifted to the left by adding S as boundary be-
cause it increased the number of boundaries and
decreased latency. Although we tried the different
look-ahead lengths of one and two for the boundary
predictor of Meaningful Unit, our proposed model
outperformed both of these models in a wide range
of latency.

The difference between wait-k and the models
using the full-sentence translation model was large
in the quality-latency trade-off. Surprisingly, the
fixed-size segmentation was also effective. When
the segment size was fixed, it did not make a large



0 10 20 30 40 50 60 70
segment length

0

200

400

600

800

1000

1200

fre
qu

en
cy

Figure 4: Segment length distribution of fixed-size seg-
mentation with 16 subwords for AL 7.16 (En-Ja test)

Label AL BLEU
Fixed (16 subwords) 7.16 16.34
1 look-ahead MU 7.26 16.53
1 look-ahead ICLP (VP+S) 7.23 17.22

Table 4: BLEU results for AL close to 7

difference in the result, regardless of whether the
unit was a subword or a word.

5 Analysis

5.1 Length ratio
Figure 3 shows the length ratios of translation hy-
potheses and references with different latency pa-
rameters. Too large a ratio decreases the BLEU
score and makes the content delivery difficult both
in text (subtitles) and speech (text-to-speech).

The length ratio of wait-k was unstable com-
pared to other models because it was trained indi-
vidually for each k.

Except for wait-k, the length ratios were large
in the range of small latency, probably due to the
condition mismatch between training and inference.
These NMT models were trained on full sentences,
but they were used to translate short segments in
the inference. Therefore, they tend to output longer
segment translations than expected. Their ratios
gradually decrease as AL increases and the length
of segments becomes closer to the length of full
sentences.

5.2 Segment length distribution
Figures 4,5 and 6 show the distributions of source
segment length in the En-Ja test set for which AL
is close to 7.2. Table 4 shows their corresponding
AL and BLEU of each model. The length was

0 10 20 30 40 50 60 70
segment length

0

200

400

600

800

1000

1200

fre
qu

en
cy

Figure 5: Segment length distribution of one look-
ahead Meaningful Unit for AL 7.26 (En-Ja test)

0 10 20 30 40 50 60 70
segment length

0

200

400

600

800

1000

1200
fre

qu
en

cy

Figure 6: Segment length distribution of one look-
ahead ICLP model dividing with label S and VP for
AL 7.23 (En-Ja test)

calculated as the number of subwords in a segment,
and the previous segment was concatenated to the
next segment when the previous segment has no
translation output.

Segmentation with fixed size 16 has some seg-
ments shorter than size 16 because the sentence
length is not always a multiple of 16.

Compared with ICLP model, Meaningful Unit
has wider distribution, and the most segments con-
sist of two subwords. These short segments have
less context information and can output longer seg-
ment translation than expected. This would be one
of the reason why our proposed method outper-
formed Meaningful Unit.

5.3 Controlling latency
In Figures 7 and 8, each plot is labeled by the corre-
sponding value of the hyperparameter of inference.
It is difficult to control latency for Meaningful Unit
as shown in the figure. BLEU scores of hyperpa-



2 4 6 8 10 12 14 16
AL

10

12

14

16

BL
EU

0.9
0.95

0.99

0.9995 0.9996

MU1

Figure 7: BLEU and AL with different chunk segmen-
tation thresholds for Meaningful Unit

4 6 8 10 12 14
AL

15.5

16.0

16.5

17.0

17.5

BL
EU

1

3

5

7
9

11 13 15

17 19
21 2325

2729

VP (BERT)

Figure 8: BLEU and AL with different chunk size
thresholds for the proposed method

rameters from 0.9996 to 0.9999 were also the same
as that of a full-sentence translation model.

In contrast, our proposed method can easily con-
trol latency because it uses the minimum chunk
length as an intuitive hyperparameter to adjust it.

5.4 How many words to wait
Compared with the fixed-size segmentation model,
our proposed model and Meaningful Unit have a
disadvantage in AL, which is caused by the look-
ahead approach. Despite this disadvantage, our
proposed approach outperformed the fixed-size seg-
mentation in a wide range of AL. This means the
benefit of looking at the future words and finding
a better boundary outweighed the above disadvan-
tage.

5.5 Performance of ICLP
Tables 5 and 6 show the results in precision and
recall of the one look-ahead ICLP models. The
LSTM-based ICLP was better in precision, but the

Label Precision Recall F1
NP 0.90 0.94 0.92
VP 0.89 0.97 0.93
NN 0.95 0.97 0.96
, 0.98 1.00 0.99
PP 0.85 0.93 0.89
S 0.87 0.52 0.65

Table 5: Results of label prediction (BERT)

Label Precision Recall F1
NP 0.85 0.89 0.87
VP 0.91 0.94 0.92
NN 0.93 0.92 0.92
, 0.98 1.00 0.99
PP 0.78 0.94 0.86
S 0.84 0.52 0.64

Table 6: Results of label prediction (LSTM)

Label Precision Recall F1
NP 0.62 0.85 0.72
VP 0.75 0.80 0.78
NN 0.60 0.78 0.68
, 0.41 0.34 0.37
PP 0.50 0.47 0.48
S 0.77 0.62 0.69

Table 7: Results of label prediction (BERT) without
look-ahead

BERT-based ICLP was better in recall for VP. Fig-
ure 9 compares them in the downstream simultane-
ous translation. The lines connected by dots nearly
overlapped, so there was no large difference in
BLEU score. LSTM is more efficient than BERT
in incremental processes, so it is suitable for practi-
cal usage.

Table 7 shows the results by the ICLP model
without one look-ahead approach. Compared with
Table 5, the scores are much lower. One look-
ahead approach was important to improve its per-
formance.

5.6 En-De translation

We conducted additional experiments in En-De
translation to investigate the performance in a dif-
ferent language. German is another language with
different word order from English especially in
verbs and also suffers from the reordering problem.
Figure 10 shows the results. This is almost the op-
posite of the results of the En-Ja translation. The



4 6 8 10 12 14
AL

15.5

16.0

16.5

17.0

17.5

BL
EU

VP (LSTM)
VP (BERT)
full-sentence

Figure 9: Comparison between the use of LSTM- and
BERT-based ICLP

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
AL

10

15

20

25

30

BL
EU waitk

MU1
MU2
fixed (subword)
fixed (word)
VP (BERT)
VP+S (BERT)
full-sentence

Figure 10: Scatter plot of BLEU and AL (En-De)

proposed boundary decision rules used for En-Ja
translation were not so effective for En-De transla-
tion, so we need to find other rules to detect bound-
aries in En-De translation.

6 Conclusion

We proposed a novel segmentation method for si-
multaneous translation that uses simple rules and
ICLP. Our proposed method is simple, and it outper-
formed the baselines in the quality-latency trade-off
in En-Ja translation. On the other hand, the pro-
posed method did not work effectively in En-De
translation due to the smaller word order differ-
ences than those in En-Ja translation.

In future work, we expect to extract segmenta-
tion rules automatically and apply these rules to
other language pairs as well.

7 Acknowledgements

Part of this work was supported by JSPS
KAKENHI Grant Numbers JP21H05054 and

JP21H03500.

References
Ashkan Alinejad, Maryam Siahbani, and Anoop Sarkar.

2018. Prediction improves simultaneous neural ma-
chine translation. In Proceedings of the 2018 Con-
ference on Empirical Methods in Natural Language
Processing, pages 3022–3027, Brussels, Belgium.
Association for Computational Linguistics.

Naveen Arivazhagan, Colin Cherry, Wolfgang
Macherey, Chung-Cheng Chiu, Semih Yavuz,
Ruoming Pang, Wei Li, and Colin Raffel. 2019.
Monotonic infinite lookback attention for simulta-
neous machine translation. In Proceedings of the
57th Annual Meeting of the Association for Com-
putational Linguistics, pages 1313–1323, Florence,
Italy. Association for Computational Linguistics.

Naveen Arivazhagan, Colin Cherry, Wolfgang
Macherey, and George Foster. 2020. Re-translation
versus streaming for simultaneous translation. In
Proceedings of the 17th International Conference
on Spoken Language Translation, pages 220–227,
Online. Association for Computational Linguistics.

Kyunghyun Cho and Masha Esipova. 2016. Can neu-
ral machine translation do simultaneous translation?
arXiv preprint arXiv:1606.02012.

Fahim Dalvi, Nadir Durrani, Hassan Sajjad, and
Stephan Vogel. 2018. Incremental decoding and
training methods for simultaneous translation in neu-
ral machine translation. In Proceedings of the 2018
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, Volume 2 (Short Papers),
pages 493–499, New Orleans, Louisiana. Associa-
tion for Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Alvin Grissom II, He He, Jordan Boyd-Graber, John
Morgan, and Hal Daumé III. 2014. Don’t until
the final verb wait: Reinforcement learning for si-
multaneous machine translation. In Proceedings of
the 2014 Conference on Empirical Methods in Nat-
ural Language Processing (EMNLP), pages 1342–
1352, Doha, Qatar. Association for Computational
Linguistics.

Jiatao Gu, Graham Neubig, Kyunghyun Cho, and Vic-
tor O.K. Li. 2017. Learning to translate in real-time
with neural machine translation. In Proceedings of
the 15th Conference of the European Chapter of the

https://doi.org/10.18653/v1/D18-1337
https://doi.org/10.18653/v1/D18-1337
https://doi.org/10.18653/v1/P19-1126
https://doi.org/10.18653/v1/P19-1126
https://doi.org/10.18653/v1/2020.iwslt-1.27
https://doi.org/10.18653/v1/2020.iwslt-1.27
https://doi.org/10.18653/v1/N18-2079
https://doi.org/10.18653/v1/N18-2079
https://doi.org/10.18653/v1/N18-2079
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.3115/v1/D14-1140
https://doi.org/10.3115/v1/D14-1140
https://doi.org/10.3115/v1/D14-1140
https://aclanthology.org/E17-1099
https://aclanthology.org/E17-1099


Association for Computational Linguistics: Volume
1, Long Papers, pages 1053–1062, Valencia, Spain.
Association for Computational Linguistics.

Sepp Hochreiter and J¨urgen Schmidhuber. 1997.
Long short-term memory. Neural Computation.

Hideki Isozaki, Katsuhito Sudoh, Hajime Tsukada, and
Kevin Duh. 2010. Head finalization: A simple re-
ordering rule for SOV languages. In Proceedings
of the Joint Fifth Workshop on Statistical Machine
Translation and MetricsMATR, pages 244–251, Up-
psala, Sweden. Association for Computational Lin-
guistics.

Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris
Callison-Burch, Marcello Federico, Nicola Bertoldi,
Brooke Cowan, Wade Shen, Christine Moran,
Richard Zens, Chris Dyer, Ondřej Bojar, Alexandra
Constantin, and Evan Herbst. 2007. Moses: Open
source toolkit for statistical machine translation. In
Proceedings of the 45th Annual Meeting of the As-
sociation for Computational Linguistics Companion
Volume Proceedings of the Demo and Poster Ses-
sions, pages 177–180, Prague, Czech Republic. As-
sociation for Computational Linguistics.

Taku Kudo. 2005. Mecab : Yet another part-of-speech
and morphological analyzer. http://mecab.
sourceforge.net/.

Mingbo Ma, Liang Huang, Hao Xiong, Renjie Zheng,
Kaibo Liu, Baigong Zheng, Chuanqiang Zhang,
Zhongjun He, Hairong Liu, Xing Li, Hua Wu, and
Haifeng Wang. 2019. STACL: Simultaneous trans-
lation with implicit anticipation and controllable la-
tency using prefix-to-prefix framework. In Proceed-
ings of the 57th Annual Meeting of the Association
for Computational Linguistics, pages 3025–3036,
Florence, Italy. Association for Computational Lin-
guistics.

Xutai Ma, Mohammad Javad Dousti, Changhan Wang,
Jiatao Gu, and Juan Pino. 2020a. SIMULEVAL: An
evaluation toolkit for simultaneous translation. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 144–150, Online. Associa-
tion for Computational Linguistics.

Xutai Ma, Juan Pino, James Cross, Liezl Puzon, and
Jiatao Gu. 2020b. Monotonic multihead attention.
In ICLR 2020.

Mitchell P. Marcus, Beatrice Santorini, and Mary Ann
Marcinkiewicz. 1993. Building a large annotated
corpus of English: The Penn Treebank. Computa-
tional Linguistics, 19(2):313–330.

Graham Neubig, Katsuhito Sudoh, Yusuke Oda, Kevin
Duh, Hajime Tsukada, and Masaaki Nagata. 2014.
The NAIST-NTT TED talk treebank. In Proceed-
ings of the 11th International Workshop on Spoken
Language Translation (IWSLT), Lake Tahoe, USA.

Jan Niehues, Thai Son Nguyen, Eunah Cho, Thanh-Le
Ha, Kevin Kilgour, Markus Müller, Matthias Sper-
ber, Sebastian Stüker, and Alex Waibel. 2016. Dy-
namic transcription for low-latency speech transla-
tion. In Interspeech 2016, pages 2513–2517.

Yusuke Oda, Graham Neubig, Sakriani Sakti, Tomoki
Toda, and Satoshi Nakamura. 2014. Optimizing seg-
mentation strategies for simultaneous speech transla-
tion. In Proceedings of the 52nd Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 2: Short Papers), pages 551–556, Baltimore,
Maryland. Association for Computational Linguis-
tics.

Yusuke Oda, Graham Neubig, Sakriani Sakti, Tomoki
Toda, and Satoshi Nakamura. 2015. Syntax-based
simultaneous translation through prediction of un-
seen syntactic constituents. In Proceedings of the
53rd Annual Meeting of the Association for Compu-
tational Linguistics and the 7th International Joint
Conference on Natural Language Processing (Vol-
ume 1: Long Papers), pages 198–207, Beijing,
China. Association for Computational Linguistics.

Myle Ott, Sergey Edunov, Alexei Baevski, Angela
Fan, Sam Gross, Nathan Ng, David Grangier, and
Michael Auli. 2019. fairseq: A fast, extensible
toolkit for sequence modeling. In Proceedings of
the 2019 Conference of the North American Chap-
ter of the Association for Computational Linguistics
(Demonstrations), pages 48–53, Minneapolis, Min-
nesota. Association for Computational Linguistics.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic eval-
uation of machine translation. In Proceedings of
the 40th Annual Meeting of the Association for Com-
putational Linguistics, pages 311–318, Philadelphia,
Pennsylvania, USA. Association for Computational
Linguistics.

Colin Raffel, Minh-Thang Luong, Peter J Liu, Ron J
Weiss, and Douglas Eck. 2017. Online and lin-
eartime attention by enforcing monotonic align-
ments. In Proceedings of the 34th International
Conference on Machine Learning-Volume 70, pages
2837–2846.

Vivek Kumar Rangarajan Sridhar, John Chen, Srinivas
Bangalore, Andrej Ljolje, and Rathinavelu Chengal-
varayan. 2013. Segmentation strategies for stream-
ing speech translation. In Proceedings of the 2013
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 230–238, Atlanta,
Georgia. Association for Computational Linguistics.

Harsh Satija and Joelle Pineau. 2016. Simultaneous
machine translation using deep reinforcement learn-
ing. In Workshops of International Conference on
Machine Learning, page 110–119.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Neural machine translation of rare words

https://aclanthology.org/W10-1736
https://aclanthology.org/W10-1736
https://aclanthology.org/P07-2045
https://aclanthology.org/P07-2045
 http://mecab.sourceforge.net/
 http://mecab.sourceforge.net/
https://doi.org/10.18653/v1/P19-1289
https://doi.org/10.18653/v1/P19-1289
https://doi.org/10.18653/v1/P19-1289
https://doi.org/10.18653/v1/2020.emnlp-demos.19
https://doi.org/10.18653/v1/2020.emnlp-demos.19
https://aclanthology.org/J93-2004
https://aclanthology.org/J93-2004
http://www.phontron.com/paper/neubig14iwslt.pdf
https://doi.org/10.21437/Interspeech.2016-154
https://doi.org/10.21437/Interspeech.2016-154
https://doi.org/10.21437/Interspeech.2016-154
https://doi.org/10.3115/v1/P14-2090
https://doi.org/10.3115/v1/P14-2090
https://doi.org/10.3115/v1/P14-2090
https://doi.org/10.3115/v1/P15-1020
https://doi.org/10.3115/v1/P15-1020
https://doi.org/10.3115/v1/P15-1020
https://doi.org/10.18653/v1/N19-4009
https://doi.org/10.18653/v1/N19-4009
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://aclanthology.org/N13-1023
https://aclanthology.org/N13-1023
https://doi.org/10.18653/v1/P16-1162


with subword units. In Proceedings of the 54th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1715–
1725, Berlin, Germany. Association for Computa-
tional Linguistics.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszko-reit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and andIllia Polosukhin. 2017. Attention is
all you need. CoRR, page Vol.abs/1706.03762.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander Rush. 2020. Trans-
formers: State-of-the-art natural language process-
ing. In Proceedings of the 2020 Conference on Em-
pirical Methods in Natural Language Processing:
System Demonstrations, pages 38–45, Online. Asso-
ciation for Computational Linguistics.

Ruiqing Zhang, Chuanqiang Zhang, Zhongjun He, Hua
Wu, and Haifeng Wang. 2020. Learning adaptive
segmentation policy for simultaneous translation. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 2280–2289, Online. Association for Computa-
tional Linguistics.

Baigong Zheng, Kaibo Liu, Renjie Zheng, Mingbo Ma,
Hairong Liu, and Liang Huang. 2020. Simultane-
ous translation policies: From fixed to adaptive. In
Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 2847–
2853, Online. Association for Computational Lin-
guistics.

Baigong Zheng, Renjie Zheng, Mingbo Ma, and Liang
Huang. 2019. Simpler and faster learning of adap-
tive policies for simultaneous translation. In Pro-
ceedings of the 2019 Conference on Empirical Meth-
ods in Natural Language Processing and the 9th In-
ternational Joint Conference on Natural Language
Processing (EMNLP-IJCNLP), pages 1349–1354,
Hong Kong, China. Association for Computational
Linguistics.

https://doi.org/10.18653/v1/P16-1162
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-main.178
https://doi.org/10.18653/v1/2020.emnlp-main.178
https://doi.org/10.18653/v1/2020.acl-main.254
https://doi.org/10.18653/v1/2020.acl-main.254
https://doi.org/10.18653/v1/D19-1137
https://doi.org/10.18653/v1/D19-1137

