Multilingual Machine Translation Evaluation Metrics Fine-tuned on Pseudo-Negative Examples for WMT 2021 Metrics Task

Kosuke Takahashil, Yoichi Ishibashil, Katsuhito Sudoh 12, Satoshi Nakamural

INara Institute of Science and Technology (NAIST), 2PRESTO, Japan Science and Technology Agency
{takahashi.kosuke.thOQ, ishibashi.yoichi.ir3, sudoh, s-nakamura}@is.naist.jp

— Abstract

* Previous studies (Takahashi et al., 2020 and Sudoh et al., 2021) and empirical experiments show that BERT-family model based metrics suffer from evaluating low quality translations.
 We prepared a pseudo-negative corpus for fine-tuning a metric model beforehand by transferring words’ attributes into reversed ones.
* Experiments on the development set showed that models trained on WMT15-17/WMT18-20 and the pseudo negatives performed better than the plain ones.
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— Results on WMT20’s Segment-Level MQM Human Evaluation
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 C-SPECpn of WMT15-17 and WMT18-20 overcame the plain models. Pearson’s correlation for each small MQM score range
* Among the models, the best score was archived by C-SPECpn trained on WMT18-20.
 C-SPECpn of WMT15-17 and WMT18-20 performed better in the MQM range of [-25.0, -5.0) and [-0.1, 0.0].
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