

USING LOCAL PHRASE DEPENDENCY STRUCTURE INFORMATION IN NEURAL SEQUENCE-TO-SEQUENCE SPEECH SYNTHESIS

Nobuyoshi Kaiki†, Sakriani Sakti†‡ and Satoshi Nakamura†‡

† Nara Institute of Science and Technology, Japan, ‡ RIKEN AIP, Japan

Background

[Background]

- → Neural networks have made it possible to produce speech synthesis with very high quality
- → Naturalness of the prosody is insufficient when using the speech synthesis for reading novels or storybooks

[Objective]

Generate more natural prosody that reflects the speaker's intention using local dependency phrase structure

Table 1 Prosodic Symbols (Accent) [1]

Prosodic symbols
^
!
#
(
?
<u>—</u>

Input: 警官は 走って 逃げる 泥棒を 追いかけた。

phoneme + accent information:

ke^ekaNwa# ha^shi!clte#ni^ge!ru#
do^robooo#o^ikake!ta(

This sentence has two syntax tree and different intonations

^[1] K. Kurihara, N. Seiyama, T. Kumano, "Prosodic Features Control by Symbols as Input of Sequence-to-Sequence Acoustic Modeling for Neural TTS," IEICE Trans. Inf. & Syst., Vol.E104–D, no2, Feb. 2021

Proposed Approach

[Proposed Approach] Using local phrase dependency

- → **Proposed 1**: With prosodic symbols that represent the depth at phrase boundaries
- → **Proposed 2**: With prosodic symbols that reflects a folded model of phrase & accent components based on prosodic generation control mechanism

Ap PHRASE COMMANDS	PHRASE COMPONEN CONTROL MECHANISM IO	ors $\operatorname{og}_{e} F_{0}(t)$
Aa ACCENT COMMANDS	logeFb Ga (t) ACCENT CONTROL MECHANISM ACCENT COMPONEN	FUNDAMENTAL FREQUENCY CONTOUR TS Fujisaki Model[2]

Basel	i	n	e
--------------	---	---	---

	Prosodic symbols
Initial rising	^
Accent nucleus	!
Accent phrase boundary	#
Sentence end (Declarative)	(
Sentence end (Interrogative)	?
Pause	_

Proposed 1

^ ! *1 #2 #3
! #2 #2
11 #2 #2
[‡] 1, #2, #3,
#4, #5, #6

Proposed 2

	Prosodic symbols
Accent command (rising)	/
Accent command (falling)	¥
Phrase command	#2, #3,
(syntactic dependency distance)	#4, #5, #6

Punctuation mark

Input: 警官は 走って 逃げる 泥棒を 追いかけた

Phoneme: ke eka N wa ha shi clte ni ge ru do robooo o ikake ta Baseline: ke^eka N wa # ha^shi!clte# ni^ge!ru# do^robooo# o^ikake!ta(
Proposed1(accent+local phrase dependency structure):

Syntax tree 1: ke^ekaNwa#4ha^shi!clte#1ni^ge!ru#1do^robooo#1o^ikake!ta
Syntax tree 2: ke^ekaNwa#1ha^shi!clte#3ni^ge!ru#1do^robooo#1o^ikake!ta

Proposed2 (based on the processes of generating the F0 contour):

Syntax tree 1: ke/ekaNwa¥#4ha/shi¥clte ni/ge¥ru do/robooo¥ o/ikake¥ta Syntax tree 2: ke/ekaNwa¥ ha/shi¥clte#3ni/ge¥ru do/robooo¥ o/ikake¥ta

syntactic dependency distance:

[2] H. Fujisaki, S. Nagashima, "A model for Synthesis of pitch contours of connected speech," Annual Report of Engineering Research Institute, University of Tokyo, Vol.28, pp.53-60, 1969

Speech Database and Pre-processing

[Speech Database]

- → Arabian Nights (reading a story)
- → Single speaker
- \rightarrow 11,615 sentences
- \rightarrow 26 hours 26 minutes

[Text processing]

```
Text ⇒ Open Jtalk[3] ⇒ Identification of phoneme, Accent phrases.

Morphological analysis results
```

Morphological Analysis Results \Rightarrow Chabocha[4] \Rightarrow Syntax tree

[Speech processing]

Sentences \Rightarrow CTC Segmentation[5] \Rightarrow split sentence

Sentences \Rightarrow **Montreal-Forced-Aligner**[6] \Rightarrow phoneme segmentation

^{[3] &}quot;Open JTalk," http://open-jtalk.sourceforge.net/

^{[4] &}quot;CaboCha/南瓜: Yet Another Japanese Dependency Structure Analyzer, "http://taku910.github.io/cabocha/

^[5] J. Nishitoba, "Introduction to CTC Segmentation," https://tech.retrieva.jp/entry/2020/10/02/143338 (in Japanese)

^{[6] &}quot;Montreal Forced Aligner," https://montrealcorpustools.github.io/Montreal-Forced-Aligner/

Synthesized Speech: Pause Generation

Comparison of phonemes and prosodic symbols based on two syntax tree candidates

→ The policeman ran and chased the thief who ran away

Synthesized Speech: F0 Resetting

Subjective Evaluation of Naturalness

[Participants]

- → 13 native speakers of Japanese
- → Listened to the synthesized speech and judged naturalness of prosody

[Evaluation sentences]

- → Select 20 sentences from 250 sentences in the created DB
- → AB Test: 60 pair speech utterances

Baseline vs Proposed 1: 20 sentences * 2 Baseline vs Proposed 2: 20 sentences * 2

Proposed1 vs Proposed 2: 20 sentences * 2

[Results]

- → Proposed methods were judged to be significantly more natural than the baseline
 - Proposed1 > Baseline 68% > 32%
 - Proposed2 > Baseline 62% > 38%
- → No significant difference between proposed model 1 and 2 (significant difference 5%)

Conclusion

[Purpose]

To synthesize more natural prosody

→ Incorporated new prosody symbol of syntactic dependency for neural end-to-end TTS

[Method]

Proposed two models:

- 1) a model with prosodic symbols representing the syntactic dependency distance at the phrase boundaries
- 2) a model with prosodic symbols that reflect a prosodic generation control mechanism

[Results]

- → Both proposed models could successfully synthesize speech sounds that reflect syntactic structures
 - 1) pause insertion that indicates the phrase boundary
 - 2) F0 resetting at the right-branching boundaries
- → Subjective evaluation Synthesize speech from two proposed models were more natural than the baseline