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Abstract
End-to-end speech translation (ST) translates source language
speech directly into target language without an intermediate
automatic speech recognition (ASR) output, as in a cascading
approach. End-to-end ST has the advantage of avoiding error
propagation from the intermediate ASR results, but its perfor-
mance still lags behind the cascading approach. A recent effort
to increase performance is multi-task learning using an auxil-
iary task of ASR. However, previous multi-task learning for
end-to-end ST using cross entropy (CE) loss in ASR-task tar-
gets one-hot references and does not consider ASR confusion.
In this study, we propose a novel end-to-end ST training method
using ASR loss against ASR posterior distributions given by
a pre-trained model, which we call ASR posterior-based loss.
The proposed method is expected to consider possible ASR
confusion due to competing hypotheses with similar pronuncia-
tions. The proposed method demonstrated better BLEU results
in our Fisher Spanish-to-English translation experiments than
the baseline with standard CE loss with label smoothing.
Index Terms: end-to-end speech translation, multi-task learn-
ing, spoken language translation

1. Introduction
Speech translation (ST) systems translate source language
speech to target language text. A simple approach is to cas-
cade automatic speech recognition (ASR) and machine transla-
tion (MT), but this propagates ASR errors to MT. It is crucial
to develop a robust MT system against ASR errors. A major
approach to tackling this problem is to consider many ASR hy-
potheses in N-best and lattice form [1].

Recent ST studies attempt end-to-end ST without an ex-
plicit ASR module to obtain source language speech transcripts.
The end-to-end approach is promising because it is basically
free from ASR error propagation. However, the translation per-
formance of a simple end-to-end ST trained using source lan-
guage speech and target language translations is usually worse
than a cascade ST. Multi-task learning [2, 3, 4, 5] is a promis-
ing approach to filling the gap between cascade and end-to-end
ST by the use of an additional ASR-based loss function during
training as an ASR subtask. Loss function for the ASR-task is
usually implemented using cross entropy (CE) loss against ref-
erence transcriptions. However, the previous multi-task learn-
ing for end-to-end ST does not consider ASR confusion in ASR-
task training. Since our objective is to obtain correct transla-
tions, we do not always have to make such hard decisions in an
auxiliary ASR-task.

In this study, we propose a novel training method for end-
to-end ST using ASR loss against given by a pre-trained ASR
model as reference for prediction in an ASR subtask. We call
this loss function ASR posterior-based loss. We can include
possible ASR confusion using the ASR posterior-based loss,

while the standard CE loss only focuses on single reference
transcripts.

This work is motivated by the work of Osamura et al. [6],
which proposed robust cascade ST using ASR word posterior
distributions as input for considering ASR output confusion.
Our work extends this into the recent multi-task end-to-end ST
framework. From another perspective, Chuang et al. [7] em-
ployed ASR loss using cosine similarity to consider semantic
similarity. The use of distributional loss function in the pro-
posed method is motivated by that work, but our work focuses
on the ASR confusion due to pronunciation similarity.

Our proposed method can also be regarded as knowledge
distillation [8] using a pre-trained ASR model. Liu et al. [9]
employed knowledge distillation in ST using a pre-trained MT
model as a teacher. Gaido et al. [10] employed knowledge dis-
tillation in ST using a pre-trained MT model and ASR model
with a loss function based on connectionist temporal classifica-
tion (CTC) [11] in multi-task learning. Our work does not rely
on an additional dataset and focuses on the ASR subtask using
ASR posterior distributions to include possible ASR confusions
into the ST training.

Experimental results in Fisher Spanish-to-English show
that the proposed method resulted in better BLEU scores than
the baseline with the standard CE loss with label smoothing.

2. End-to-end Speech Translation
2.1. Single-task End-to-end Speech Translation

An end-to-end ST model consists of a source language speech
encoder and a target language text decoder. Let X =
(x1, ..., xT ) be a source speech feature sequence and Y =
(y1, ..., yN ) be a target language sequence. Here, T is the
length of the speech frame and N is the length of the target
text, usually in the number of characters or subwords. For each
element v in the target language vocabulary V , the posterior
probability of v at the i-th symbol in Y can be denoted as:

PST(yi = v) = p(v|X, y<i). (1)
Its loss function is defined using cross entropy as:

LST = −
N∑
i=1

V∑
v∈V

δ(v, yi) logPST(yi = v), (2)

where δ(v, yi) is an indicator function that returns 1 if v = yi
and otherwise 0. Recent studies usually apply label smoothing
to avoid overfit, which distributes the probability mass onto the
other elements in V .

2.2. Multi-task End-to-end Speech Translation

Single-task end-to-end ST does not have an explicit ASR mod-
ule and cannot include any teacher signals for ASR. The multi-
task approach introduces another decoder for ASR using the
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Figure 1: Single-task ST (left) and multi-task ST (right).

hidden vectors given by the speech encoder. The ASR-task can
be seen as a subtask for the ST problem and its loss function is
defined as:

LASR = −
N∑
i=1

V∑
v∈V

δ(v, yi) logPASR(yi = v). (3)

The overall loss function is a weighted sum of the two loss func-
tions LST and LASR defined as follows using a weight λASR:

L = (1− λASR)LST + λASRLASR. (4)

We illustrate the single-task ST and multi-task ST in Fig. 1.
In later sections, we refer to the ASR loss LASR as Lhard to dif-
ferentiate it from the proposed one.

3. Proposed Method
3.1. ASR Posterior-based Loss

We propose a method to train an ST model in a multi-task man-
ner using a loss function based on posterior distributions given
by a pre-trained ASR model instead of single reference tokens
from the gold standard transcripts. Fig. 2 illustrates the differ-
ence between a standard hard loss calculation and the proposed
soft one. Here, the ASR decoder should provide large proba-
bilities to hypotheses with similar pronunciations, in practice.
In contrast, the standard CE loss with single reference tokens,
namely hard loss, does not take such situations into account.

The proposed loss function is defined over ASR posterior
distributions as references to include the ASR confusion into the
hidden vectors in the ST model. The proposed training encour-
ages the model to obtain posterior distributions similar to the
pre-trained model in the ASR subtask, as in word-level knowl-
edge distillation [8]. As a result, the ST decoder has to handle
the ASR confusion in its training and is expected to be more
robust against possible implicit ASR errors in the end-to-end
ST.

The posterior distributions are given by a pre-trained ASR
model as the outputs from the softmax calculation. Let us define
the posterior probability of an ASR token hypothesis v at the i-
th position of the ASR result as Psoft(i, v). The Lsoft is defined
as:

Lsoft = −
N∑
i=1

V∑
v∈V

Psoft(i, v) logPASR(yi = v). (5)

Note that PASR is obtained from the ASR decoder in the ST
model and differs from Psoft from the pre-trained ASR model.
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Figure 2: Hard loss (left) and soft loss (right).

Table 1: WERs by our pre-trained ASR model. WERs reported
in ESPnet document are also shown for reference.

Model dev dev2 test
Our Model 30.2 29.1 27.2

ESPnet 24.2 23.6 22.8

Finally, we define the overall ASR loss as our proposed ASR
posterior-based loss which is a weighted mixture of the hard
and soft losses as follows:

LASR = (1− λsoft)Lhard + λsoftLsoft, (6)

where λsoft is a weight to control their contributions in the train-
ing. Here, λsoft = 0.0 means that the proposed loss function
becomes equivalent to the general CE loss.

4. Experimental Setup
We conducted the following experiments to investigate the ef-
fectiveness of the ASR posterior-based loss. We used the Fisher
Spanish corpus [12]. This corpus consists of approximately
140K pairs, 160 hours of conversational Spanish speech along
with its transcriptions and corresponding English translations.
We used it for both ASR and ST model training and developed
Spanish-English (Es-En) speech-to-text translation models.

For data pre-processing in all languages, we lowercased
and normalized punctuation, followed by tokenization with the
tokenizer.perl script in the Moses toolkit1 [13]. We used
80-channel log-Mel filterbank coefficients with 3-dimensional
pitch features using Kaldi [14], resulting in 83-dimensional fea-
tures per frame. The features were normalized by the mean and
standard deviation for each training set. We augmented speech
data by a factor of 3 by speed perturbation [15]. We removed
utterances having more than 3000 frames or 400 characters.

We used subwords for text segmentation for both Spanish
and English based on SentencePiece [16], with a shared sub-
word vocabulary with a maximum 1000 entries. The subword
model was trained using the training data and applied to all text
data. The ST and pre-trained ASR models were based on Trans-
former [17] and implemented using ESPnet2 [18]. We used a
single random seed of 1 in training.

Finally, we applied model averaging with the best five
models among 30 training epochs according to BLEU [19]
in the Fisher dev (3.9k pairs) set using beam search with

1https://github.com/moses-smt/mosesdecoder
2https://github.com/espnet/espnet

2273



Table 2: Results measured in BLEU on Fisher with the hyperparameters λASR and λsoft resulting the best on dev.4

Model BLEU
Task ASR-task loss λASR λsoft dev dev2 test
Single-task ST - - - 41.10 41.61 40.66

CE 0.4 - 44.50 46.20 44.88
Multi-task ST CE + Label smoothing 0.5 - 45.29 46.34 45.16

ASR Posterior-based loss (Proposed) 0.4 0.5 45.54 46.46 45.64

Table 3: Results measured in BLEU on Fisher with different λASR. λsoft were the ones resulting the best on dev.

Model BLEU
Task ASR-task loss λASR λsoft dev dev2 test
Single-task ST - - - 41.10 41.61 40.66

CE - 44.08 45.07 44.69
CE + Label smoothing 0.3 - 44.23 45.25 44.21
ASR Posterior-based loss (Proposed) 0.9 44.99 45.73 44.66
CE - 44.50 46.20 44.88

Multi-task ST CE + Label smoothing 0.4 - 44.61 45.30 45.01
ASR Posterior-based loss (Proposed) 0.5 45.54 46.46 45.64
CE - 43.64 45.28 43.83
CE + Label smoothing 0.5 - 45.29 46.34 45.16
ASR Posterior-based loss (Proposed) 0.5 45.46 46.37 46.04

the beam size of 10. The averaged model was applied for
Fisher dev2 (3.9k pairs) and test (3.6k pairs) data for evalua-
tion. We evaluated on 4-references case-insensitive BLEU with
multi-bleu.detok.perl in Moses.

4.1. Pre-trained ASR Model

The pre-trained ASR model was trained using the pairs of Span-
ish speech and transcripts in the training data. The hyperpa-
rameters of the model almost followed the default settings of
ESPnet. The encoder was a 12-layer 2048-dimensional trans-
former with 6-head 256-dimensional attention with a 6-layer
2048-dimensional decoder. The label smoothing weight for CE
loss was 0.1. Batch size was 64 and accumgrad size was 2.
We chose the best parameter set according to the subword ac-
curacy in the development set from among 30 training epochs.
Table 1 shows the performance in word error rate (WER) of the
pre-trained ASR model using beam search with a beam size of
10. We used this pre-trained ASR model to generate teacher
distributions with greedy search for time efficiency in the de-
coding of the whole training set. Table 1 also shows the perfor-
mance mentioned in the ESPnet document3. We can see that the
performance of our model is worse. The reason would be the
difference in the model configuration; the reported results were
from the model trained using CTC-based loss.

4.2. ST Model

The ST model was configured almost the same as the ASR
model above. One major difference was the existence of two
decoders for the ST maintask and the ASR subtask. We applied
label smoothing for the ST-task with a weight of 0.1. We set the
batch size to 64 and accumgrad size to 4.

3https://github.com/espnet/espnet/blob/
master/egs/fisher_callhome_spanish/asr1b/
RESULTS.md

4.3. Baseline Models

We compared the proposed method with two baselines: a ba-
sic multi-task ST with standard CE loss and that applying label
smoothing with a weight of 0.1.

4.4. Proposed Models5

We chose hyperparameter values according to BLEU in the de-
velopment set. We chose λASR in the equation 4 from among
{0.3, 0.4, 0.5} and chose λsoft in the equation 6 from among
{0.1, 0.3, 0.5, 0.7, 0.9, 1.0}.

5. Results and Discussion
Table 2 shows the performance of the ST models in BLEU
scores with the best hyperparameter values in the dev set. The
results clearly show that the proposed method outperformed the
baselines. Table 3 shows the performance of the ST models
for different λASR. The results also show most of the proposed
models outperformed the baselines.

For a detailed analysis, Fig. 3 shows the BLEU results on
the Fisher test set on different λsoft in each λASR. The proposed
method achieved the best BLEU scores with λsoft = 0.5 and
showed degradation with the other weights. This was also ob-
served for the Fisher dev2 results, which are excluded from the
figure for simplicity. One possible reason for the degradation is
the performance of the pre-trained ASR model. It was not good
enough to fully depend on the soft loss, so the mixed use of soft
and hard loss was important. This also suggests that the pro-
posed method works effectively even when the pre-trained ASR
is not good enough. There are differences in the loss values in
the training time. Fig. 4 shows the validation loss values with

4Our multi-task ST performance has some gaps between ASR-task
multi-task ST model in ESPnet [20] with CTC-based loss. We focus
on using the attention-based loss calculation method and apply it to our
proposed method.

5Our code is available at: https://github.com/ahclab/
st-asrpbl
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(b) λASR = 0.4
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(c) λASR = 0.5

Figure 3: Fisher test BLEU on different λsoft in each λASR.
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Figure 4: Validation loss on each λsoft in λASR = 0.4.

λASR = 0.4 and varying λsoft. The total validation loss became
larger with larger λsoft. This suggests that the proposed method
introduced larger ASR confusion in the training that might have
worked as regularization. From Fig. 3 and Fig. 4, giving a too
large weight on the soft loss degraded translation quality, but
the appropriate mixture with the hard loss was effective for ST.

For analysis of output sentences between the baseline and
proposed model, Table 4 shows some translation examples
given by the models of the baseline CE loss with label smooth-
ing and proposed ASR posterior-based loss shown in Table 2.
We didn’t have ASR results from ASR-task in this paper. From
Example 1, in the baseline model, the word relationships ap-
pears instead of the reference word relaxation. This would be
due to ASR confusion with the Spanish word relaciones. On the
other hand, the proposed method predicted the correct word. It
appears that the model is more robust for ASR confusion. From
Example 2, sobrino (Spanish for nephew) would be translated
to nephew in English also. Sobrino is very similar to sobrina
in Spanish. As a result, the ASR-task on the baseline model
predicted the incorrect word sobrino for the correct word sob-
rina, and the translation was also affected by the error. In con-
trast, the proposed model gave the correct translation. The pro-
posed method enabled robust ST for ASR confusion using ASR
posterior-based loss.

6. Conclusions
In this paper, we proposed ASR posterior-based loss to han-
dle ASR confusion in multi-task end-to-end ST. The proposed
loss function works as knowledge distillation from a pre-trained
ASR model and encourages robust ST against ASR confusion.

Table 4: Fisher test examples in Fig. 2 settings.

Example 1
Ground Truth (Es) para relajación
Ground Truth (En) for relaxation
CE + Label smoothing (En) for relationships
ASR Posterior-based loss (En) for relaxing

Example 2
Ground Truth (Es) quién no su sobrina
Ground Truth (En) who no your niece
CE + Label smoothing (En) who his nephews
ASR Posterior-based loss (En) who are your nieces

Our experimental results showed the effectiveness of the pro-
posed method compared with the baselines with standard CE
loss with label smoothing. The results also suggest that mixed
use of the proposed and standard loss is important rather than
using either one of them.

Future work includes further investigation with different
pre-trained ASR models and other language pairs. The exten-
sion to using phonetic information like Salesky et al. [21] in
loss calculation for making robust ST against acoustic similar
tokens is also a promising future direction.
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