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Abstract
Discovering symbolic units from unannotated speech data is
fundamental in zero resource speech technology. Previous stud-
ies focused on learning fixed-length frame units based on acous-
tic features. Although they achieve high quality, they also suf-
fer from a high bit-rate due to time-frame encoding. In this
work, to discover variable-length, low bit-rate speech represen-
tation from a limited amount of unannotated speech data, we
propose an approach based on graph neural networks (GNNs),
and we study the temporal closeness of salient speech features.
Our approach is built upon vector-quantized neural networks
(VQNNs), which learn discrete encoding by contrastive pre-
dictive coding (CPC). We exploit the predetermined finite set
of embeddings (a codebook) used by VQNNs to encode in-
put data. We consider a codebook a set of nodes in a directed
graph, where each arc represents the transition from one feature
to another. Subsequently, we extract and encode the topologi-
cal features of nodes in the graph to cluster them using graph
convolution. By this process, we can obtain coarsened speech
representation. We evaluated our model on the English data set
of the ZeroSpeech 2020 challenge on Track 2019. Our model
successfully drops the bit rate while achieving high unit quality.
Index Terms: Zero resource, speech representation learning,
graph neural networks, graph clustering

1. Introduction
Spoken language technology applications and services are only
available to about 100 of the world’s languages. This is because
most state-of-the-art speech processing technologies were built
using costly supervised learning methods that rely on a massive
amount of parallel speech and orthographic/linguistic transcrip-
tions. However, the assumption that such information is avail-
able is not always valid for the world’s languages in practice.
Since many languages have no standardized written form, little
to no access exists to reliable transcribed data.

On the other hand, human infants spontaneously learn dis-
crete speech representation without any supervision and de-
velop language skills. Just as they acquire languages, zero-
resource speech processing develops systems that directly learn
spoken languages directly from raw sensory data in an unsu-
pervised manner. The Zero Resource Speech Challenge (Ze-
roSpeech) series [1, 2, 3, 4] addresses this demanding task and
offers a set of shared tasks, data sets, and evaluation methods to
allow for comparison among various approaches.

The top performances in speech representation discovery in
ZeroSpeech 2015 [1] and 2017 [2] were achieved by Bayesian
models such as the Dirichlet process Gaussian mixture model
(DPGMM) [5, 6], which can deal with unknown model com-
plexity. But it is susceptible to acoustic variations and often pro-
duces too many subword units and a relatively high-dimensional

posteriogram [7].
In ZeroSpeech 2019 [3] and 2020 [4], the paradigm shifted,

and many studies explored vector quantization neural networks
that map continuous speech features onto a finite set of discrete
representations [8, 9, 10, 11, 12]. The best-performing models
used vector quantized neural networks for acoustic unit discov-
ery, incorporating either a variational autoencoder (VQ-VAE)
[13] or a contrastive predictive coding (VQ-CPC) [14].

However, the models proposed so far focused on learning
speech representation by classifying acoustic features at each
fixed-length frame-based unit. As most speech features of a
single phoneme consist of several unit frames, such approaches
cause redundancy of the learned representation, which is indi-
cated by the high bit-rate.

This work addresses the high bit-rate problem by propos-
ing a novel, neural-graph clustering that is applied on top of the
discrete autoencoder model. In other words, the approach will
learn to discover, so to speak, a coarser or more abstract form
of speech representation that may span over the time frames.
We specifically incorporate graph clustering based on topology-
adaptive graph convolutional networks (TAGCN) [15] and deep
modularity networks (DMoN) [16] into vector-quantized con-
trastive predictive coding (VQCPC) [12].

2. Related Works
Recently, the use of graph-based neural network models has
gained increasing attention. It is a subtype of neural networks
that operate on data structured as graphs. Unlike standard neural
networks, Graph Neural Networks (GNNs) retain a state rep-
resenting information from their neighborhood with arbitrary
depth.

Some studies have already shown the advantages of utiliz-
ing GNNs on text and speech processing tasks. Defferrard et al.
[17] addressed a text classification task as node classification
by using graph convolutional neural networks (GCNs) [18] and
successfully outperformed the traditional convolutional neural
network (CNN) models. Bastings et al. [19] also proposed
GCN-based encoders for syntax-aware neural machine trans-
lation. In speech processing, GNN approaches have been ap-
plied to solve several tasks, including speech separation [20],
speech enhancement [21], conversational emotion recognition
[22], and even text-to-speech synthesis [23, 24].

However, to the best of our knowledge, no study has ap-
plied the GNN framework to the acoustic unit discovery of zero-
resource languages. Furthermore, most existing works only ex-
plored these mechanisms within a semi-supervised or super-
vised framework. Our study focuses on discovering variable-
length acoustic speech representation with unsupervised learn-
ing based on TAGCN [15] and DMoN [16]. The motivation
might resemble a recent work [25], although instead of seg-



Figure 1: Overview of graph processing after vector quantization (Sec. 3.1), graph construction (Sec. 3.2.1), graph symmetrization
(Sec. 3.2.2), graph convolution (Sec. 3.2.3), graph clustering (Sec. 3.2.3).

Figure 2: Our proposed framework: Utilizing VQCPC, TAGCN,
and DMoN.

menting with greedy approach or dynamic programming, we
cluster based on the interconnection among the speech repre-
sentations. First, we discretize the speech waveform into a
sequence of nodes and perform convolutions on graphs using
TAGCN. Then we cluster those nodes on modularity in unsu-
pervised training using DMoN.

3. Proposed Approach
In this section, we present our approach for discovering
variable-length speech representation. Our proposed model
consists of two different clustering layers: (1) a VQ that cat-
egorizes the acoustic features of each input time frame into la-
tent classes; (2) graph clustering that segments the intertwined
sequences of the categorized acoustic features, based on their
temporal closeness to each other. Fig. 1 illustrates an overview
of graph processing, and Fig. 2 shows our proposed framework.
The details are described in the following sections.

3.1. Vector Quantized Contrastive Predictive Coding
For the discretization of acoustic features, we use a previously
proposed efficient discrete neural network model, VQCPC [12]
and the released implementation by its authors. For further de-
tails about VQCPC and its training process, refer to their origi-
nal paper.

3.1.1. Vector Quantization
Vector-quantized neural networks (VQNNs) discretize the hid-
den representation of input speech samples x1:T . VQNNs
have a trainable latent embedding space called a codebook
C ∈ RN×D , where N is the size of the categorical latent space
(codewords), andD is the dimensionality of each latent embed-

ding vector ci. The VQ replaces latent representation x of the
encoder layer by the nearest codeword:

z = cn, where n = arg min
j

||x− cj ||2. (1)

In forward computation, nearest codeword z is passed to the
next layer. In backward computation, gradient ∇zL is passed
directly to the encoder layer using a straight-through estimator
[26].

The VQ has an auxiliary objective, which encourages the
encoder to commit to the embedding:

LV Q = α
1

T

T∑
i=1

||xi − sg(zi)||2, (2)

where α is a commitment cost weight, and sg is a stop-gradient
operator that prevents update of its operand. The codebook
is updated independently by the exponential moving average
(EMA) of x. For further detail of the VQNNs, refer to this
work [13].

3.1.2. Contrastive Predictive Coding
In this framework, instead of training by reconstruction loss as
in typical autoencoder models, we train the neural networks to
predictM steps of future observations ẑ by distinguishing them
from negative examples z̃ from set Nt,m [14]. The objective
loss function, LCPC is given as follows:

LCPC = − 1

M

M∑
m=1

log

[
exp

(
ẑ>t+mWmct

)∑
z̃∈Nt,m

exp (z̃>Wmct)

]
, (3)

where W is a learned weight matrix and ct is a latent context
representation. For ct we used a concatenation of two different
context representation of z, each of which was produced by an
autoregressive model and a GNN model addressed below.

3.2. Neural-based Graph Clustering
3.2.1. Graph Construction
We consider the codewords to be nodes, and the transitions be-
tween them to be edges in a directed graph. For each batch t,
we construct a graph from the batched sequences of N code-
word indices, produced by the VQ layer by encoding the input



speech data. We simply count each bigram {i, j} ∈ N over the
sequences, where we exclude consecutive patterns {i, i}. The
bigrams represent the edges in a graph where their frequencies
directly correspond to their weights. In other words, bigram
{i, j} is equivalent to ai,j in an adjacency matrix of sample
graph At ∈ RN×N . Note that since the consecutive patterns
are excluded, the graph does not contain any self-loop edges
(ai,i). To effectively capture the latent graph structure, we up-
date the edge weights by their exponential moving averages at
every batch throughout the training:

At = At−1 + β(At −At−1), where A1 = A1. (4)

3.2.2. Graph Symmetrization
To apply graph clustering, we transform the adjacency matrix
to symmetric affinity matrix so that edge weight ai,j is equal
to aj,i.We consider 2 symmetrization methods: simple sym-
metrization (denoted as “sim”) and degree-discounted biblio-
metric symmetrization (denoted as “bib”) [27].

Affinity matrix Us obtained by the simple symmetrization
can be understood intuitively as representing temporal close-
ness of each codeword to the others with the directionality of
the original graph disregarded:

Us = At +A
T
t . (5)

Degree-discounted bibliometric symmetrization, on the
other hand, measures the similarity of each pair of nodes with
respect to how many shared in- and out-links they have, and
discounts the edge weights to or from the nodes with excessive
links. Note that a pair of nodes with no edge in the original
directed graph may have an edge if they share in- or out-links
and, furthermore, the more they have, the more weight their
edge will have in the resultant affinity matrix.

To obtain affinity matrix Ud from this transformation, we
calculate degree-discounted out-link similarity Bd and in-link
similarity Cd, and simply add them together:

Bd = D−1/2
o AtD

−1/2
i A

T
t D
−1/2
o , (6)

Cd = D
−1/2
i AtD

−1/2
o A

T
t D
−1/2
i , (7)

Ud = Bd +Cd. (8)

where Do = diag(At1N ) and Di = diag(A
T
t 1N ). Last,

for numerical stability, we symmetrically normalize the affinity
matrix in both cases:

Ũ = D−1/2UD−1/2, where D = diag(U1N ). (9)

3.2.3. Graph Convolution and Clustering
By graph convolution, the highly correlated nodes (codewords)
share similar features, and subsequently by graph clustering the
graph is partitioned into K clusters based on the nodes’ features
and their edge weights. In our implementation, we set the num-
ber of codewords to 512 and partition them into 64 clusters.

Given codebook C as node features and symmetrically nor-
malized affinity matrix Ũ, which is updated with the VQ’s out-
put codeword sequences at every step, we find a (soft) cluster
assignment matrix S ∈ RN×K for codebook C by optimizing
objective LDMoN [16]. From the clustered codebook and the
sequences of the original codeword indices, we obtain coars-
ened vector-quantized speech representation.

We train l-layered topology-adaptive graph convolutional
networks (TAGCN), each of which is followed by rectified lin-
ear unit (ReLU) activation. TAGCN extracts local features

Ĉ ∈ RN×D̂ of the nodes with respect to the graph using a size-
κ filter that aggregates κ-hop neighbor nodes’ features weighted
by the edge weights. For further details of TAGCN, see the
original paper [15]. We implemented the TAGCN model using
Pytorch Geometric [28], and stacked two TAGCN layers, one
with a size-2 filter, and another with a size-3 filter:

Ĉ = SeLU(TAGCNκl (C, Ũ)). (10)

We applied softmax on extracted node features Ĉ multiplied by
trainable weight matrix W ∈ RD̂×K to obtain the assignment
matrix S:

S = softmax(ĈW). (11)
The optimal assignment matrix maximizes modularityQ of

the graph. Modularity matrix B is defined:

B = Ũ− dTd

2M , (12)

where d =
∑
j Ũ, andM =

∑
i,j Ũ, and modularity Q:

Q =
1

2MTr(STBS). (13)

With collapse regularization term R,

R =

√
K

N
||ST ||F − 1, (14)

where || · ||F is a frobenius norm, we find the best assignment
matrix by minimizing the objective of the DMoN[16]:

LDMoN = − Q+ γR, (15)
where hyperparameter γ adjusts the strength of regularizer R.
We set γ = 0.1 in our implementation.

We can obtain clustered codebook ĈS by,

ĈS = ST ĈS. (16)
We consider it a look-up table from which we can obtain new
speech representation sequences, using the sequences of the
original codeword indices. Each representation of the obtained
sequences is concatenated with corresponding contextual vec-
tors produced by the autoregressive model for the original code-
word sequences, and they are trained jointly by the CPC.

3.2.4. Variable-length Speech Representation
During inference, we discretize the obtained speech represen-
tation. A discretized version of S can be obtained simply by
converting each assignment vector si into a one-hot vector:

si,j =

{
1 if j = arg max si
0 otherwise

(17)

The obtained speech representations are coarser than the orig-
inal vector-quantized ones, since those which are likely to co-
occur coalesce by the graph clustering: they can span across the
time-frames.

4. Experimental Set-up and Results
4.1. Experimental Set-up
We evaluated our model by the English data set of the Ze-
roSpeech Challenge 2019. The Train Unit Discovery dataset
contains around 10 minutes per speaker of read text from 100
speakers (16 hours of speech in total), and the test data set con-
tains new utterances about 1-4 minutes long from another 20
speakers. Further details can be found here [3].

The speech waveforms were sampled at 16 kHz as input,
and then we computed log-Mel spectrograms. After that, we
applied VQCPC with the same training configuration and hy-
perparameter settings as in a previous work [12]. Our proposed
graph clustering layer could be optimized jointly without any
change to the VQCPC configuration.



Figure 3: The unit quality comparison between the models sub-
mitted in ZeroSpeech 2020 and our proposed models: ABX er-
ror with DTW-cosine distance as function of bit-rate for unit
discovery. The values show “(ABX/bit-rate)” scores.

4.2. Evaluation Metrics
4.2.1. ABX Phone Discrimination
We evaluated the discovered unit quality by ABX discriminabil-
ity test [29, 30], which measures whether X is more similar to
A or B based on the discovered units (i.e., A and X are tokens
of ‘beg’, and B is a token of ‘bag’). Here the similarity is mea-
sured using normalized Levenshtein distance and the average
frame-wise cosine distance of the tokens’ representations along
a DTW-realigned path, denoted as the “ABX error rate (Lev.)”
and “ABX error rate (cos.)”. The former evaluates the units as
distinct symbols, and the latter evaluates them as vectors that
may contain contextual information.

4.2.2. Bit-rate
The bit-rate is a product of the number of the symbols per unit
time and their entropy:

B(V) =
L

T

L∑
i=1

p(vi)log p(vi), (18)

where V is a sequence of symbolic representation vectors vi of
length L, T is the time duration of V in seconds, and p(vi) the
probability of vectors vi.

4.3. Results and Discussion
We evaluated our proposed method’s performance with two
graph symmetrization methods (“sim” and “bib”). Further-
more, although our proposed graph clustering method produced
variable-length speech representation, we investigated two ways
during ABX evaluations: (1) providing the speech representa-
tion for each time frame by repeating the symbols (“bib1”) that
span several time frames or (2) providing variable-length speech
representations independent of the time frame (“bib2”).

Figures 3 and 4 show evaluation results of comparing our
proposed models with the ZeroSpeech 2020 challenge on the
Track 2019 official Topline and Baseline [4] as well as other
submitted state-of-the-art models from ZeroSpeech 2020, VQ-
VAE [11] and VQCPC [12]. Fig. 3 shows the ABX error
with DTW-cosine distance as a function of the bit-rate for
unit discovery/synthesis, and Fig. 4 shows the ABX error with
Levenshtein distance as function of bit-rate for unit discov-
ery/synthesis. For both of ABX error rate and the bit-rate, a
lower rate is better.

Figure 4: The unit quality comparison between the models sub-
mitted in ZeroSpeech 2020 and our proposed models: ABX er-
ror with Levenshtein distance as function of bit-rate for unit
discovery. The values show “(ABX/bit-rate)” scores.

The two proposed graph symmetrization methods (“sim”
and “bib”) did not have any significant performance differences
in the performance. Although degree-discounted bibliometric
symmetrization requires complicated computation, the simple
symmetrization already suffices for our task, which may be
due to graph convolution. Among the two results that used
degree-discounted bibliometric symmetrization (“bib1” with
fixed-length frame-based units and the “bib2” with variable-
length time-frame independence), the results reveal that the one
with variable-length speech representations gave optimum per-
formance.

Since our model was built upon VQCPC, which achieved
the lowest ABX error rate as of ZeroSpeech 2020, our con-
cern investigated whether our proposed approach could lower
the bit rate while retaining VQCPC’s original unit quality. In
this respect, our models were successful. They even outper-
formed VQCPC in terms of Levenshtein distance. Overall,
our proposed models with variable-length speech representation
achieved the best trade-off between unit quality and bit-rate.

5. Conclusions
We present neural-based graph clustering for variable-length
symbolic unit discovery from raw speech data. We simultane-
ously discovered acoustic units by vector-quantized neural net-
works, constructed a graph of the acoustic units based on their
temporal closeness, and clustered them by the modularity-based
neural graph clustering. We evaluated our model on the English
data set of the ZeroSpeech 2020 challenge on Track 2019, and
compared our model with the state-of-the-art models submitted
in ZeroSpeech 2020. Our models with variable-length speech
representation achieved the best trade-off between unit quality
and bit-rate.
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