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Abstract

Although machine speech chains were originally proposed to
mimic a closed-loop human speech chain mechanism with au-
ditory feedback, the existing machine speech chains are only
utilized as a semi-supervised learning method that allows au-
tomatic speech recognition (ASR) and text-to-speech synthesis
systems (TTS) to support each other given unpaired data. Dur-
ing inference, however, ASR and TTS are still performed sepa-
rately. This paper focuses on machine speech chain inferences
in a noisy environment. In human communication, speakers
tend to talk more loudly in noisy environments, a phenomenon
known as the Lombard effect. Simulating the Lombard ef-
fect, we implement a machine speech chain that enables TTS to
speak louder in a noisy condition given auditory feedback. The
auditory feedback includes speech-to-noise ratio prediction and
ASR loss as a speech intelligibility measurement. To the best
of our knowledge, this is the first deep learning framework that
mimics human speech perception and production behaviors in a
noisy environment.

Index Terms: text-to-speech, machine speech chain inference,
Lombard effect, dynamic adaptation

1. Introduction

The development of text-to-speech synthesis (TTS) has enabled
computers to mimic human speech production and learn how
to speak. Various approaches have been conducted, and the re-
cent technologies of end-to-end neural TTS frameworks have
successfully produced natural-sounding, human-like speech [1,
2, 3, 4]. Despite remarkable performance, standard systems are
commonly developed by assuming they are operating in ideal
clean environments. However, in reality, many modern appli-
cations, such as digital assistants, require TTS to communicate
with users in noisy places. In such cases, the TTS performance
may degrade when speech intelligibility drops quite rapidly in
adverse conditions. Unfortunately, although TTS can speak, it
cannot listen to its own voice, and therefore, it cannot grasp the
situation and overcome the problem.

Humans, on the other hand, have a closed-loop speech
chain mechanism with auditory feedback from the mouth to
the ear. This connection between systems of speech production
and speech perception enables speakers to monitor their speech
and improve it when necessary. Such a mechanism is critical
not only during language acquisition but also during commu-
nication. In a noisy environment, particularly, speakers tend to
speak louder to increase their speech audibility while simulta-
neously listening to the noise to ensure that the listeners under-
stand what they are saying [5]. This change, which is known
as the Lombard effect [6], includes not only a change of speech
intensity but also changes in speech pitch and speed [7].

Inspired by the human speech chain mechanism, a machine
speech chain [8, 9] (Figure 1(a)) was previously proposed to
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Figure 1: (a) Previous machine speech chain that was utilized
only for semi-supervised training method; (b) proposed ma-
chine speech chain utilized for both training and dynamically
adaptive inference method.

establish a closed feedback loop between the listening compo-
nent (ASR) and speaking component (TTS) so both components
can assist each other in semi-supervised learning given unpaired
data (speech or text data only). This loop enables the machine
to learn, not only by listening or speaking but also by listening
while speaking. However, the existing machine speech chain
was only utilized as a semi-supervised training method for ASR
and TTS. During inference, since both ASR and TTS are still
performed separately as in the traditional manner, they are un-
able to dynamically adapt based on various conditions, unlike
the human speech chain.

In this work, we propose an advanced version of a machine
speech chain that utilizes a feedback mechanism, not only dur-
ing training but also during inference. Simulating the Lombard
effect, we implement a machine speech chain for an end-to-
end neural TTS in noisy environments (Figure 1(b)) that enables
TTS to speak louder in noisy conditions given the auditory feed-
back. The auditory feedback is given on utterance-level that
includes speech-to-noise ratio (SNR) prediction as power mea-
surement and ASR loss as the speech intelligibility measure-
ment. Based on the feedback, the TTS will generate acoustic
speech while adapting the speech prosody, focusing on pitch,
intensity, and speed to improve the overall speech quality. This
adaptation is not performed only once; it is done dynamically
during communication. To the best of our knowledge, this is
the first deep learning framework that mimics human speech
perception and production behaviors in a noisy environment.

2. Related Works

The study of Lombard speech synthesis has gained attention
starting from the parametric speech synthesis, which is based
on the Hidden Markov Model (HMM) framework [11, 12]. The
aim is to produce highly intelligible speech in the presence of
noise. The Hurricane Challenge [13, 14] evaluated speech syn-
thesis and speech enhancement systems for noisy conditions.
From existing approaches, the commonly used method applies
post-processing to TTS speech to modify the speech prosody
[15, 16, 17].

A recent study with end-to-end neural TTS systems pro-
duced Lombard-style speech by applying transfer learning from
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Figure 2: Architecture: (a) proposed TTS with a Transformer-based encoder-decoder structure, extended with (b) ASR-loss embedding,

(c) SNR embedding, and (d) variance adaptor [10] modules.

a standard TTS trained on clean speech [18]. The transfer learn-
ing was done using a small amount of Lombard speech. A
work by Hu et al. (2021) [19] recently constructed a multi-
style Tacotron-based TTS, which speech styles include normal
speech, whispered speech, and Lombard speech. The speech
was synthesized by treating the desired style as speaker embed-
ding input to the model.

As can be seen, most previous works require the informa-
tion of the desired Lombard speech target output to be adapted
during TTS training and cannot perform further automatic adap-
tation during inference. In contrast, our TTS framework dynam-
ically adapts to the noise condition automatically during infer-
ence, given SNR and ASR-loss embedding’s auditory feedback.

3. Proposed TTS in Speech Chain

Framework

Figure 2 illustrates the overall structure of the proposed TTS.
It is based on the Transformer TTS [2, 3], extended with au-
ditory feedback components (ASR-loss embedding and SNR
embedding) and a variance adaptor (Figure 2(a)). Given char-
acter sequence = [z1,Z2,...,xg] with length S, the Trans-
former TTS generates the speech’s Mel-spectrogram y =
[y1, Y2, ..., yr| with length T" and the adapted prosody based on
the auditory feedback from SNR (Zsn r) and ASR loss (Zasr)
embedding in an end-to-end manner. We perform a dynamic
adaptation in noisy situations with a feedback loop. The loop is
performed in several iterations until the ASR loss converges.

We also utilize speaker recognition with DeepSpeaker [20]
to enable a multi-speaker TTS, which generates speaker embed-
ding vector Zspx = SPKEmbedding(y) using a convolution
network-based structure. The implementation resembles a pre-
vious machine speech chain framework [9]. We pre-trained the
DeepSpeaker model, and the model weight is kept during TTS
training for the constant embedding. The speaker embedding is
then merged with the encoder output and the decoder input fol-
lowing the speaker embedding utilization method in the Multi-
Speech framework [3].

From the Mel-spectrogram, we generate a magnitude spec-
trogram that consists of a CBHG (1-D Convolution Bank +
Highway + bidirectional GRU) module that resembles the
Tacotron framework [1]. We use the Griffin-Lim algorithm

to estimate the phase spectrogram and the inverse short-time
Fourier transform (STFT) to reconstruct the signal.

In this study, we construct three TTS systems with differ-
ent feedback configurations to investigate the Lombard effect
within the machine speech chain. Each system is trained using
normal speech and Lombard speech of various noise conditions.
The following are the details of each system.

3.1. TTS with SNR feedback
TTS generates speech waveform based on text input and feed-
back from SNR embedding. The SNR feedback represents the
power or intensity measurement of how well the TTS speech
can be heard in noisy environments. Given an SNR embedding
feedback that represents a discretized SNR level, TTS attempts
to re-synthesize speech with higher SNR (> 20 dB).

We implement the SNR embedding module using convo-
lution network layers (Figure 2(c)) and generate an embedding
Zsn r from noisy speech features y™*Y:

Zsnr = SNR Embedding(y"*"*"). (D)

We defined several SNR classes and pre-trained the SNR recog-
nition model to generate SNR embedding vectors by learning to
classify the SNR given noisy speech utterances. The learning is
done with cross-entropy loss:
Cy
Losssnr(lp) = — »_ 1l =a) xlogpila], ()
c=1

where [ is the reference SNR label, p; is the predicted SNR
probability, and C} is the number of classes of the SNR recog-
nition model.

SNR embedding vector Zsnyr is then combined with
TTS encoder transformer output hf,.,,, and speaker embedding
Zspk, where final TTS encoder output h° becomes

h® = hipm + Zspix + ZsNr. 3)
Embedding vectors Zspx and Zsn g are also combined with

the TTS decoder’s first transformer layer input (yi_,) along
with the positional encoding PE:

yi_1 = prenet(yi—1) + Zspx + Zsnr + PE. (4

Therefore in the TTS decoder’s multi-head attention, the atten-
tion query, key, and value are the encoder output and decoder



input that have been embedded with the feedback information.
During TTS training, the model updates are done using the stan-
dard Transformer TTS loss function.

3.2. TTS with SNR-ASR feedback

The second version of TTS generates speech waveform based
on text input and feedback from the SNR and ASR-loss em-
bedding. The ASR-loss embedding (Figure 2(b)) represents the
speech intelligibility measurement of how well the noisy TTS
speech can be recognized. The generation of ASR-loss embed-
ding vector Z a5 g is done by first performing noisy TTS speech
recognition using an ASR and then loss calculation between text
sequence hypothesis p, predicted by ASR and TTS input text
x:

Zasr = ASR Loss Embedding(Lossasr(z,pz)), (5)

p= = p(z[y""), (6)
C

Lossasr(ws,pe.) = — Y L(zs = ¢) ¥ logps,[d, (]
c=1

where Lossasr(z,ps) is the sentence-level loss and
Lossasr(xs, ps,) is the character-level loss. Here C is the
number of ASR output classes, s is the character’s index in
sequence x. The ASR embedding module is trained directly
during TTS training without a pre-training step.

Similar to the proposed TTS in Section 3.1, the ASR-loss
embedding is combined into the TTS encoder output and the
decoder input along with the speaker and the SNR embedding
vectors:

h® = hipm + Zspix + ZsNr + Zasr, (8)
yi_1 = prenet(yi—1) + Zspx + Zsnr + Zasr + PE. (9)

The TTS is also trained using the same loss function as the stan-
dard Transformer TTS.

3.3. TTS with SNR-ASR feedback and variance adaptor
Humans tend to increase their speech intensity and pitch in
noisy environments and also speak slower [21]. Therefore, in
addition to the SNR and ASR-loss embedding feedback, we ap-
plied a variance adaptor module within the proposed TTS with a
similar approach as in FastSpeech2 [10] that guides the prosody
adaptation. The variance adaptor, shown in Figure 2(d), consists
of three components: a pitch predictor, an intensity predictor,
and a duration predictor. Each component predicts the pitch,
the intensity, and the duration of the target speech in character-
level details by taking the encoder output that was combined
with feedback embedding. This module is applied in the TTS
encoder and provides the following output:

h® = Var Adaptor(h{yy, + Zspix + Zsnr + Zasr). (10)

The decoder input follows Eq. 9. In our duration predictor, in-
stead of predicting the token duration as an integer to extend the
encoder output length like in the original FastSpeech2 frame-
work, our duration predictor estimates the duration as a real
value, similar to the other predictors. The encoder output length
in our model follows the standard Transformer TTS.

With the variance adaptor, the TTS is trained with the stan-
dard TTS loss function combined with the variance predictor
losses. The variance predictor loss is calculated with the mean

squared error (MSE) loss function:
s

. 1 .
LOSSpred('U7'U) = g;(vs _U5)27 (11)
where v is the normalized reference value and © is the output of
the predictor. The TTS training loss function becomes

Lossrrs(y,9) =

T
257 (e~ 50)* — (belos(be) + (1 — bu) log(1 — b))+
t=1

Lossprea(v’,07) + Losspred(vG, f)G) + Lossprea(v”, "),
(12)

where y = [y, b, v",v%, vP] and § = [g),@, o, 9%, 97]. Here

o, v%, and v" are the reference pitch, the intensity, and the

duration, and 9, 9, and 97 are the pitch, the intensity, and

the duration predicted by the respective predictor. b and b are

the reference and the predicted probability of the stop tokens in

the decoder.

4. Experiments

4.1. Data

We used in our experiment the Wall Street Journal (WSJ) corpus

[22] whose dataset consists of multi-speaker English speeches

recorded by reading news text, sampled in 16 kHz. We utilized

the SI-284, dev93, and eval92 sets as the training, development,

and test sets. The SI-284 set consists of 81 hours of speech.

To learn how human vocalization changes in noisy condi-
tions, we also recorded natural Lombard speech with a single
male speaker who read the WSJ development and test sets in
noise conditions. We first simulated a noisy environment with
additive white' and babble” noise of SNR 0 dB and SNR -10 dB
based on WSJ clean speech data. The noise level is considered
constant within an utterance. Then, given only the noise signals,
the speaker read the WSJ text as if it were aimed for someone in
a noisy condition. For comparison, we also recorded the clean
speech version.

Next we constructed synthetic Lombard speech of a full-set
of WSJ data by modifying the pitch, the intensity, and the du-
ration of the normal WSJ speech based on the vocal realization
changes observed in our natural Lombard speech®. Here the
SNR between our synthetic Lombard speech and the noise was
20 dB.

Both the original WSJ clean speech and the synthetic Lom-
bard WSJ speech were used for TTS training and testing.
From both the clean and Lombard speech data, we extracted
the character-level speech timing using the Montreal forced-
alignment toolkit [24] to estimate the speech pitch, the intensity,
and the duration in character-level details with which we then
calculated the variance predictor losses during the TTS training.

4.2. Model

Our TTS model consists of a Transformer-based encoder and
decoder. The TTS input was the character sequence, and the
output was the 80 dimensions of the log Mel-spectrogram. The
encoder character embedding layer consists of 256 units, fol-
lowed by an encoder pre-net that consists of three convolution
layers. In the decoder part, the decoder pre-net consists of three
linear layers. For both the encoder and decoder, the Transformer
module consists of six transformer blocks with a dimension of
512, eight attention heads, and a feed-forward inner dimension
size of 2048.

The speaker, the ASR loss, and the SNR feedback embed-
ding modules shared a similar configuration. Each consisted of
four stacks of convolution and residual blocks and a linear layer.
Before training the TTS, the SNR recognition model was pre-
trained to predict the noisy speech SNR labels: SNR 0 dB, SNR

!Generated using white-noise-generator toolkit
(https://github.com/jannispinter/white-noise-generator)

2From the noise sounds dataset in AURORA-2 corpus [23]

3The speech pitch, intensity, and duration were modified using the
SoundExchange (SoX) toolkit (http://sox.sourceforge.net/).



Table 1: Speech intelligibility measure (CER %) at different SNR levels using clean- and multi-condition training ASR.

System Clean condition training ASR || Multi-condition training ASR
Clean [ SNRO | SNR-10 Clean [ SNRO | SNR-10

Baseline TTS

Standard TTS 18.92 | 118.72 106.25 18.32 | 70.54 77.07

+ Rule-based modification into Lombard speech 18.92 | 102.96 104.69 18.32 | 44.68 57.86

+ Fine tuning with Lombard speech (SNR 0) 10.76 | 93.19 105.01 13.19 | 32.71 53.35

+ Fine tuning with Lombard speech (SNR -10) 11.73 | 71.88 99.36 1426 | 24.47 40.62

+ Fine tuning with Lombard speech (SNR 0 + SNR -10) || 11.25 | 79.94 100.44 13.40 | 28.12 46.13
Proposed TTS

TTS in speech chain framework 18.92 | 118.72 106.25 18.32 | 70.54 77.07

+ SNR feedback 10.21 83.15 101.41 11.58 | 22.82 42.00

+ SNR-ASR feedback 10.76 | 52.51 87.72 12.55 16.11 25.61

+ SNR-ASR feedback + variance adaptor 10.47 55.70 92.75 11.99 | 14.70 24.96

Topline (human natural speech)

Natural speech 5.77 92.56 98.98 743 22.17 58.81

+ Rule-based modification into Lombard speech 5.77 58.40 67.78 743 13.24 15.15

Natural Lombard speech 5.77 25.38 59.25 7.43 11.46 20.46
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Figure 3: The effect of auditory feedback on the TTS speech in-
telligibility: (a) the embedding coefficients and (b) the number
of feedback loop.

-10 dB, and clean (no noise). Our ASR model follows the same
configuration as the Speech-Transformer [25].

4.3. Experiment Results and Discussion

In this study, we focused on evaluating TTS speech intelligibil-
ity. To get objective measurements for all the systems, we used
an ASR system to recognize the TTS-generated speech and cal-
culated the character error rate (CER). We prepared two ASR
systems, which were trained in a clean condition only and a
multi-condition (mixed clean and noisy speech data).

Our experiment result is shown in Table 1. The clean con-
dition testing was done using TTS output without noise, and the
noise condition testing was done by adding noise signals of the
corresponding SNR condition to the generated speech. As de-
scribed earlier, we investigated the Lombard effect within the
machine speech chain with three different feedback configura-
tions: (1) SNR feedback only, (2) SNR-ASR feedback, and (3)
SNR-ASR feedback with variance adaptor.

In the comparison, we had several baselines: (1) the stan-
dard TTS in which the generated speech was merged with the
noise without any modification; (2) the rule-based modification
into the Lombard speech, in which the original output of the
standard TTS was modified with the same method as the syn-
thetic Lombard WSJ speech construction; (3) three TTS sys-
tems that were fine-tuned to Lombard speech, following the ap-
proach of previous work by Paul et al. [18]. The topline is
the natural clean and Lombard speech by a human. We also
included synthetic modifications from natural human speech.

From the baseline results, we found that CER could be
reduced by post-processing the speech into Lombard speech.
Still, the fine-tuned baseline systems resulted in a better per-
formance than the post-processing system. However, our ex-
periment results show that our proposed TTS outperformed

the baselines. By incorporating SNR and ASR feedback to-
gether, the proposed models significantly outperformed the fine-
tuned baseline models and more closely approached the CER
of topline human speech intelligibility measure. The SNR feed-
back guided the TTS to synthesize a louder speech in noise,
while ASR feedback improved the speech intelligibility further
and resulted in lower CER than only modifying TTS speech or
fine-tuning the TTS with Lombard speech. Here the best per-
formance was achieved by TTS with a variance adaptor.

Using the best model with variance adaptor, we further ana-
lyzed how each auditory feedback, SNR and ASR-loss embed-
ding, affected the TTS performance as shown in Figure 3(a).
We experimented with various coefficient values for both SNR
and ASR-loss embedding when they were combined into TTS
encoder output h® and decoder’s first transformer layer input
yi_,. The results show that during the clean condition, the best
performance is without SNR feedback, but once the environ-
ment becomes noisy, the SNR feedback becomes critical. How-
ever, using only SNR feedback to improve the intensity, pitch,
and duration may not be enough. The optimum performance is
when both coefficients equal one, indicating that ASR-loss em-
bedding feedback is also one crucial factor to improve speech
intelligibility in producing Lombard speech. On the other hand,
Figure 3(b) shows the number of speech chain loops required
during dynamic adaptation. Humans usually attempt to produce
Lombard speech in several trials when trying to be heard over
the noise. The results here reveal that the machine can also dy-
namically adapt in several loops; listen to its voice in a noisy
environment and then speak louder to improve it. For further
information on speech samples, see the following reference:
https://sites.google.com/view/lombard-dynamic-tts/home.

S. Conclusions

We constructed a dynamically adaptive machine speech chain
inference framework to support TTS in noisy conditions. Our
proposed systems with auditory feedback and a variance adap-
tor successfully produced highly intelligible speech that sur-
passed a standard TTS with a fine-tuning method and achieved
closer to human performances. These results reveal that dy-
namic adaptation with auditory feedback is critical not only for
human speech production mechanisms but also in speech gen-
eration by machines.
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