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Abstract

Despite the successful development of automatic speech recog-
nition (ASR) systems for several of the world’s major lan-
guages, they require a tremendous amount of parallel speech-
text data. Unfortunately, for many other languages, such re-
sources are usually unavailable. This study addresses the
speech-to-text mapping problem given only a collection of vi-
sually connected non-parallel speech-text data. We call this
“mapping” since the system attempts to learn the semantic as-
sociation between speech and text instead of recognizing the
speech with the exact word-by-word transcription. Here, we
propose utilizing our novel cyclic partially-aligned Transformer
with two-fold mechanisms. First, we train a Transformer-based
vector-quantized variational autoencoder (VQ-VAE) to produce
a discrete speech representation in a self-supervised manner.
Then, we use a Transformer-based sequence-to-sequence model
inside a chain mechanism to map from unknown untranscribed
speech utterances into a semantically equivalent text. Because
this is not strictly recognizing speech, we focus on evaluating
the semantic equivalence of the generated text hypothesis. Our
evaluation shows that our proposed method is also effective for
a multispeaker natural speech dataset and can also be applied
for a cross-lingual application.

Index Terms: Speech-to-text mapping, non-parallel data,
weakly-supervised, vector-quantized variational autoencoder,
cyclic partially-aligned Transformer.

1. Introduction

Most speech-to-text transformation systems within a language
are assumed to be automatic speech recognition (ASR), which
transcribes the content spoken utterance into text sequences.
The state-of-the-art ASR technologies with deep learning
frameworks have been shown to reach human parity in perfor-
mance [1, 2]. However, these systems are mostly trained using
supervised learning paradigms that rely on a huge amount of
parallel speech-text data. Although such a training technique
can be applied for 10-20 of the world’s major languages, this
approach is not feasible for many other languages where gath-
ering such a huge data collection is impossible [3].

Many researchers are aware of this problem, and several at-
tempts on learning style have been made to reduce the number
of parallel data required. One way is to train an ASR system
in a semi-supervised manner using paired and unpaired speech-
text data [4, 5, 6]. One semi-supervised approach utilized cycle
consistency within the speech chain framework [7, 8] which en-
abled ASR and text-to-speech synthesis (TTS) to support each
other given unpair speech-text data. Another variant of cycle-
consistency training used an alternative text-to-encoder model
[9]. Effendi et al. (2020) proposed a multimodal machine chain
that further reduced the need for paired and unpaired speech-

text data by enabling a cross-modal augmentation from unre-
lated modality data. Specifically, the framework successfully
improved ASR performance using additional image data.

Recently, Liu et al. (2020) proposed another alterna-
tive based on semi-supervised speech recognition that applied
quantized-speech representation learning. Unfortunately, al-
though they claimed that their work was a path toward un-
supervised ASR, their proposed method still relied on paired
speech-text data to train the initial model. On the other hand,
Pasad et al. (2019) proposed a semantic text retrieval system
through a multi-task learning mechanism that leveraged visual
grounding. Similarly, their proposed framework still relied on
paired speech-text data to build a shared representation. Conse-
quently, all of these existing works still rely on a certain amount
of paired data to initially train the model.

In human communication, on the other hand, it often does
not matter whether we can figure out word-by-word what the
speaker is saying as long as we understand the semantic mes-
sage the speaker wants to convey. Therefore, we argue that it
may be possible to address the construction of spoken language
processing without having speech utterances and the exact cor-
responding transcriptions, which are generally unavailable. In
fact, there are many available collections of texts and pic-
tures from online books, and there are many available speeches
recorded with images/videos in social media (i.e., YouTube). If
we could link to those images, we might be able to create visu-
ally connected non-parallel speech-text data.

This study addresses weakly-supervised speech-to-text
mapping problem given only a collection of visually connected
non-parallel speech-text data. This may be considered one of
the new ways of building speech-to-text transformation systems
within a language but without using ASR. The system learns the
semantic association between speech and text instead of recog-
nizing the content of speech utterances with an exact word-by-
word transcription. It can also be considered as a paraphrasing
or translation task from unknown untranscribed speech utter-
ances into semantically equivalent texts. Since this system does
not strictly recognize speech, we focus on evaluating the seman-
tic equivalence of the generated text hypothesis.

2. Related Works

Recently, research on constructing technologies with purely
non-parallel data has been gained attention. To date, various
approaches have been proposed for developing voice conver-
sion systems with non-parallel data [10, 11, 12, 13]. One ap-
proach applies unsupervised neural machine translation to de-
velop a text-to-text translation system without using any paired
data [14, 15, 16, 17]. However, those works focus on map-
ping within a single modality framework (i.e., speech-to-speech
or text-to-text). On the other hand, mapping between different
modalities is more challenging due to the differences in the data



characteristics.

In a speech-to-text mapping task, speech features are con-
tinuous vector sequences while the corresponding text is formed
in discrete sequences. Unfortunately, scant research has con-
sidered multi-modality mapping tasks with non-parallel data.
Within the limited research on speech-to-text mapping tasks
with non-parallel data, Sarl et al. (2020) recently proposed a
spoken language understanding system trained on non-parallel
speech and text data [18]. However, the model is more focused
on dialog-act recognition rather than generating a descriptive
sentence.

In this study, we focus on generating a descriptive sen-
tence of the message being spoken. Specifically, the system
attempts to learn how to generate semantically related text mes-
sages from speech utterances. We introduce the possibility of
conducting weakly-supervised learning based on non-parallel
data using a partially-aligned Transformer. We also introduce
discrete speech representations using a vector-quantized vari-
ational autoencoder (VQ-VAE) to reduce the complexity of
speech-text mapping, which also solves the low-resource prob-
lem and opens up possibilities for our proposed method to be
used in an untranscribed unknown language.

3. Proposed Method
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Figure 1: Overview of proposed system

Our proposed framework transforms a speech X into a sen-
tence Y, by leveraging the non-parallel speech and text data
D, and D, (Figure 1). First, to simplify the speech variabil-
ity and its length discrepancies in text, we train a Transformer-
based VQ-VAE to learn a discrete speech representation in a
self-supervised manner. Then, we perform unsupervised align-
ments between the resulting discrete speech representation and
the discrete target text sequences. Since the speech source and
target text are generally based on the same images, we assume
that some parts of speech and text content are semantically as-
sociated or aligned, which are then used by a partially-aligned
Transformer model for speech-text mapping. Finally, we use
the cycle mechanism as an augmentation to further improve the
partially-aligned Transformer model.

3.1. Transformer-based Vector-quantized Variational Au-
toencoder

We use the Transformer-based VQ-VAE model [19] which was
shown to provide good discretization performance for untran-
scribed unknown languages in the recent Zero Resource Speech
Challenge [20, 21]. This model M, learns the discrete code
representation ¢, so that ¢ = Myq(z).

A VQ-VAE consist of an encoder and decoder, with a
vector-quantizer module between them. Here, the training ob-
jective is defined as:

Lyq = —logps(zz,5) + |lsg(2) — Cllz + 7]z = sg(O)I3,
ey

where function sg(-) stops the gradient, defined as:

. Osgx) _

x = sg(z); 90 0. ()
Ly ¢ consists of three parts. The first part — log py(x|z, s) is
a negative log-likelihood reconstruction loss between the input
speech feature and the generated speech feature. The second
part |[sg(2) — C||3, is used to ensure that codebook C is close
to the encoded representation z. Finally, the third term, ||z —
sg(C)||3, updates the encoder.

3.2. Partially-aligned Code2Text Transformer Model
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Figure 2: A Transformer-based Code2Text for partially-aligned
input-output

A partially-aligned Code2Text model uses the alignment of
discrete speech representation C' = {co, c1, ..., Cn} With the
discrete target text sequences Y = {yo,y1,...,Ym}. Inspired
by the partially-aligned training strategy [22] for sequence-to-
sequence neural machine translation (NMT), we modified a
vanilla Transformer-based NMT model [23] into a partially-
aligned Code2Text Transformer model by leveraging the align-
ment information between the input and output (see Fig. 2). Let
us assume that P. and P, form the list of aligned words from
the C' and Y sequences. First, we penalized the source-to-target
attention score in the decoder, so if y; ¢ P,, the attention con-
text vector for that word is zero (C; = 0). Then, we also add
an additional attention loss to emphasize the alignment between
the partially-aligned part in a supervised manner. We create a
hard-attention matrix H, where:

1 if¢; € Poandy; € Py
H;; = .
0 otherwise
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so that the original attention matrix A can be supervised with
attention loss Lg¢: as follows:



Lot = Y > [ Asj, Hijl3. )
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Finally, we weighted the softmax cross-entropy loss L.. with
Lt as follows:
L = Lce + aLays. 5)

3.3. Cycle Mechanism
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Figure 3: Unsupervised augmentation with chain mechanism

Inspired by the success of the chain mechanism as an aug-
mentation strategy in a cross-modal model [7, 24, 25], we im-
plemented a Code2Text and Text2Code chain to further improve
the performance of our proposed method (Figure 3). Given a
text-only dataset D, a text y is translated using the Text2Code
model, generating a ¢ code hypothesis. This code hypothesis is
then translated back into § by the Code2Text model. Then, we
can backpropagate the Code2Text model using the reconstruc-
tion loss between y and 4.

4. Experiment Settings
4.1. Dataset

Common parallel dataset:
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Visually-connected non-parallel dataset:
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Figure 4: Visually connected non-parallel speech (x) - text (y)
data

We used Flickr8k [26], which contains 8k images of ev-
eryday activities and events. For the synthetic speech caption,
we generated single-speaker speech using GoogleTTS from the
text caption. Then, for the natural speech caption, we used
Flickr Audio [27], which was recorded using the crowdsourc-
ing method with 183 unique speakers. We use the development
and test sets which consist of 1k images each.

We formulated the training set differently from the origi-
nal Flickr8k dataset by splitting the data as a visually grounded
paraphrase (VGP) [28] to ensure a “‘semantic equivalence”. In
this task, we need to show how our proposed method can learn
from non-parallel speech-text data but with a semantically sim-
ilar meaning. While each image in this dataset has five speech
and text captions, we choose two captions as speech only data,
and another two captions as text-only data (Figure 4). There-
fore, both the speech and text have the same image, which guar-
antees semantic equivalence between the pseudopair. This par-
tition yields 12k speech utterances, and 12k of text caption, with
both sets are disjointed ((z;,y;),% # 7).

To show that our proposed approach can also be applied for
a cross-lingual application, we also ran a cross-lingual exper-
iment using English speech from SpeechCOCO multispeaker
dataset [29] to the Japanese text from the STAIR Caption dataset
[30], where this non-parallel speech-text mentions the same im-
age from the MSCOCO dataset [31]. We take the matching

amount of data and process it similarly to how Flickr8k dataset
is handled. We assume that the English data is speech from
an unknown and untranscribed language, where a visually con-
nected non-parallel Japanese text exists.

4.2. Model Parameters

We extracted the Mel-spectrogram (80 dimensions, 25-ms win-
dow size, 10-ms time steps) using the Librosa package [32].
This speech feature is used as the input and output of the VQ-
VAE model that has a 256 codebook size and 32 code dimen-
sions. For adapting with the natural speech dataset, we froze
the codebook part of the VQ-VAE model so that each code still
represented the same speech segment.

We used a Transformer-based text encoder and decoder
with a depth of 6 and a size of 512 hidden units. For the output
layer, we used label smoothing with a factor of 0.005 and beam
decoding with a size of 3. The vocabulary consists of words in
the text-only training data that appear at a frequency of more
than one time. We used Fast Align [33] as the unsupervised
aligner. Inside the chain mechanism, we only updated the last
element of the chain due to memory limitation. We trained all
models with the Adam optimizer [34] using a learning rate of
le-4.

4.3. Evaluation Method

We evaluate our proposed model performance by running an in-
ference step using the dev and test set of the dataset the model is
trained with. We use common metrics in the image captioning
task: bilingual evaluation understudy (BLEU) with 4-gram [35]
and CIDEr [36]. A BLEU score measures the n-gram similar-
ity between the hypothesis and references, while CIDEr mea-
sures consensus by evaluating beyond the n-gram exact sim-
ilarity. We used both metrics in a multi-reference condition.
In addition, to evaluate the semantic aspect, we developed a
cosine-similarity based metric (Sim%) for multi-reference eval-
uation by calculating the highest cosine similarity between the
hypothesis sentence embedding and the reference sentence em-
beddings. We generated the sentence embedding using the Sen-
tence Transformers toolkit [37] with the pretrained models of
RoBERTa [38] for English and Universal Sentence Encoder
[39] for Japanese.

We calculated the corpus vocabulary statistics such as num-
ber of unique words and the vocabulary utilization ratio to mea-
sure how rich the hypotheses are. We reported the Pearson’s
correlation coefficient (r) score between the word frequencies
of the hypothesis and the training set to show how good a model
could learn to mimic the training set’s word distribution.

5. Result and Discussion

Table 1: Experiment result in the Flickr8k synthesized speech
non-parallel dataset

Model Dev Test
Sim% BLEU CIDEr|Sim% BLEU CIDEr
(Baseline)

Random selection 16.73 228 342 [1625 222 3.58

ASR [40] 16.86 5.64 7.63 |16.94 4.69 7.08
(Proposed)
Code2Text 35.58 15.30 31.48 |35.79 15.04 31.66

+Partial Code2Text |40.58 16.95 36.11 |40.94 16.80 36.86
+Cycle Augmentation| 40.03 16.74 36.44 | 40.47 17.25 37.52

In Table 1, we provide the baseline score of a random se-
lection to show that our trained model produces a coherent hy-
pothesis. We also reported the score of the ASR model trained
directly on the non-parallel speech-text data. Then, we trained
the VQ-VAE model using the speech data, and generated the



Table 2: Adapting best Speech2Text model trained on Table 1 to
the Flickr8k multispeaker natural speech non-parallel dataset

Model Dev Test
Sim% BLEU CIDEr|Sim% BLEU CIDEr
(Baseline)
ASR [40] [ 16.30 323  9.30 [ 15.18 3.09 9.07

(Proposed)

Cyclic Partial Code2Text
no adaptation
with adaptation

21.37 7.84 11.64 |21.31 7.83 11.69
3570 14.64 29.80 | 35.35 14.57 29.01

Table 3: Our proposed Speech2Text vocabulary utilization
statistics for the Flickr8k multispeaker natural speech dataset
(Table 2) in comparison to the baseline.

Metric Baseline Proposed
Number of unique words 20 300
Vocab utilization ratio 0.69% 10.42%
Pearson correlation (r) 0.343 0.958

code sequence as a discrete speech representation. The code se-
quence can then be used to train a Code2Text model against the
partially-aligned text caption. Our proposed Code2Text model
delivers a better score than the ASR baseline, which shows that
our discretization method using VQ-VAE provides more effi-
cient learning due to reduced variability compared with mel-
spectrogram.

Then, because the input and output are discrete, we can ap-
proximate the alignment between the generated code sequence
and the partially-aligned text using an unsupervised aligner. We
next use the alignment information to influence the source-to-
target multi-head attention by producing an additional Lq+. We
found that by multiplying L. with « = 0.9, we could ob-
tain about 5.15% cosine similarity and 5.2 CIDEr points im-
provement on the test set, compared with a no-alignment model
(Code2Text). We also trained the partially-aligned Text2Code
with the same steps. After that, we use it in a cycle mecha-
nism to achieve cross-modal augmentation which yielded a 0.66
CIDEr improvement. We also trained an ASR model with paral-
lel data for a topline comparison, which yield a 89.81% cosine
similarity, 81.43 BLEU, and 206.59 CIDEr scores on the test
set.

Furthermore, we adapted our trained model to also sup-
port a multispeaker natural speech dataset using Flickr8k mul-
tispeaker natural speech dataset, in which we also use for test-
ing. As shown in Table 2, our adaptation improves CIDEr by
20 points compared to the baseline ASR and 17 points com-
pared to simply using the best model in Table 1 (no adaptation).
We also trained a topline model with parallel dataset, which
yield 82.75% cosine similarity, 70.24 BLEU, and 176.42 CIDEr
scores. Next, we took the best score of the test set from Table 2
and compared the corpus statistics in Table 3. We found that
the baseline system did not converge, as shown by the very low
number of unique words with only 0.69% of the vocabulary be-
ing used. In comparison, our proposed model yielded 10.42%
vocabulary utilization ratio. Moreover, our proposed method
shows a better modelling of the vocabulary with a Pearson cor-
relation (r) of 0.958, which is close to the topline of 0.999. This
shows that our proposed partially-aligned Code2Text can model
the training set word distribution as successfully as the topline,
even without using any parallel data. In addition, even with
limited vocabulary, our proposed method can still effectively
convey the semantics of a partially-aligned speech.

Table 4 shows a comparison of results between our pro-
posed model, baseline ASR, and the input speech transcription
(reference). The first example shows the baseline ASR model

Table 4: Example results from the test set (Table 2)

Model Sentence

Baseline |two dogs are running through the grass .

Proposed |a woman and a little girl are smiling .

Reference | a laughing woman holding a little girl .

Baseline |a man and woman pose for a picture .

Proposed |a man in a red shirt is rock climbing .

Reference | a man poses as he jumps from rock to rock in a forest .

hypothesis which is totally unrelated to the reference. Our pro-
posed method generated a hypothesis that semantically, closely
resembles the reference, even while replacing the word “laugh-
ing” with “smiling”. Then, in the second example, our proposed
method successfully described the rock-climbing activity men-
tioned in the speech (reference). Although it is not an exact
one-to-one transcription, the speech content itself can be suc-
cessfully described in each of our proposed method’s generated
hypotheses. We are confident that this result will be very useful
under the condition where no parallel speech-text data are avail-
able, in addition to handling an untranscribed unknown speech
language.

Table 5: Experiment result under cross-lingual EN-JA condi-
tion of transforming multispeaker English speech [29] to non-
parallel Japanese text [30]

Model Dev Test
Sim% BLEU CIDEr|Sim% BLEU CIDEr
ASR [40] 2485 239 1.63 |25.13 250 1.54
(Proposed)
Code2Text 30.15 13.17 12.96 [ 30.28 13.49 13.22

+Partial Code2Text | 30.08 13.33 13.94 | 30.06 13.41 13.57
+Cycle Augmentation| 30.51 13.36 14.21 |30.33 1340 13.75

Finally, we demonstrate how our proposed method can be
used under a cross-lingual condition. As shown in Table 5,
we found that the partial Code2Text and the cycle augmen-
tation showed a little improvement in terms of CIDEr score.
‘We hypothesize that this is due to the difficulty of aligning be-
tween different language structures (i.e., SVO for English, but
SOV for Japanese). Nevertheless, while the baseline ASR did
not show convergence, our proposed model could still achieve
BLEU score of about 13 points even with a small amount of
non-parallel data. This shows the effectiveness of our proposed
discretization using the transformer-based VQ-VAE.

6. Conclusion

In this study, we investigated a weakly-supervised mapping task
to transform unknown untranscribed speech utterances into a
semantically equivalent text, even without a parallel speech-
text dataset. Our proposed system uses a pipeline of VQ-VAE
to generate a discrete speech representation, and a partially-
aligned Code2Text Transformer model to learn the mapping be-
tween the code and the text. We also employed a cyclic aug-
mentation strategy to further improve the performance of the
Code2Text model. Our experiments with a multispeaker natu-
ral speech dataset showed improvement in every aspect that we
examined. Our analysis of the text hypothesis shows that our
proposed method can produce a more semantically relevant text.
For future work, we will explore methods to increase the vocab-
ulary utilization ratio, including an adversarial training method.
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