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1 Introduction

For years, Zerospeech challenge 2015, 2017, and

2019 have constantly confirmed the power of Dirich-

let Process Gaussian Mixture Model (DPGMM)

features to discriminate phonemes across different

speakers, different languages under such harsh con-

ditions as interviews with randomly interrupted dis-

fluent dialogues, and read speech in wild or noisy

recording environments.

DPGMM clustering can discriminate phonemes

well because it dynamically changes the number of

Gaussians until each one fits one segmental pattern

of the whole speech corpus with the highest proba-

bility such that the linguistic units of different seg-

mental patterns are clearly discriminated.

However, to the best of our knowledge, DPGMM

features have not been applied to large vocabulary

continuous speech recognition (LVCSR) before. In-

spired by DPGMM’s relatively strong discriminabil-

ity, we applied it to an LVCSR system by concate-

nating acoustic features with DPGMM posterior-

grams such that the concatenated features combine

the power of both to enhance the ASR system.

2 Method

2.1 DPGMM Clustering

We can treat DPGMM as an infinite GMM with

density function p(xi) =
∑∞

k=1 πkp(xi|µk,Σk) (al-

ternatively, p(xi) =
∑∞

k=1 p(Zi = k)p(xi|Zi = k)).

This generative model samples mixture weights

{πk}∞k=1 from the stick-breaking process (with con-

centration parameter α) and the means and vari-

ances {µk,Σk}∞k=1 from the normal-inverse-Wishart

(NIW) distribution (with a belief of mean µ0, the

belief of variance Σ0, the belief-strength of mean λ,

and the belief-strength of variance ν). The genera-

tive model also samples Gaussian cluster indicator

hidden variable Zi by mixture weights and each data

point Xi by the Gaussian cluster indicated by Zi.

The joint distribution of model can be described as
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Fig. 1 Proposed features for ASR: concatenation of

MFCC features and their DPGMM posteriorgrams.

DPGMM(α,NIW(µ0, λ,Σ0, ν)).

Given the model definition and data {xi}ni=1, we

can infer from the Gibbs sampling to get posterior

p(zi|xi) and the cluster k∗ of any data point xi by

k∗ = argmaxk p(zi = k|xi).

2.2 Concatenating DPGMM Posterior-

grams with MFCC Features

Compared with a traditional ASR system which

directly extracts such acoustic features as MFCC for

recognition tasks, our proposal applies the DPGMM

clustering algorithm on the acoustic features, gets

the unsupervised DPGMM posteriorgrams and con-

catenates the DPGMM posteriorgrams with the

MFCC features as enhanced features for the ASR

system (Fig. 1).

The DPGMM posteriorgrams are of relatively

high dimension, the probabilities are usually con-

centrated on one or two dimensions for each frame,

and most of the other dimensions are zeros. MFCC

is full of acoustic details in all the dimensions, but

the DPGMM posteriorgram is discriminative with

few dimensions; they complement each other in fea-

ture combinations. We will show that concatenating

an MFCC feature and its DPGMM posteriorgram

improves the ASR performance.

3 Experiment Settings

We trained an attentional encoder-decoder ASR

system. We set batch size to 32 and used the Adam

optimizer with an initial learning rate of 0.001. We

evaluated our ASR system with a beam search where

the beam size was 10.
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Fig. 2 Comparison between ASR systems with

acoustic MFCC features (solid lines) and concate-

nated MFCC features and their DPGMM posterior-

grams (dashed lines) by character accuracy on the

development set “dev93” of WSJ corpus.

We used python to implement the DPGMM

model, whose training process used the same pa-

rameter setting as previous works [1]. We set the

concentration parameter to 1 and the mean and vari-

ance of the prior to the global mean and the global

variance of the MFCC features with belief-strengths

1 and D + 2, where D is the number of dimensions

of the MFCC features. We obtained cluster labels

after 1500 sampling iterations.

4 Result

We verified the effectiveness and stability of

our proposed method with the spontaneous speech

recognition task on the WSJ corpus. Table 1 shows

that on both tasks with identical ASR system set-

tings, we observed a more constant decrease of

CER with the feature with extension (MFCC +

DPGMM) than in the original feature (MFCC).

We analyzed the performance of the ASR systems

during the entire training process. Fig. 2 shows

that the ASR systems with feature extension by

the DPGMM posteriorgram converged faster and re-

tained improvement compared to that without the

feature extension on the character accuracy of the

development set (“dev93”). Our proposed feature

improves more obviously on the system trained on

the small dataset (“train si84”) than on the large

dataset (“train si284”).

5 Conclusion

Since DPGMM features are strong at discriminat-

ing phonemes, we propose to concatenate MFCC

and DPGMM to improve the ASR system. Results

Table 1 We compared the attentional encoder-

decoder ASR systems with or without feature exten-

sion of the DPGMM posteriorgrams, along with two

baselines [3, 2], by the character error rates (CERs)

on the WSJ speech corpus. No systems used pro-

nunciation dictionaries or language models in the

decoding process. We divided the WSJ corpus into

the following datasets based on the Kaldi recipe:

training datasets of “train si84” (about 15 hours) or

“train si284” (about 80 hours); an identical develop-

ment dataset of “dev93” and an identical evaluation

dataset of “eval92” for all systems.

ASR on WSJ train si84 (15 hrs) CER%

Att Enc-Dec (Baseline ASR1) [2] 17.01

Att Enc-Dec (Baseline ASR2) [3] 17.35

Att Enc-Dec (Ours MFCC) 16.61

Att Enc-Dec (Ours MFCC+DPGMM) 14.86

ASR on WSJ train si284 (80 hrs) CER%

Att Enc-Dec (Baseline ASR1) [2] 8.17

Att Enc-Dec (Baseline ASR2) [3] 7.12

Att Enc-Dec (Ours MFCC) 6.57

Att Enc-Dec (Ours MFCC+DPGMM) 5.67

show that the concatenated feature works well on

LVCSR, especially with fewer resources.
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