

Emotion Estimation from EEG Signals and **Expected Subjective Evaluation**

Division of Information Science, Nara Institute of Science and Technology, Japan Kana Miyamoto, Hiroki Tanaka, Satoshi Nakamura

Emotion induction using music

Emotions felt while listening to music vary depending on individual and situation

Music selection based on participants' current emotion is required

Proposed overall system [Miyamoto et al., 2020]

Proposed overall system [Miyamoto et al., 2020]

The purpose of this paper

Improving the performance of emotion estimation used for emotion induction

Music generator for inducing emotions [Miyamoto et al., 2020]

- The music generator made music that induces emotions similar to the inputs
- From the evaluation of the music generator, we concluded that it effectively induced emotions

Music generator for inducing emotions [Miyamoto et al., 2020]

- The music generator made music that induces emotions similar to the inputs
- From the evaluation of the music generator, we concluded that it effectively induced emotions

Emotion estimation of related studies

Emotion estimation using EEG only [Ehrlich et al., 2019] [Miyamoto et al., 2020]

Related studies used linear regression and convolutional neural network (CNN)

2021/2/26

Proposed emotion estimation

Emotion estimation using EEG and expected subjective evaluations

• We regarded the inputs of the music generator as expected subjective evaluations

EEG recording

Participants

20 healthy undergraduate and graduate students

Electroencephalograph Quick-30 manufactured by CGX

Stimuli

41 pieces of music created by the music generator

Quick-30

EEG recording

Procedure

Preprocessing of EEG

- 1. The EEG in silence and listening to music was divided into 1 s
- 2. We designed second-order IIR bandpass filters
- 3. The features for each of the five frequency bands f = log(var (EEGdata))
- 4. We mapped the matrix reflecting the position of the EEG channels

					1,				<u> </u>
	0	0	AF3	0	0	0	AF4	0	0
	F7	0	F3	0	0	0	F4	0	F8
	0	FC5	0	0	0	0	0	FC6	0
	T7	0	0	0	0	0	0	0	T8
	0	0	0	0	0	0	0	0	0
	P7	0	0	0	0	0	0	0	P8
	0	0	0	0	0	0	0	0	0
44	0	0	0	01	0	O2	0	0	0

Comparison of two methods

1. CNN using EEG only [Miyamoto et al., 2020]

Training that takes into account the positional relationship of EEG channels

Comparison of two methods

2. Neural network using EEG and inputs of the music generator

• Emotion estimation using emotions estimated from EEG and the inputs to the music generator

14

RMSE of felt and estimated emotions

Range of felt emotions

valence: 0~1, arousal: 0~1

For the Wilcoxon signed-rank test result, we found a significant difference between neural network and CNN (p<0.05)

The means of RMSE for 20 participants

1. CNN u	sing EEG	Neural network using EEG and inputs of the music generator			
valence	arousal	valence	arousal		
0.214	0.239	0.151	0.164		

RMSE of felt emotions and inputs of the music generator valence: 0.232 arousal: 0.213

Conclusion

Our purpose

Improving the performance of emotion estimation used for emotion induction

Prosed model

Neural network using EEG and inputs of the music generator

Result

There was a significant difference between the proposed neural network and CNN using EEG

Future work

Construction and evaluation of the proposed emotion induction system

