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Emotion induction using music
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A

B

Individual Situation

Emotions felt while listening to music vary depending on individual and situation

Music selection based on participants’ current emotion is required



Proposed overall system [Miyamoto et al., 2020]
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Proposed overall system [Miyamoto et al., 2020]
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The purpose of this paper
Improving the performance of emotion estimation used for emotion induction



Music generator for inducing emotions [Miyamoto et al., 2020]

• The music generator made music that induces emotions similar to the inputs

• From the evaluation of the music generator, we concluded that it effectively induced emotions
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Music generator for inducing emotions [Miyamoto et al., 2020]

• The music generator made music that induces emotions similar to the inputs

• From the evaluation of the music generator, we concluded that it effectively induced emotions
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Emotion estimation of related studies
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Emotion estimation using EEG only [Ehrlich et al., 2019] [Miyamoto et al., 2020]
• Related studies used linear regression and convolutional neural network (CNN) 
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Proposed emotion estimation
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Emotion estimation using EEG and expected subjective evaluations
• We regarded the inputs of the music generator as expected subjective evaluations 



EEG recording
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Participants
20 healthy undergraduate and graduate students

Electroencephalograph
Quick-30 manufactured by CGX

Stimuli
41 pieces of music created by the music generator

Quick-30



EEG recording
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Procedure

Silent (5 s)

Listening to music (20 s)

Display of SAM

Evaluation of emotions
using self-assessment mannequin

[Bradley et al., 1994]

EEG recording (25 s)



Preprocessing of EEG
1. The EEG in silence and listening to music was divided into 1 s

2. We designed second-order IIR bandpass filters

3. The features for each of the five frequency bands ! = "#$(%&' ((()*&+&))

4. We mapped the matrix reflecting the position of the EEG channels
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Comparison of two methods
1. CNN using EEG only [Miyamoto et al., 2020]

• Training that takes into account the positional relationship of EEG channels
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Comparison of two methods
2. Neural network using EEG and inputs of the music generator

• Emotion estimation using emotions estimated from EEG and the inputs to the music generator
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RMSE of felt and estimated emotions

Range of felt emotions

valence: 0~1, arousal: 0~1

For the Wilcoxon signed-rank test result, we found a significant difference between neural network and 

CNN (p<0.05)
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1. CNN using EEG
2. Neural network using 

EEG and inputs of the music generator

valence arousal valence arousal

0.214 0.239 0.151 0.164

The means of RMSE for 20 participants

RMSE of felt emotions and inputs of the music generator valence: 0.232  arousal: 0.213



Conclusion
Our purpose

Improving the performance of emotion estimation used for emotion induction

Prosed model
Neural network using EEG and inputs of the music generator

Result
There was a significant difference between the proposed neural network and CNN using EEG

Future work
Construction and evaluation of the proposed emotion induction system
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