Emotion Estimation from EEG Signals and Expected Subjective Evaluation

Division of Information Science, Nara Institute of Science and Technology, Japan
Kana Miyamoto, Hiroki Tanaka, Satoshi Nakamura
Emotion induction using music

Emotions felt while listening to music vary depending on individual and situation.

Music selection based on participants’ current emotion is required.
Proposed overall system [Miyamoto et al., 2020]

- Participant
- EEG

Calculation of inputs to music generator:
- arousal
- valence
- Estimated emotion
- Estimated emotion valence

Music generator:
- Music
- Music generator

Emotion estimation:
- arousal
- valence
- Estimated emotion

Estimated emotion:
- Desired emotion
- Estimated emotion

Music generator inputs:
- valence
- arousal

Participant:
- EEG
Proposed overall system [Miyamoto et al., 2020]

The purpose of this paper
Improving the performance of emotion estimation used for emotion induction
Music generator for inducing emotions [Miyamoto et al., 2020]

• The music generator made music that induces emotions similar to the inputs

• From the evaluation of the music generator, we concluded that it effectively induced emotions
Music generator for inducing emotions [Miyamoto et al., 2020]

- The music generator made music that induces emotions similar to the inputs.
- From the evaluation of the music generator, we concluded that it effectively induced emotions.
Emotion estimation of related studies

Emotion estimation using EEG only [Ehrlich et al., 2019] [Miyamoto et al., 2020]

- Related studies used linear regression and convolutional neural network (CNN)
Emotion estimation using EEG and expected subjective evaluations

- We regarded the inputs of the music generator as expected subjective evaluations.
EEG recording

Participants
20 healthy undergraduate and graduate students

Electroencephalograph
Quick-30 manufactured by CGX

Stimuli
41 pieces of music created by the music generator

Quick-30
EEG recording

Procedure

Silent (5 s)

Listening to music (20 s)

Evaluation of emotions using self-assessment mannequin [Bradley et al., 1994]

Display of SAM

EEG recording (25 s)
Preprocessing of EEG

1. The EEG in silence and listening to music was divided into 1 s
2. We designed second-order IIR bandpass filters
3. The features for each of the five frequency bands $f = \log(\text{var (EEGdata)})$
4. We mapped the matrix reflecting the position of the EEG channels
Comparison of two methods

1. CNN using EEG only [Miyamoto et al., 2020]
 - Training that takes into account the positional relationship of EEG channels
Comparison of two methods

2. Neural network using EEG and inputs of the music generator
 • Emotion estimation using emotions estimated from EEG and the inputs to the music generator

Inputs of the music generator

EEG ← CNN

Method 1

Fully connected layer → ReLU layer → Dropout layer → Fully connected layer → Regression output layer
RMSE of felt and estimated emotions

Range of felt emotions
valence: 0~1, arousal: 0~1

For the Wilcoxon signed-rank test result, we found a significant difference between neural network and CNN (p<0.05)

The means of RMSE for 20 participants

<table>
<thead>
<tr>
<th></th>
<th>1. CNN using EEG</th>
<th>2. Neural network using EEG and inputs of the music generator</th>
</tr>
</thead>
<tbody>
<tr>
<td>valence</td>
<td>0.214</td>
<td>0.151</td>
</tr>
<tr>
<td>arousal</td>
<td>0.239</td>
<td>0.164</td>
</tr>
</tbody>
</table>

RMSE of felt emotions and inputs of the music generator valence: 0.232 arousal: 0.213
Conclusion

Our purpose

Improving the performance of emotion estimation used for emotion induction

Proposed model

Neural network using EEG and inputs of the music generator

Result

There was a significant difference between the proposed neural network and CNN using EEG

Future work

Construction and evaluation of the proposed emotion induction system