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ABSTRACT

Traditional speech translation systems use a cascade manner
that concatenates speech recognition (ASR), machine trans-
lation (MT), and text-to-speech (TTS) synthesis to translate
speech from one language to another language in a step-
by-step manner. Unfortunately, since those components are
trained separately, MT often struggles to handle ASR errors,
resulting in unnatural translation results. Recently, one work
attempted to construct direct speech translation in a single
model. The model used a multi-task scheme that learns to
predict not only the target speech spectrograms directly but
also the source and target phoneme transcription as auxiliary
tasks. However, that work was only evaluated Spanish-
English language pairs with similar syntax and word order.
With syntactically distant language pairs, speech translation
requires distant word order, and thus direct speech frame-to-
frame alignments become difficult. Another direction was
to construct a single deep-learning framework while keeping
the step-by-step translation process. However, such stud-
ies focused only on speech-to-text translation. Furthermore,
all of these works were based on a recurrent neural net-
work (RNN) model. In this work, we propose a step-by-step
scheme to a complete end-to-end speech-to-speech trans-
lation and propose a Transformer-based speech translation
using Transcoder. We compare our proposed and multi-task
model using syntactically similar and distant language pairs.

Index Terms— speech-to-speech translation, Transcoder,
Transformer, sequence-to-sequence model, multitask learn-
ing

1. INTRODUCTION
Speech-to-speech translation is challenging. Humans trans-
late speech-to-speech in several steps: comprehension, trans-
fer of meaning, and language production. First, we under-
stand a spoken speech; then, we turn the content into target
language; finally, we pronounce the translated content us-
ing target language. The traditional speech translation sys-
tem follows this step-by-step process that connect ASR, MT,
and TTS to translate speech to another language’s speech [1].
Such step-by-step training and inference process are essen-
tial since they reduce complexity. Unfortunately, since these

components are trained and tuned separately and no total op-
timization is performed, MT often struggles to handle ASR
errors, resulting in unnatural translation results.

Few works have constructed direct speech translation in
a single model using deep learning to avoid a problem in
traditional speech translation. Duong et al. introduced the
first study that considered speech-to-text translation by align-
ment and translation reranking [2], and Berard et al. built a
fullfledged, end-to-end attention-based speech-to-text trans-
lation system [3]. But their results failed to outperform the
traditional cascade approach. Jia et al. constructed a com-
plete end-to-end speech-to-speech translation model [4] that
used a multi-task scheme with three decoders that learned to
predict not only the target speech spectrograms as its main
task but also the source and target phoneme transcriptions as
auxiliary tasks. During inferences, no auxiliary tasks were
used, and the model performed only with a single encoder to
receive the source language’s speech and a single decoder to
generate the target language’s speech. Therefore, the model
had to directly align source speech frames into target speech
frames. However, ultimately, all of these previous researches
on direct speech translation just focused on syntactically sim-
ilar language pairs. With syntactically distant language pairs,
speech translation requires distant word order and complicat-
ing direct speech frame-to-frame alignments.

Another research direction constructed a single deep-
learning framework and kept the step-by-step translation pro-
cess. Kano et al. [5] proposed end-to-end speech translation
that directly passes the attention’s weighted contextual infor-
mation from one component to another. Their model transfers
the attention results to the next process. Since the attention
module works as a filter function for the source speech en-
coder states, it generates a target text from source speech
encoder states, not the ASR text. Sperber et al. [6] compared
multi-task- and step-by-step-based end-to-end speech-to-text
translations in various dataset sizes and reported that both
the multi-task and step-by-step approaches outperformed the
traditional cascade speech-to-text translation system. Fur-
thermore, the step-by-step-based speech translation model
outperformed the multi-task-based speech translation model,
especially with a small dataset. However, these two works
only covered speech-to-text translation.



Finally, all of the above cited works used an RNN model
for modeling sequential data. However, we argue that us-
ing Transformer architecture [7] in speech translation might
be more suitable than RNN. Inaguma et al. reported that
a Transformer-based model outperformed an RNN-based
model on end-to-end ASR, MT, and TTS tasks [8]. To trans-
late speech-to-speech, the model needs to process long se-
quential data based on the long context information of the
source and target speech. The Transformer can reduce the
calculation time, especially when a data sequence is long
since it lacks a recurrent function. Furthermore, since the
Transformer uses a self-attention function to find related in-
formation from the whole sequence, it can learn long context
information [7]. Unfortunately, no work applies a Trans-
former to end-to-end speech-to-speech translation tasks.

We address these remaining issues by performing the fol-
lowing:

1. constructing the step-by-step scheme to complete end-
to-end speech-to-speech translation;

2. revamping the RNN-based speech-to-speech transla-
tion model with the Transformer;

3. analyzing the model’s behavior and comparing the
translation performance with the traditional cascade
and the state-of-the-art multi-task frameworks on syn-
tactically similar and distant language pairs.

Our proposed model translates in a speech-to-speech, step-
by-step process to reduce complexity. Then it transfers at-
tention results instead of its output text and performs total
optimization. To the best of our knowledge, this is the first
work that develops an end-to-end Transformer-based speech-
to-speech translation system. It is also the first one that in-
vestigates the performance of syntactically distant language
pairs. For comparison, we also reconstruct the recent RNN-
based multi-task speech-to-speech model [4] as well as build
the Transformer version, and compare the performances in
syntactically similar and distant language pairs.

2. PROPOSED METHOD
Constructing a direct speech-to-speech translation task for
single attention-based encoder-decoder architecture is diffi-
cult because the model simultaneously needs to solve three
complex problems:

1. learning how to process long speech sequences to map
them to the corresponding text, similar to the issues ad-
dressed in ASR [9];

2. learning how to make proper alignment rules between
the source and target languages, similar to the issues
addressed in MT [10, 11];

3. learning how to generate long speech sequences from
the corresponding text, similar to the issues addressed
in TTS [12].

Furthermore, the model requires a large amount of parallel
speech that is often unavailable.

In the traditional approach, the above three problems are
respectively handled by ASR, MT, and TTS, which were
trained and tuned independently. This approach reduces the
complexity and the need for a large amount of parallel speech.
Unfortunately, since these components are trained separately,
MT often struggles to handle ASR errors, resulting in unnat-
ural translation results. In this proposed work, since we still
separately handle these three problems, the model does not
require a large amount of parallel speech. In contrast with
the traditional approach, those problems are not addressed by
completely separate components that are trained and tuned
independently.

Figure 1 illustrates the overall framework of our proposed
end-to-end speech-to-speech translation architecture. We
trained the model step-by-step with curriculum learning from
easy to complicated tasks while changing the model struc-
tures. First, we trained an attention-based encoder-decoder
component for each problem task and gradually progressed to
a more difficult target task (i.e., speech-to-text and speech-to-
speech translation tasks) by connecting these components to
the Transcoder network [13]. In this case, the learning scheme
changes from single-task to multi-task learning by simultane-
ously training the decoders and the Transcoders. The overall
architecture has a single source-language-speech encoder,
three decoders that predict source-language text transcrip-
tions, target-language-text transcriptions, target-language
speech, and two Transcoders. The first Transcoder trans-
fers the attention context information of the acoustic hidden
representations to the linguistic hidden representations, and
the second transfers the attention context information of the
linguistic hidden representations to the acoustic hidden repre-
sentations of the target language. Further details are described
below.

2.1. Training process
First, we prepared pre-trained ASR, MT, and TTS models.
After that, we utilized the pre-trained ASR encoder for the
source-language-speech encoding, and the ASR, MT, and
TTS decoders for the source-language-text, target-language-
text, and target-language-speech generation, respectively.
Then we fine-tuned the overall framework by connecting
these components with two Transcoders. Various studies
have described how to use pre-trained speech recognition and
machine translation to initialize speech translation models
[5, 14, 15, 3]. However, the hidden representation of a pre-
trained ASR and an MT encoder is very different. First, the
lengths of the ASR and MT input sequences are different.
Second, ASR’s hidden states represent the input speech’s
phonological information necessary for transcription, while
the MT hidden states represent bilingual semantic infor-
mation for translation. Therefore, this gap affects the MT
decoder’s tuning by connecting the pre-trained ASR encoder
and pre-trained MT decoder. To avoid this problem, we use a



Fig. 1. Proposed framework of the end-to-end speech-to-speech translation architectures

Fig. 2. Transcoder training process

Transcoder to transfer the ASR hidden representation closer
to the MT hidden representation for the pre-trained MT de-
coder. In the first Transcoder training, we make a Transcoder
with the same architecture of the pre-trained MT encoder
EncoderMT. However the Transcoder has a feed-forward net-
work instead of an EncoderMT. We fine-tuned the pre-trained
ASR decoder and trained the Transcoder to output the source
language’s linguistic hidden representation by transfer learn-
ing, where the pre-trained MT encoder is treated as a teacher
(Fig. 2). The Transcoder received weighted contextual in-
formation AASR from the ASR attention module of the ASR
decoder and generated Transcoder output HTC. In this step,
we used an attention mechanism to align the ASR speech
sequence to the text sequence. After that, we used MT en-
coder hidden states Hs as a target to optimize the Transcoder
to bring the ASR hidden representations closer to the MT
representations:

HTC = Transcoder(AASR), (1)
HS = EncoderMT(S).

In this way, the pre-trained MT decoder can attend to the pre-
trained ASR contextual information of the source-language-
acoustic hidden representation. Here S is a source-language-
text sentence. The length of the HTC and H t sequences equals
the source text length. We froze other unit parameters dur-

ing this Transcoder training and only updated the Transcoder
and ASR decoder parameters. We thoroughly optimized the
Transcoder to minimize the smooth L1 loss between HTC and
HS:

loss(HTC, HS) =


0.5 ∗ (HTC −HS)2,

if |HTC −HS| < 1,

|HTC
l −HS| − 0.5,

otherwise.

(2)

Here l denotes the source-language text sequence’s index.
When the transcoding loss is below a threshold value (e.g.,
0.05), we connect the Transcoder with a pre-trained MT
decoder and start training for speech-to-text translation.

In the second Transcoder training, we train the second
Transcoder using the pre-trained TTS encoder as a teacher
model, with the same process as the first translation training
process (Fig. 2). Using the same training mechanism as for
the first Transcoder, we trained the second Transcoder until
the smooth L1 loss fell below a threshold. After that, we
connected the trained Transcoder with the pre-trained TTS
decoder and performed a total optimization for all the param-
eters of all the components: one encoder, three decoders, and
two Transcoders.

2.2. Inference process
First, we performed an ASR to generate ASR attention results
AASR = [aASR

1 , . . . , aASR
l , . . . , aASR

L ] for the first Transcoder.
Here L and l denote the length and index of source-language
text sequence S:

Hquery = Encoder(X), (3)

hkey
l−1 = Decoderkey(sl−1),

al = Attention(Hquery, hkey
l−1),

sl = Decoderout(aMT
l , hkey

l−1).

ASR attention results AASR, which are used in the next
speech-to-text translation step, are ASR encoder hidden
states and the attention weight’s dot products. The Trans-
former model has two decoding steps. The Decoderkey

generates key-value Hkey = [h1, . . . , hl, . . . , hL] for the at-
tention module from the previous target. The Decoderout

generates a source text token from attention results AMT =
[a1, . . . , al, . . . , aL] and key-value hkey

l−1. The Attention



function is a multi-head attention. sl and al denote the source
text and attention result at the l − 1 step. In this step, we
generate source text sequence S = [s1, . . . , sL] and attention
results AASR by performing autoregressive decoding. We
only use the attention results for the next translation process.
The generated source text sequence is only used for this au-
toregressive decoding. Next we utilized a Transcoder and
a target-language-decoder to translate the source-language-
speech to target-language-text sequence T = [t1, . . . , tM ]:

Hquery = Transcoder1st(AASR), (4)
tm, am = DecoderMT (tm−1).

Here M and m denote target-language-text sequence T ’s
length and index. AASR is the acoustic representation of the
source-language-text, and Hquery is its linguistic represen-
tation. The first Transcoder transfers the acoustic hidden
representations from the ASR attention results to the linguis-
tic hidden representations of the MT encoder hidden states.
The MT target-language-text decoder attends to linguistic
hidden representations Hquery to generate target-language-
text T = [t1, . . . , tL] and target language attention results
AMT = [a1, . . . , aL]. We only use attention results AMT for
the next translation process. The ASR attention results of
AASR are a filtered feature of a source-language-speech en-
coder sequence. This step performs a direct translation from
the source-language-speech to the target-language-text:

Hquery = Transcoder2nd(AMT), (5)
tn, an = DecoderTTS(yn−1).

Finally, we generate target-language-speech feature sequence
Y = [y1, . . . , yn, . . . , yN ] using the second Transcoder
with target-language-text decoder attention results AMT =
[aMT

0 , . . . , aMT
m , aMT

M ], and a target-language-speech decoder.
Here M and m denote target-language-speech sequence Y ’s
length and index. Input sequence AMT is a linguistic repre-
sentation of the target-language-text sequence. We used the
second Transcoder to map the linguistic hidden representa-
tions from MT attention results AMT to the acoustic hidden
representations of the TTS encoder hidden states. Here we
do not need to consider the source and target language align-
ments.

In summary, we solved the speech-to-speech translation
task by predicting the target speech spectrograms as well as
the source and target text transcriptions from the first and sec-
ond decoders. This result resembles the auxiliary tasks in pre-
vious works. The main difference is that the previous multi-
task system only used one attention module to align the input
speech to the target speech. If the translation task becomes
too difficult, then the translation performance will fall signif-
icantly. In contrast, our proposed system relies on three at-
tention modules that focus on the input-output alignment of

these specific problems: (1) speech-to-text in the source lan-
guage, (2) text-to-text in the source and target languages, (3)
text-to-speech in the target language.

3. EXPERIMENTS
3.1. Experimental setup

Table 1. Model setting
Transformer setting

Encoder layers 3
Decoder layers 6

Multi-head 8
Transformer hidden size 256

Transformer FFN [7] hidden size 1024
RNN setting

Encoder layers 4
Decoder layers 2

RNN type LSTM
Multi-head 8

RNN hidden size 256
Speech input and output layer setting

Speech input size 80 (mel) * 3 (frames)
Speech mel out size 80 (mel) * 5 (frames)

Optimizer setting
Warm-up steps for Transformer 8000

Optimizer method Adam
Learning rate decay 0.8

Training steps 2,000,000
Batch size (ASR / MT / TTS / ST) 64 / 128 / 32 / 16

We conducted our experiments using a basic travel ex-
pression corpus (BTEC) [16, 17]. We chose English-to-
Spanish and Japanese-to-Korean as syntactically similar lan-
guage pairs as well as English-to-Japanese and Japanese-to-
English as syntactically distant language pairs. The BTEC
English-Japanese parallel text corpus consisted of 480-k
training data. The BTEC English-Spanish and Japanese-
Korean parallel text corpus consisted of 160-k training data.
Since the corresponding speech utterances for this text corpus
are unavailable, we used the Google text-to-speech synthesis1

to generate a speech corpus. We also utilized the BTEC cor-
pus that consists of 190-k utterances of natural English speech
and 140-k utterances of natural Japanese speech. However,
it only has 5-k speech-to-speech parallel data of English-
Spanish and English-Japanese and 7-k speech-to-speech par-
allel data of Japanese-Korean and Japanese-English. During
a training step, the input was both natural and generated
speech, and the target was generated speech. At the test step,
the input was natural speech only. We segmented the speech
utterances into multiple frames with a 50-ms window and
12-ms steps and extracted 80-dimension Mel-spectrogram
features using LibROSA2. We concatenated 3 frames of the
acoustic features into one super vector for the input and out-
put speech. We describe the model setting in Table 1. We

1Google TTS: https://pypi.python.org/pypi/gTTS
2LibROSA: https://librosa.github.io/librosa/



Table 2. ASR WER
Model Natural English Natural Japanese Generated English Generated Japanese
RNN 9.1 10.3 - -

Transformer 6.8 8.2 3.5 5.1

Table 3. BLEU and METEOR scores of text-to-text translation

Model
Syntactic similar Syntactic distant

En to ES Ja to Ko En to Ja Ja to En
BLEU METEOR BLEU METEOR BLEU METEOR BLEU METEOR

RNN 45.9 62.1 46.3 63.8 42.0 58.4 43.4 59.8
Transformer 47.1 66.4 48.2 67.3 43.2 59.8 45.1 61.0

Table 4. BLEU and METEOR scores of speech-to-speech translation

Model
Syntactic similar Syntactic distant

En to Es Ja to Ko En to Ja Ja to En
BLEU METEOR BLEU METEOR BLEU METEOR BLEU METEOR

Baseline: Cascade (RNN) 38.9 47.7 38.7 49.1 32.5 44.2 32.0 43.2
Baseline: Cascade (Transformer) 41.3 52.1 41.0 51.1 34.1 45.2 35.0 45.3
Google (RNN) [4] 38.8 48.2 39.1 49.9 33.2 45.5 34.2 45.0
Google (Transformer)1 43.1 58.8 42.5 58.3 36.9 52.6 38.3 48.4
Transcoder (Transformer) 44.0 59.3 42.9 58.8 40.6 56.6 41.0 55.8

1In this experiment we constructed a Google system using a Transformer network.

English-Spanish translation English-Japanese translation
Multi-task model Transcoder model Multi-task model Transcoder model

Fig. 3. Attention table of multi-task and Transcoder speech translation: Source-language-text, target-language-text, and target-
language-speech attention tables are arranged from top to down.



used OpenNMT3 to make a multi-task-based Google model
and implemented our proposed model on it.

3.2. Experiment results
We translated the input speech to the target language speech
using our proposed Transcoder-based models. As we men-
tioned earlier, for comparison, we reproduced the previous
Google’s speech translation system with RNN [4] and also
built the Transformer version. To evaluate the speech outputs’
translation performance, we transcribed the speech using an
ASR system that was trained with TTS-generated acoustic
features and calculated the BLEU [18] and METEOR [19]
scores from the transcription to evaluate each model’s per-
formance. First, we show the RNN and Transformer-based
ASR and MT performances in Tables 2 and 3. From these
works, we found that by training and tuning all components,
the system could learn how to handle the error propagation
from each component task and optimize overall performance.
Thus the end-to-end models outperformed the cascade mod-
els. Thus the end-to-end models outperformed the cascade
models. Table 4 lists the translation performances. First,
we describe why the end-to-end frameworks outperformed
the cascade models. Several works show that end-to-end
speech-to-text translation can sometimes outperform the cas-
cade model. Sperber et al. [6] and Osamura et al. [20]
concluded that dataset size and ASR error rate are important
factors to improve the end-to-end model and outperform the
cascade model. From these works, we achieved good ASR
performance and prepared enough parallel datasets using the
synthesized data. Thus the end-to-end models outperformed
the cascade models.

Second, we explain why our Transcoder model outper-
formed Google’s multi-task-based speech translation model.
The multi-task model shared the same encoder sequence for
transcription and translation. In this framework, the encoder
needs to move the source encoder hidden states closer to both
the source-text and target-text hidden vectors to get atten-
tions. It is possible in syntactically similar language transla-
tion since both general transcription and syntactically similar
language translation do not require long context information.
In syntactically similar language translation, since there are
many one-to-one mappings in translation, the speech transla-
tion only needs to change the target side word id.

However, syntactically distant language translation needs
to consider long context information and long distant multi-
to-multi word mapping. Examining long context information
at the encoder is difficult because the input speech sequence is
long. When the translation task becomes difficult, the multi-
task encoder is challenging. Thus the multi-task model per-
formances drop on syntactically distant language pairs. On
the other hand, the Transcoder helps address the long con-
text and complex mapping problem that is unnecessary for
transcription. This process does not affect the source encoder

3OpenNMT: http://opennmt.net/

performance and provides memory sequences that are essen-
tial for translation. Therefore, the Transcoder outperformed
Google’s multi-task-based framework, especially on syntacti-
cally distant language translation tasks.

For more discussion, we analyzed the attention map and
the model behavior. Fig. 3 also shows the attention matrices
of three decoders that generate (1) the text of the source lan-
guage in the top row, (2) the text of the target language in the
middle row, and (3) the speech of the target language in the
bottom row. Although the multi-task-based model only used
single attention and a decoder during the inferences, it still
had three individual attention modules that had been trained
for those three tasks. On syntactically similar language trans-
lations, both the multi-task and Transcoder models have a
similar monotonic shape attention. However, on syntactically
distant language translations, the proposed Transcoder model
retains a monotonic shape attention for the first and third
tasks, although the multi-task model does not. This is be-
cause, in the multi-task-based speech translation system, all
the decoders share the same encoder states, and thus the atten-
tion model provided the information of the (1) speech-to-text
of source language, (2) the speech-to-text from the source
to the target language, and (3) the speech-to-speech from
the source to the target language. On the other hand, since
the Transcoder-based speech translation solved the problem
sequentially, the attention provided the information of the (1)
speech-to-text of the source language, (2) the text-to-text from
the source to the target language, and (3) the text-to-speech
of the target language. Since speech-to-speech translation is
very challenging, our proposed approach, which solves the
problem by breaking it into a sequence of sub-tasks, worked
effectively and outperformed the multi-task-based speech
translation.

4. CONCLUSION

We proposed a Transformer-based Transcoder network for
end-to-end speech-to-speech translation and applied our pro-
posed framework to various language pairs, including syntac-
tically similar and distant language pairs. We compared our
Transcoder-based model with the state-of-the-art, end-to-end
speech-to-speech translation model that was trained based on
a multi-task scheme. Our results revealed that the proposed
model’s translation performance surpassed the state-of-the-
art model in all the language pairs. In the future, we will
further investigate the performance of our proposed model
in other language pairs using completely natural speech-to-
speech translation corpora.
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