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ABSTRACT

The first step in building an ASR system is to extract proper
speech features. The ideal speech features for ASR must also
have high discriminabilities between linguistic units and be
robust to such non-linguistic factors as gender, age, emo-
tions, or noise. The discriminabilities of various features
have been compared in several Zerospeech challenges to dis-
cover linguistic units without any transcriptions, in which the
posteriorgrams of DPGMM clustering show strong discrim-
inability and get several top results of ABX discrimination
scores between phonemes. This paper appends DPGMM
posteriorgrams to increase the discriminability of acoustic
features to enhance ASR systems. To the best of our knowl-
edge, DPGMM features, which are usually applied to such
tasks as spoken term detection and zero resources tasks,
have not been applied to large vocabulary continuous speech
recognition (LVCSR) before. DPGMM clustering can dy-
namically change the number of Gaussians until each one fits
one segmental pattern of the whole speech corpus with the
highest probability such that the linguistic units of different
segmental patterns are clearly discriminated. Our experi-
mental results on the WSJ corpora show our proposal stably
improves ASR systems and provides even more improvement
for smaller datasets with fewer resources.

Index Terms— ASR, DPGMM, zerospeech, discrimina-
tion

1. INTRODUCTION

ASR seeks a sequence of linguistic units such as phonemes
and words for each speech utterance. One critical issue that
affects its performance is speech feature extraction. Such
acoustic features as Mel-Frequency Cepstrum Coefficients
(MFCC) [1] and Perceptual Linear Prediction (PLP) [2] ex-
tract smooth formant envelopes, mimic non-linear auditory
properties, and work well in ASR systems [3].

MFCC, which is widely used as the default feature for
ASR systems [4, 5], accurately grasps the temporal spec-
tral properties of each phoneme. However, MFCC relatively
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weakly discriminates phonemes [6, 7] because the MFCC of
one phoneme does not consider to further contrast itself with
the phonemes of other categories with similar acoustics (e.g.,
/p/ in contrast with /b/ and /d/) in different utterances.

The ideal speech features for ASR also require suffi-
cient ability to discriminate between such linguistic units
as phonemes or words and should be robust to such non-
linguistic factors as gender, emotions, and noise.

The quantification of discriminability between linguistic
units was recently developed [8]. Various features [9, 10, 11]
were compared in several Zerospeech challenges to discover
linguistic units without transcriptions and evaluated by the
ABX discrimination test [8], which measures ability to dis-
criminate the phonemes.

The proposed features in Zerospeech include such acous-
tic features as MFCC or PLP [8], transformed features from
neural representation learning by autoencoder [12, 13, 14],
neural discriminative training by ABnet [15], neural dis-
cretized learning by VQ-VAE [16], traditional clustering by
GMM [16] or k-means [17, 16], and nonparametric clus-
tering by the Dirichlet Process Gaussian Mixture Model
(DPGMM) trained with Gibbs sampling [18] or variational
inference [19, 20]. Among them, DPGMM achieved the top
performance in the ABX discrimination test at the Zerospeech
challenges of 2015, 2017, and 2019 [6, 7, 21].

DPGMM clustering can discriminate phonemes well be-
cause it dynamically changes the number of Gaussians until
each one fits one segmental pattern of the whole speech cor-
pus with the highest probability such that the linguistic units
of different segmental patterns are clearly discriminated.

In the field of speech processing, DPGMM was initially
applied in spoken term detection [18] and later in Zerospeech
challenges [7], suggesting its ability to discriminate linguis-
tic units. To the best of our knowledge, DPGMM features
have not been applied to large vocabulary continuous speech
recognition (LVCSR) before. Inspired by DPGMM’s rela-
tively strong discriminability, we applied it to an LVCSR sys-
tem by concatenating acoustic features with DPGMM pos-
teriorgrams such that the concatenated features combine the
power of both to enhance the ASR system.



2. RELATED WORKS

Not only the features themselves but also their transforma-
tions are used to improve ASR. Some transformations append
deltas [22] to features by taking the orders of derivatives, and
others reconstruct features by applying self-supervised learn-
ing [23]. They grasp the temporal structure to improve the
performance. Other transformations combine different fea-
tures, such as an MFCC concatenated with an PLP [24] and an
MEFCC concatenated with a posteriorgram [25, 26] from neu-
ral networks, which are often used for combining the merits
of different features.

A scheme that resembles our proposal in enhancing fea-
ture discriminability for ASR is the tandem system [26],
which uses posteriorgrams obtained from neural networks
targeted at phonemes or states with supervised learning. The
tandem approach needs the alignments of phonemes or states
and a large amount of data for training neural networks. Such
accurate alignments or rich data resources are often unavail-
able. DPGMM gets posteriorgrams with unsupervised clus-
tering, which is robust in a small amount of data, implying
the promise of our proposal for a low-resource ASR.

Our work is also different from transforming features by
appending deltas [22] or reconstructing features by applying
self-supervised learning [23], both of which model the abso-
lute or statistical local temporal structure. DPGMM cluster-
ing globally searches for distinct segment patterns over all the
acoustic features of the whole speech corpus.

3. PROPOSED APPROACH

3.1. DPGMM Clustering

We can view each frame of a speech feature as one sam-
ple generated by a Gaussian Mixture Model (GMM) for the
following reasons. Theoretically, a GMM has the power to
model any distribution, especially spherical or elliptical ones
with multiple local modes; practically, the GMM can fit the
spectrum feature, as done in HMM-GMM speech recognition
systems.

The Dirichlet Process Gaussian Mixture Model (DPGMM)
is a nonparametric Bayesian version of GMM. The number of
clusters K is learned from data nonparametrically (the number
of parameters can grow with the data size). In the Bayesian
world, our parameters are no longer unknown constants; they
are random variables with certain distributions.

We can treat DPGMM as an infinite GMM with den-
sity function p(x;) = Yo mkp(w;|pk, Bk) (alternatively,
p(x:) = 3232, p(Zi = k)p(xi|Z; = k).

This generative model (Fig. 1) is defined by the following
procedures. It samples mixture weights {m}?°; from the
stick-breaking process [27] (with concentration parameter o)
and the means and variances {py, X5 }52, from the normal-
inverse-Wishart (NIW) distribution (with the belief of mean
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Fig. 1: Graphical model of Dirichlet Process Gaussian
Mixture Model (DPGMM): We generated parameters of
weights (7 = my,...,7,...), means, and variances
(1, X) = (u1,21), -+ (s Zg), - . .) for Gaussians from
stick-breaking process (with concentration parameter o)) and
normal-inverse-Wishart distribution (with parameter 5 =
(1o, A, 2o, v)) respectively. We then generated each frame
of speech feature X; of data X = X;,..., X, by first
sampling one Gaussian with mean pj and variance Xy in-
dicated by hidden variable Z; = k according to weights
and sampling X; from that Gaussian cluster. The box,
with (Z;, X;) inside, is a simplified notation of all n
data points (features) with their indicator hidden variables
(Z1,X1)y- s (Ziy Xi)y o ooy (Zny X))

1o, the belief of variance Yy, the belief-strength of mean A,
and the belief-strength of variance v). It also samples Gaus-
sian cluster indicator hidden variable Z; by mixture weights
and each data point X; by the Gaussian cluster indicated by
Z;. We summarize this sampling procedure by describing the
dependency relation of the random variables of the joint dis-
tribution of model DPGMM (v, NIW (g, A, Xo, 1)) in Fig. 1.

3.2. DPGMM Clustering to Generate Posteriorgrams

Given the model definition and data {z;}} ;, we infer
from Gibbs sampling (Algorithm 1) to get posteriorgram
p(zilzi).

First, we update the weights by sampling from a Dirichlet
distribution:

T, K, T 1]2, @ ~ Dir(ng, ng, - ,ng, o), (1)
where K is the number of the clusters of the currently ob-
served data, mj, | = Y 7 .. ™ is the sum of the weights
for the future possible clusters, and n, = Y ., 6(z; = k)
is the number of data points in cluster k, counted by hidden
indicator variables z = 21,..., z,.

Second, we update the mean and the variance for each
Gaussian cluster k£ by sampling a normal-inverse-Wishart dis-
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Fig. 2: Construction of our proposed ASR system from tradi-
tional ASR: First, we do DPGMM clustering on the acoustic
feature (MFCC) to get a DPGMM posteriorgram, highlighted
by a red rectangle; then we replace the MFCC feature of the
traditional ASR system with the concatenation of the MFCC
and its posteriorgram. Concatenated features are expected to
improve ASR systems.

Algorithm 1 Gibbs sampling for DPGMM (Fig. 1) given hy-
perparameters « and /3 and observed data x
Randomly initialize cluster indicator z = 21, ..., 2,
for Iteration iter = 1,2,... do
Sample 7’ ~ p(7|z, @) by Eq. (1),
T, K, Tiyq|2, a0 ~ Dir(ng, ng, - - -
Sample 1/, ¥ ~ p(p, 2|z, 5, x) by Eq. (2),
Ly S|z, By~ NIW () A®) 52(F) (k)
Sample z, ~ p(z;|7’, 1/, ¥/, x;) by Eq. (3),
2|7, oy By x5 ~ mep(xi| p, Bi) /p(24)
Update z = (21, ..., 2},).
end for

7nK;a)

tribution [28] after observing data x:
s i), B, ~ NIW () AP 508 )

where 17 A® 5% andy®) are the updated parameters
for the k-th cluster after seeing the data [28].

Third, we update the hidden variables by sampling the
posterior distribution:

Tp(@;| e, i)

o TEp(@i | pE, 2k) -
() (2] )

3

p(zi = k|m, p, 2, ) =

3.3. Concatenating DPGMM Posteriorgrams with MFCC
Features

Compared with a traditional ASR system which directly ex-
tracts such acoustic features as MFCC for recognition tasks,
our proposal applies the DPGMM clustering algorithm on

Table 1: Hyperparameters for encoder-decoder ASR and
DPGMM: Notion D is number of dimensions of MFCC fea-
tures.

Model Parameters Value
Dropout probability 0.25

ASR Label-smoothing ratio 0.05
Learning rate 0.001
Beam size 10
Concentration parameter 1
Belief-strength of mean 1

DPGMM Bel%ef-strength of variance D + 2
Belief of mean Feature mean
Belief of variance Feature variance

Number of iterations 1500

the acoustic features, gets the unsupervised DPGMM posteri-
orgrams and concatenates the DPGMM posteriorgrams with
the MFCC features as enhanced features for the ASR system
(Fig. 2).

Before concatenation, we applied Cepstral Mean and
Variance Normalization (CMVN) to the MFCC features to
reduce the feature distortion by noise contamination, which
lowers the number of DPGMM clusters. Finally, we got
99 clusters with 99-dimensional DPGMM posteriorgrams in
our experiment. Although the dimensions of the DPGMM
posteriorgrams are relatively high, the probabilities are usu-
ally concentrated on one or two dimensions for each frame,
and most of the other dimensions are zeros. MFCC is full
of acoustic details in all the dimensions, but the DPGMM
posteriorgram is discriminative with few dimensions; they
complement each other in feature combinations.

Since the DPGMM posteriorgram satisfactorily discrim-
inates the phonemes evaluated by the ABX discrimination
test [7, 6], we show that combining an MFCC feature and
its DPGMM posteriorgram improves the ASR performance.

4. DATASET AND EXPERIMENT SETUP

4.1. Dataset

We analyzed the MFCC features and their DPGMM posteri-
orgrams of an example utterance from TIMIT [29], which is
an English corpus of read speech. TIMIT is suitable for anal-
ysis because it includes reliable and detailed phoneme anno-
tations.

We checked whether our proposal that concatenates
acoustic features with their posteriorgrams can improve the
ASR on the WSJ corpus [30], a commonly used English cor-
pus for ASR tasks on spontaneous speech. All experiments
followed the same division of training, development, and test
sets of the ASR examples of the TIMIT and WSJ corpora of
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Fig. 3: Utterance ‘Fat showed in loose rolls beneath the shirt” with id FADGO_SI1909 from TIMIT test set to show how
DPGMM posteriorgrams complement MFCC features in identifying phonemes. Top layer is MFCC features of 13 dimensions,
followed by layers of DPGMM posteriorgrams of 99 dimensions, spectrograms, and phonemes. DPGMM posteriorgrams are
generated from MFCC features. Light green represents continuous values of MFCC features and DPGMM posteriorgrams.
Posteriorgrams are only concentrated in a few dimensions (green or yellow); other dimensions have low probabilities (close
to black). Red rectangles show some phonemes are clearly classified by DPGMM posteriorgrams, although not obviously

identified by MFCC features.

the Kaldi [4] toolkit.

4.2. Feature Extraction

We also followed the Kaldi toolkit using a 39-dimensional
MFCC+A+AA (25-ms frame size and 10-ms frame shift)
with mean and variance normalization (CMVN) as acoustic
features for TIMIT. We used a 40-dimensional MFCC with
high resolution followed by CMVN as the features for WSJ.
These MFCC acoustic features extracted from the TIMIT
and WSJ training sets were trained to get the parameters of
the DPGMM models, such as the weight, mean, and variance
of each Gaussian. These trained parameters were fixed and
used to generate the DPGMM posteriorgrams of the train-
ing, development, and test sets of each corpus. Note here
that since we assumed we did not know the test set until the
evaluation, we did not directly apply DPGMM clustering on
the features of the test set. Instead, we used the parameters of
the DPGMM model of the training set to extract the posterior-
grams of the test set during the evaluation. We compared the
character error rate (CER) of our attentional encoder-decoder
system with the acoustic features of MFCC and the features of
the concatenation of MFCC and its DPGMM posteriorgram.

4.3. System Details and Experimental Setup

We used pytorch to implement an ASR system of an atten-
tional encoder-decoder model [32] that consisted of a three-
layer pyramid bidirectional LSTM encoder [32] that had 256
hidden units at each direction and dropped half of the frames
to reduce the time resolution by a factor of 2 at each layer,

a decoder [31] that contains a single-layer LSTM with 512
hidden units, and MLP attention [31].

MLP attention scheme generated the expected contextual
vector by a probability vector output from a fully connected
layer (MLP) fed with the concatenation of the current decoder
hidden state and the encoder output (contextual vector). Ta-
ble 2 shows that the decoder [31], at each time step, was fed
with the concatenated feature of the output from the embed-
ding layer and output from the previous decoding step, which
was further processed by the LSTM and dropout layers. The
output that was concatenated with the expected contextual
vector from the attention was fed into a fully connected layer
of 256 hidden units, followed by a tanh activation function.
For the encoder with three layers, we dropped half of frames
at each layer such that the 3-layer encoder output has a length
that is 1/8 of the number of frames of the current utterance
features, which decreased the number of frames and captured
the contexts across successive frames.

In the encoding stage, we fed speech features into a fully
connected layer of 512 hidden units, followed by a ReLU acti-
vation function and a dropout layer with probability 0.25 be-
fore the pyramid BiLSTM. On the decoding stage, we put
each character into an embedding layer of 256 hidden units,
followed by a dropout layer before the decoder, whose output
was converted into a probability vector by a softmax layer.
For the MLP attention, we used one hidden layer of 256 units,
followed by a tanh activation function. We used weight ty-
ing [33] between the input and output embeddings and label
smoothing [34] with a ratio 0.05 in the decoder. We used the
weight normalization in the attention.



Table 2: Architecture of attentional encoder-decoder ASR
system: A — B denotes next layer of layer A is layer B.
pBiLSTM denotes a pyramid bidirectional LSTM; FC stands
for a full-connected layer; EMBED denotes an embedding
layer. Module-N means the module with N hidden units (e.g.,
FC-512 denotes fully connected layer with 512 hidden units).
Contextual FC-256 is a fully connected layer fed with the cur-
rent embedding concatenated with expected contextual vector
from attention. At each time step, the decoder, proposed by
Luong [31], is fed with a concatenated feature of the output of
the decoder pre-net and the output of decoder from the previ-
ous step. The encoder input are an acoustic features; input of
decoder pre-net are characters. The pBiLSTM uses dropout
regularization at each layer.

Module Cascaded layers of module
FC-512 — ReLLU — Dropout
Encoder — 3-layer pBiLSTM-256

(reduce half of the frames per layer)

EMBED-256 — Dropout

Decoder pre-net

(Pre-net output + Prev. decoder output)
Single-layer LSTM-512 — Dropout
— Contextual FC-256 — Tanh

Decoder [31]

Softmax

FC-256 — Tanh

Decoder post-net

MLP attention

When we trained the ASR system, we set the batch size to
32 and used the Adam optimizer [35] with an initial learning
rate of 0.001, which decreased by a half whenever the loss
successively increased for more than three epochs. Our ASR
systems usually converged between 30 and 70 epochs after the
learning rate dropped below le-5. We used a gradient norm
clipping strategy [36] when training each batch to deal with
the problems of exploding and vanishing gradients.

We evaluated our ASR system with a beam search where
the beam size was 10 and the expand size [37] (which denotes
as the maximum candidates per node to introduce more diver-
sity into the search) was 5. We also increased the penalty [38]
for long sentences with coefficient 1.

We used python to implement the DPGMM model, whose
training process used the same parameter setting as previous
works [7, 39]. We set the concentration parameter to 1 and
the mean and variance of the prior to the global mean and the
global variance of the MFCC features with belief-strengths
1 and D + 2, where D is the number of dimensions of the
MFCC features. We obtained cluster labels after 1500 sam-
pling iterations.

The ASR and DPGMM hyperparameters are summarized
in Table 1 and the structure of our attentional encoder-decoder
ASR system is summarized in Table 2.

Table 3: We compared the attentional encoder-decoder ASR
systems with or without feature extension of the DPGMM
posteriorgrams, along with two baselines [40, 30], by the
character error rates (CERs) on the WSJ speech corpus [41].
No systems used pronunciation dictionaries or language mod-
els in the decoding process. We divided the WSJ corpus into
the following datasets based on the Kaldi recipe [4]: train-
ing datasets of “train_si84” (about 15 hours) or “train_si284”
(about 80 hours); an identical development dataset of “dev93”
and an identical evaluation dataset of “eval92” for all systems.

Systems on WS] train_si84 dataset (15 hrs) CER (%)
Att Enc-Dec (Baseline ASR1) [30] 17.01

Att Enc-Dec (Baseline ASR2) [40] 17.35

Att Enc-Dec (Our ASR with MFCC) 16.61

Att Enc-Dec (Our ASR with MFCC + DPGMM) 14.86
Systems on WS]J train_si284 dataset (80 hrs) CER (%)
Att Enc-Dec (Baseline ASR1) [30] 8.17

Att Enc-Dec (Baseline ASR2) [40] 7.12

Att Enc-Dec (Our ASR with MFCC) 6.57

Att Enc-Dec (Our ASR with MFCC + DPGMM) 5.67

5. RESULT

5.1. Analysis of Features of MFCC and DPGMM Poste-
riorgrams

To show that DPGMM posteriorgrams can complement
MFCC features in identifying the phoneme sequence that
underlies the utterance, we did DPGMM clustering on the
TIMIT corpus [29] with the same parameter initialization as
we did on the WSIJ corpus [41]. We obtained the weight,
mean, and variance parameters of the DPGMM model of
each Gaussian of the MFCC feature on the TIMIT training
set, froze them and applied them to the acoustic features
on the test set. Fig. 3 shows that the word “loose” in the
utterance, indicated by red rectangles, lacks clear phoneme
categories within its MFCC representation, although it is
relatively clearly classified by the DPGMM posteriorgram.
The segmentations between the silences and the phonemes
at the beginning and the end of the utterance, indicated by
red rectangles, are not clearly observed in the MFCC fea-
tures; but they are clearly segmented by the posteriorgram.
In our preliminary experiment on TIMIT with the complete
test set, phoneme error rate (PER) was lower in DPGMM-
posteriorgram enhanced encoder-decoder attentional system
than MFCC based system (PER of 22.74% vs. 23.92%).

5.2. ASR Results on Different Features

We verified the effectiveness and stability of our proposed
method with the spontaneous speech recognition task on the
WSIJ corpus [41] with two tasks of different amounts of data.
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Fig. 4: Comparison between ASR systems with acoustic
MEFCC features (solid lines) and concatenated MFCC features
and their DPGMM posteriorgrams (dashed lines) by character
accuracy, which is the average ratio of correctly recognized
characters per utterance, on the development set “dev93” of
WSIJ corpus, trained by “train_si284” or “train_si84” datasets.

One task was trained on the 15-hour “train_si84” dataset and
another on the 80-hour “train_si284”; both tasks used the
identical development dataset of “dev93” and the identical
evaluation dataset of “eval92”. Table 3 shows that on both
tasks with identical ASR system settings, we observed a more
constant decrease of CER with the feature with extension
(MFCC + DPGMM) than in the original feature (MFCC).
The WERs, consistent with CERs, of attentional ASR with
MFCC and MFCC+DPGMM features on WSJ SI-284 set
were 16.96% and 15.25%, compared with 18.2% in [30].

We analyzed the performance of the ASR systems during
the entire training process. Fig. 4 shows that the ASR sys-
tems with feature extension by the DPGMM posteriorgram
converged faster and retained the improvement compared to
that without feature extension on the character accuracy of
the development set (“dev93”). It improves more obviously
on the system trained on the small dataset (“train_si84”) than
on the large dataset (“train_si284”).

We also compared proposed features with the tandem
bottleneck features [26], which we extracted from Kaldi [4]
following its default settings except changing the bottle-
neck dimension same as that of DPGMM posteriorgrams.
Our method had better performance on TIMIT corpus that
the PERs of ASR with MFCC, MFCC+bottleneck, and
MFCC+DPGMM were 23.92%, 23.22%, and 22.74%; with a
bigger dataset of WSJ SI-284, tandem system got slightly bet-
ter performance where CERs with MFCC, MFCC+bottleneck,
and MFCC+DPGMM were 6.57%, 5.12%, and 5.67%.

6. DISCUSSION

For years some Zerospeech challenges [6, 7] have constantly
comfirming the power of DPGMM features to discriminate
phonemes [8] across different speakers, different languages
under such harsh conditions as interviews with randomly in-

terrupted disfluent speech [9], and wild or noisy recording en-
vironments [9, 10]. We are inspired by the discriminability of
DPGMM features and combine them with acoustics features
to improve the LVCSR system.

Our results shows that these acoustic features, which
are concatenated with their DPGMM posteriorgrams, sta-
bly decrease the CERs of the ASR systems for spontaneous
speech (Table 3). Compared with the original acoustic fea-
tures, although the ASR performance is similar for the first
few epochs, soon the speech recognition accuracy of the
DPGMM-concatenated enhanced features improves (Fig. 4).
The ASR systems with a small amount of data seem to
improve more than those with a relatively large amount (Ta-
ble 3, Fig. 4), which suggests the potential of our proposal for
low-resource tasks. Unlike the tandem system [26], which
combines the posteriorgrams of phonemes or states from data-
hungry supervised learning, such unsupervised clustering as
DPGMM needs less data to get robust posteriorgrams.

If we use DPGMM posteriorgrams alone without con-
catenating the original acoustic features to feed into ASR
systems, they do not work as well as systems that just use
acoustic features. Though DPGMM satisfactorily discrim-
inates the phonemes, it does not directly work well for the
ASRs: the CERs of the WSJ “train_si284” are 12.35% and
the WSJ “train_si84” is 35.5% with the DPGMM posterior-
gram alone. This is because the DPGMM model is weak at
contextual modeling and its joint likelihood does not depend
on the order of the observed data if they are infinite [42]
and mainly captures acoustic information at the frame level.
Framewise contextual modeling sometimes creates tempo-
rally unsmoothed and fragmented DPGMM posteriorgrams,
and the corresponding spectrum has smoothed and clear for-
mants (for example, the word ’roll’ in Fig. 3). The DPGMM
posteriorgram sometimes struggles to model the contexts
across several phonemes, which causes insertion or deletion
errors in the ASR. One of our future works will enhance the
weak contextual modeling of DPGMM features to get a better
representation and further improve our ASR system.

7. CONCLUSION

The discriminability of DPGMM posteriorgrams has proved
in several Zerospeech challenges. We combined an acoustic
feature with its DPGMM posteriorgram to enhance the dis-
criminability. Our result shows this proposal stably improved
the performance of an attentional encoder-decoder system on
spontaneous ASR tasks, especially with fewer resources.
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