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Abstract—State-of-the-art text-to-speech (TTS) systems suc-
cessfully produce speech with a high degree of intelligibility. But
TTS systems still often generate monotonous synthesized speech,
unlike natural utterances. Several existing studies have addressed
the issue of modeling speaking style variations in TTSs. Unfortu-
nately, scant research has discussed the dialog and entrainment
context. In this paper, we address TTS waveform generation
toward speech entrainment in human-machine communication
and focus on the synchronization of speaking rates that may
vary within an utterance, i.e., slowing down to emphasize specific
words and distinguish elements to highlight. We assume a dialog
system exists and concentrate on its speech processing part. To
perform such a task, we develop (1) a multi-task automatic
speech recognition (ASR) that listens to the conversation partner
and recognizes the content and the speaking rate and (2) a
generative adversarial network (GAN)-based TTS that produces
the synthesized speech of the response while entraining with the
partner’s speaking rate. The evaluation is performed on a dialog
corpus. Our results reveal that it is possible to entrain the input
speech by synchronizing the speaking rate.

Index Terms—text-to-speech synthesis, automatic speech recog-
nition, speech entrainment, speaking-rate variation, generative
adversarial network

I. INTRODUCTION

In natural human communication, a phenomenon called
speech entrainment may occur in which speakers A and B
unconsciously synchronize their speech utterances and their
conversational styles start to resemble each other [1]. Fig. 1
shows an example of a human-machine dialog in which speech
entrainment or synchronization occurs on the emphasized
words. Both parties utter the emphasized words (in bold
and underlined) in a similar style (i.e., slowing down their
speaking rate). Manson et al. [2] found that when entrainment
of the speech rate happens, in which the dyads’ speech rates
converged from a conversation’s beginning to its conversation,
the success rate of negotiation and cooperation is likely to
increase. Furthermore, the speaking rate may significantly
influence how the listener perceives the speech. We may speak
much more quickly during an emergency and may slow down

our speaking rate to emphasize what we are saying. Therefore,
it is critical to develop a speech synthesis system that can
produce natural spoken dialogues by considering the other
party and phrase the message with an appropriate speaking
rate based on the situation.
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Fig. 1. Human-machine dialog in which speech entrainment or synchroniza-
tion on emphasized words occurs (bold and underlined).

The resurgence of deep learning has revitalized the use of
its frameworks for directly modeling text-to-speech synthesis
(TTS) from the text-to-speech features. Several models have
been proposed, such as an end-to-end deep neural network [3],
[4], WaveNet [5], WaveRNN [6], and generative adversarial
networks (GANs) [7]. They successfully produced speech with
a high degree of intelligibility. The naturalness of generated
speech has also significantly improved. But the speaking
styles and speech expressions produced by the current TTS
systems are typically averaged over training material that was
mainly collected in reading-style speech; the utterances lack
the variety and liveliness found in natural speech.

Several studies addressed this issue by modeling speak-
ing style variations. Yoshimura et al. modeled the spectrum,
pitch, and duration in a hidden Markov model (HMM)-based
speech synthesis to generate speech that resembles various
speaker’s voices [8]. Yamagishi et al. addressed emotional
expressivity and speaking style variability in an HMM-based
speech synthesis [9]. But these techniques were based on the
HMM framework [10]. For deep learning, Skerry-Ryan et al.
[11] augmented an end-to-end Tacotron with explicit prosody978-1-7281-9896-5/20/$31.00 ©2020 IEEE



controls for expressive speech synthesis. Unfortunately, only
a few studies have addressed the speaking rate issue.

Recently, Wang et al. proposed “global style tokens” (jointly
trained within Tacotron) that can control synthesis speech by
varying the speed and speaking style [12]. However, since its
information embedding is stored globally, controlling the dura-
tion at the word and phoneme levels is challenging. Although
Park et al. introduced a mechanism for the phonemic-level
duration within sequence-to-sequence frameworks [13], their
system required phoneme input instead of text, which may
be too complicated for actual users. Their proposed methods’
effectiveness were also only evaluated through simulated data
with unnatural speaking-rate variations. Their approach also
failed to consider the effect on the other party. In fact, it is
very difficult to find existing works that discuss the speaking
style variation of TTS in the context of dialog and entrainment.
Levitan et al. [14] is one of the few works that implemented
acoustic-prosodic entrainment in TTS for a spoken dialog
system. However, since the speech volume and speaking rate
were assumed to be constant throughout all of the utterances,
the speech feature controller is done at the utterance level and
performed independently from the ASR and TTS processes.

In reality, humans vary their speaking rates and tend to slow
down to emphasize words to distinguish elements of focus in
an utterance. Therefore, in this paper, we address TTS wave-
form generation toward speech entrainment in human-machine
communication and focus on the synchronization of speaking
rates that may vary within an utterance. We simultaneously
process both the content of the speech utterances and the
additional information of speaking rates using multi-task ASR
and multi-sources TTS.

II. OVERVIEW OF PROPOSED FRAMEWORK

Figure 2 shows our overall proposed framework. We are
mainly interested in the speech processing part, assuming a
dialog system exists. Therefore, our focus is on developing (1)
a multi-task automatic speech recognition (ASR) that listens
to its conversation partner and recognizes the content and
the speaking rate, and (2) a generative adversarial network
(GAN)-based TTS that produces the synthesized speech of
the response while being entrained with the partner’s speaking
rate. Each of these components is described in the following
sections.

A. Multi-task ASR system for speech recognition and
speaking-rate identification

Instead of only recognizing what has been said, our pro-
posed ASR (Fig. 2 left side) performs multi-task learning for
recognizing the text transcription and speaking rate. It is based
on a sequence-to-sequence framework [15], [16] that consists
of an encoder, a decoder, and attention modules. It directly
models the conditional probability of P ([Ŷ, Ẑ]|X), where X
is a sequence of the framed speech features with length S
and [Ŷ, Ẑ] is a sequence of text transcription Ŷ and speaking
rate Ẑ with length T . We gave speaking-rate information for
each text output by the discretized symbol of three types

speaking rates: “N” for standard read speech (normal), “S” for
slow, and “F” for fast speech. For speaking-rate information
in the phoneme level, the ASR was trained to output phoneme
sequences.

In this network, the encoder transforms input speech
sequence X to hidden representative information he =
[he

1, ..., h
e
S ], and the decoder predicts target sequence prob-

ability [Ŷ, Ẑ], given the previous output, current context
information ct, and current decoder hidden state hd

t . Context
information ct is produced by attention modules [17] at time t
based on the encoder and decoder hidden states.

B. GAN-TTS for speech generation with variable speaking
rates considering ASR input

Our proposed TTS is based on a GAN-TTS framework [7]
(Fig. 2, right side). However, instead of receiving only the
text transcription as in a standard GAN-TTS approach, our
proposed TTS has multi-sources input, which is a sequence of
text transcription Y and speaking rate Z with length T . Then
the task becomes producing speech acoustic features X̂ with
the defined speaking rate.

Since many contextual factors (e.g., phoneme identity, word
stress, etc.) might affect the speech’s prosodic characteristic,
we first generate a full-context label from a given text, which
is the most common approach in standard HMM-based and
GAN-based TTS frameworks. This is done by a front-end text
processing block that extracts the linguistic features from a
given input text.

As described in Fig. 2, a front-end text processing block
extracts the linguistic features from a given input text. Since
many contextual factors (e.g., phoneme identity, word stress,
etc.) might affect speech’s prosodic characteristic, generating
a full-context label from a given text is the most common
way in standard GAN-TTS, which is also well-known in a
HMM-based TTS framework. Fig. 3 shows an example of a
full-context label that is comprised of the following factors:

• Phoneme level:
– p1, ..., p5: {second preceding, preceding, current,

succeeding, second succeeding} phoneme;
– p6, p7: position of current phoneme in the current

word (forward and backward);
• Syllable level:

– a1, ..., a3: {type of syllable stress, number of
phonemes} in the preceding syllable.

– b1, ..., b6: {type of syllable stress, number of
phonemes, position in word and phrase, number of
syllables before and after} in the current syllable.

– c1, ..., c3: {type of syllable stress, number of
phonemes} in the succeeding syllable.

• Word level:
– d1, d2: {part-of-speech, number of syllables} in the

preceding word.
– e1, ..., e8: {part-of-speech, number of syllables, po-

sition in phrase, number of content words before and
after} in the current word.
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Fig. 2. Overview of the proposed framework.

Fig. 3. Example of full-context label

– f1, f2: {part-of-speech, number of syllables} in the
succeeding word.

• Phrase level:
– g1, g2: number of {syllables and words} in the pre-

ceding phrase.
– h1, ..., h5: {number of syllables and words, utterance

position, TOBI endtone} of the current phrase.
– i1, i2: number of {syllables and words} in the suc-

ceeding phrase.
• Utterance level:

– j1, ..., j3: number of {syllables, words, and phrases}
in the utterance;

To achieve a GAN-TTS that controls the speaking rate
variations at the phoneme level, we incorporate the infor-
mation of the speaking-rate variations (“N,” “S,” and “F”)
within the phoneme symbols of the full-context label by
directly attaching it to the phoneme label in the full-context
label by specifically modifying the p1, ..., p5 label into p1 +
N/S/F , ..., p5 +N/S/F . For example, the pentaphone label
of “hello→ (hh, eh, l, ow)” is

pau ∗ hh− eh+ l = ow.

With slow-speaking-rate information, it becomes

pau ∗ hhS − ehS + lS = owS.

The “pau” for the silent part ignores the speaking-rate infor-
mation, since there is no change in the generated acoustic
features regardless of the speed information.

After that, we trained the GAN-TTS based on the text tran-
scription and the incorporation of the speaking-rate informa-
tion. The framework consists of two types of neural networks:
generator G and discriminator D. Its training procedure is
employed by an adversarial process in which the two models
(generator G and discriminator D) compete. In other words,
the generator learns to create the speech output that causes the
discriminator to misrecognize the generated result as natural
speech with a speaking-rate variation, and the discriminator
learns to accurately distinguish between natural and synthetic
speech produced by generator G. Further details of GAN-TTS
technology are available [7].

III. EXPERIMENTAL SETUP

We used several types of data within this study. The first
one is the CMU ARCTIC database that was constructed at
the Carnegie Mellon University. It consists of phonetically
balanced sentences (1132 speech utterances) uttered by a US
English speaker at a normal reading speed [18]. To construct
data with speaking-rate variations, we artificially modified
the speaking rate using SoundExchange (Sox)1 software by
slowing down the original rate by 75% and speeding it up by
125%, resulting in “slow” and “fast” sample data. We chose
these parameters where the resulting slow and fast speech still
sounded natural. Next we recorded the natural speech data
uttered by one female and one male who spoke as naturally
as possible and simultaneously produced speech with three
different speaking rates, as in the data samples. We got 6,792
utterances (two speakers and three speaking rates) for analysis
as well as model learning and evaluation. We denote this data
as CMU ARCTIC SPK-RATE. Further details of the data
construction and analysis are available in [19]. In this study,
to train and evaluate our GAN-TTS we used 3396 utterances

1Sox – http://sox.sourceforge.net/



from the female speaker, including 3003 utterances for the
training set, 378 utterances for the development set, and 15
utterances for the test set.

Since the CMU ARCTIC SPK-RATE data remain too
limited for training our multi-task ASR, we made a larger
dataset based on a basic travel expression corpus (BTEC)
[20]. We prepared 51,500 sentences of the English BTEC
text and utilized our GAN-TTS to generate speech waveforms
with three speaking rates: slow, normal, and fast. Then with
3396 natural speech utterances CMU ARCTIC SPK-RATE,
we trained the proposed multi-task ASR, which used 157,896
speech utterances (training set: 148350 utterances, develop-
ment set: 8031 utterances, and test set: 1515 utterances).

Last, to investigate the effectiveness of the proposed wave-
form generation toward speech entrainment in human-machine
communication, we also utilized the Coached Conversational
Preference Elicitation dataset that consists of 502 English
dialogs with 12,000 annotated utterances between a user
and an assistant who discussed movies in natural language
(CCPE-M dataset) [21]. It was collected using Wizard-of-Oz
methodology between two paid crowd-workers: an assistant
and a user. We selected the dialog conversations between
assistant and user that shared the same nouns and tagged
them as “slow” and the other words as “fast” to simulate
the speaking rates that change within a single utterance. After
that, we utilized the previously trained GAN-TTS to generate
a speech waveform that slowed down to emphasize the nouns
as the elements of focus in an utterance.

Our multi-task ASR system is an attention-based encoder-
decoder model [15], [16] that consists of three stacked bidirec-
tional long short-term memory (BiLSTM) encoders, a single
layer LSTM, and multi-layer perceptron (MLP)-based atten-
tion [22] components. Log-scaled Mel-spectrograms were fed
into a fully connected layer and transformed by a LeakyReLU
(l = 1e−2) [23] activation function. This model doesn’t need
any language model or word dictionary. For the TTS system,
we followed the PyTorch implementation of GAN-TTS [7].

IV. EXPERIMENT RESULTS

A. ASR Performance

First, we investigated how the additional task of speaking-
rate identification affected the speech recognition performance.
We used the test set described in the previous section. The
phoneme error rate (PER) of the standard ASR was 11.68%,
and the PER of our proposed multi-task ASR was 12.04%.
Although the proposed ASR is a multi-tasking ASR, the
phoneme sequence can be estimated with almost the same
accuracy as a standard single-task ASR. The results reveal
that the additional task did not significantly affect the perfor-
mance of the speech recognition part, which shows a positive
indication.

The error rate of the speaking-rate identification was
27.15%, which exceeds the phoneme sequence recognition
result. The error matrix is shown in Table I. Note that the
errors in it were calculated by extracting only the sentences
with the same number of correct speaking-rate labels and

recognition speaking-rate labels. In other words, we excluded
the sentences in which the number of phonemes increased or
decreased compared to the correct sentence due to phoneme
recognition errors. <spc> is a delimiter tag between words.
Based on Table I, there was no case where the slow-speaking
rate was incorrectly recognized as the fast speaking rate or
vice versa. However, many utterances in the normal speaking
rate were mistakenly recognized as fast- or slow-speaking rates
because while recording the normal speech, the speaker still
sometimes uttered the sentence slightly slower or faster. Labels
based on the dynamic speaking style of the speakers might be
necessary.

TABLE I
CONFUSION MATRIX OF SPEAKING-RATE RECOGNITION PERFORMANCE

FROM PROPOSED MULTI-TASK ASR.

ref
res Fast Normal Slow <spc>

Fast 99.584 % 0.098 % 0 % 0.318 %
Normal 28.790 % 50.484 % 19.436 % 1.290 %

Slow 0 % 0.024 % 99.903 % 0.073 %
<spc> 0.350 % 0.489 % 0.033 % 99.127 %

B. TTS Performance
Experiments 1: Results
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Fig. 4. Results of subjective evaluation on naturalness: Sox baseline versus
proposed method.

Next we evaluated our proposed GAN-TTS model. Given
an input sentence, we first generated full-context labels using
part of the tools from the HMM/DNN-based Speech Synthesis
System (HTS) [24], [25]. After that, we included speaker
variation information into the labels based on the proposed
methods described in Section II-B. For comparison, we applied
Sox, which changed the speed on the synthesized output
produced with the “normal” data as the baseline.

We used a preference (AB) test to evaluate the performance
and subjectively assessed the speech’s naturalness. 11 subjects
(7 males, 4 females) participated. From speech utterances in
the test set, we showed them paired-by-paired with a random
order, and asked them to answer which voice sounded more
natural: A, B, or no difference (denoted as “No diff”). The
results in Fig. 4 indicate that the synthesized speech utterances
from the proposed method are more natural than those from
the baseline.

C. TTS considering ASR outputs within dialog context

Last, we investigate the waveform generation in the context
of dialog and entrainment and focus on the synchronization
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Fig. 5. Results of subjective evaluation on speaking-rate synchronization: StaticTTS and RandomTTS baseline versus ProposedTTS.

Experiments 1: Methods

• Subjects were randomly presented with two 
utterances and asked which sounded more natural

Q1: B2's response changed the speaking rate
Q2: B2's speaking rate synchronized with A's speaking rate

B1

B2

A

“Why do you like action movies?”

“Because action movies are exciting.”

F S “Because action movies are exciting.”

F S F

F

Fig. 6. ABX preference test procedure: subjects listened to speech utterances
from speaker A, and then two responses from speaker B (B1 and B2). We
asked them to answer which voice B has speaking rate variation and entrain
to voice A: B1, B2, both of them, or none of them.

of speaking rates that may vary within an utterance, i.e.,
slowing down to emphasize specific words and distinguish
elements of focus in the utterance. Since our interest lies in
the speech processing part, we assumed the dialog system has
no errors. We used the CCPE-M dataset for the evaluation and
denoted the human as the assistant and passed the conversation
speech utterances to the ASR and the machine as the user and
passed the corresponding text responses to the GAN-TTS and
generated the speech waveforms.

For comparison, we also developed the following: (1) a stan-
dard GAN-TTS that generated speech waveform without con-
sidering a speaking-rate factor and denoted it as StaticTTS; (2)
a GAN-TTS that generated speech waveform while randomly
varying the speaking rate and denoted it as RandomTTS.
The evaluation was done with another preference (ABX) test
to subjectively assess whether speech entrainment can be
perceived. 15 subjects (11 males, 4 females) participated in the
experiments. Fig. 6 illustrates ABX preference test procedure.
Assuming there is a dialog conversation between speaker A
and B, subjects listened to speech utterances from speaker A,
and then two responses from speaker B (B1 and B2), and we
asked them two questions:

• Q1: Which response of Speaker B changed the speaking

rate (B1, B2, both of them, or none of them)?
This question confirmed whether the subjects could
perceive speaking-rate variation within a single utterance.

• Q2: Which response of Speaker B reflected the speech
entrainment of the speaking rate of speaker A (B1, B2,
both of them, or none of them)?
This question confirmed whether subjects could perceive
the synchronization of speaking rate between utterances
from speakers A and B.

The results are shown in Fig. 5 where (a),(b), and (c) are the
results for Q1, and (d), (e), and (f) are the results for Q2. We
expected the subjects to perceive the speaking-rate variation
on the speech waveform generated by the RandomTTS and
the ProposedTTS without perceiving the speech waveform
generated by the StaticTTS. However, when we compared the
StaticTTS and RandomTTS for Q2 (Fig. 5(d)), the subjects
still perceived speech entrainment with RandomTTS. This
indicates that varying speaking rates within a single utterance
with the same style as speaker A might still be useful even
if the emphasized words were not synchronized. But from
Fig. 5(e), the results indicate that the synthesized speech
utterances from the proposed method still outperformed the
RandomTTS baseline in reflecting speech entrainment on the
speaking rate of speaker A.

V. CONCLUSION

We examined speech synthesis that controls speaking rates
based on the speaking rate of another party for a speech
dialogue system that can communicate more naturally. First,
we proposed a multi-tasking ASR for utterance and speech rate
recognition using a sequence-to-sequence model and showed
that texts can be recognized with almost the same accuracy
as an ordinary ASR that did not recognize the speaking
rate. Next we proposed a GAN-TTS that can control the
speaking rate in phoneme units. A subjective evaluation of
the naturalness of speech showed that the proposed method



generated more natural speech than artificially manipulating
the waveform of the synthesized speech. Finally, we proposed
a GAN-TTS for speech generation that changes the speaking
rate at the phoneme level based on the ASR output. Our results
revealed that the proposed method outperformed the baseline
in reflecting the speech entrainment on the partner’s speaking
rate. In the future, we will apply our proposed ASR and TTS
in a complete spoken dialog system and investigate the effect
of speech entrainment within human-machine communication.
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