Towards Incremental ASR and TTS for Real-time Interaction

Satoshi Nakamura1,2, with
Sakriani Sakti1,2, Tomoya Yanagita1, Novitasari Sashi1

1Nara Institute of Science and Technology, Japan
2RIKEN, Advanced Intelligence Project AIP, Japan
Topics

- Incremental Speech Processing for Real-time Interaction
 - Incremental ASR
 - Incremental TTS

- Application
 - Simultaneous Speech Translation
 - Spoken Dialogue System
Real-time Machine Speech Interpreter

- Traditional Speech Translation

Speech Recognition (ASR) → I go to school → Machine Translation (MT) → Speech Synthesis (TTS)

- Real-time Machine Speech Interpreter

Speech Recognition (ASR) → I go → Machine Translation (MT) → Speech Synthesis (TTS)
Dialogue System

Incremental interaction
Neural Incremental Speech Recognition

Neural Incremental Speech Recognition
Automatic Speech Recognition System

- **ASR system** transcribes speech into text
- Task examples:
 - Spoken dialog system
 - Speech translation
 - Closed-caption generation, etc.

![Diagram showing ASR system transcribing speech into text]

(speech) \[\rightarrow\] ASR \[\rightarrow\] “Hello”
Automatic Speech Recognition System (2)

- **State-of-the-art**

 Sequence-to-sequence neural ASR (end-to-end)
 - Standard encoder decoder with a global attention mechanism
 - Output prediction starts after the input speech finish
 - High accuracy but high delay
 e.g. a 5 minutes speech requires more than 5 minutes to be recognized
 - Unsuitable for real-time tasks
 - Real-time speech translation
 - Live video closed-caption generation
 - Real-time meeting transcription generation, etc.

- **Incremental ASR (ISR)** for low-delay speech recognition
Incremental Speech Recognition

- **ISR** begins the speech recognition without waiting the speech to finish (low delay)
 - Recognize the speech part-by-part in several incremental steps
 - Input: a short part of the speech

- **Challenge:** How to do an incremental step?

1) **Input boundary decision**
 When the transcription of a short speech part can be produced?

2) **Output boundary decision**
 When to stop the output prediction of the current speech part and move to the next?

Need to learn short input-short output alignments
Neural Incremental Speech Recognition

Incremental Speech Recognition

Related Works

A. Statistical approach (Pipeline)

- Hidden Markov model (HMM) ASR [Rabiner, 1989; Juang and Rabiner, 1991]
- 3 parts: Acoustic model, lexicon, language model

- Low delay speech recognition by performing left-to-right input processing (unidirectional)
- Not end-to-end

```
Input speech

Feature extraction

Acoustic model

Lexicon

Language model

Output text

HMM

today: /təˈdeɪ/
going: /ˈɡəʊɪŋ/

Pronunciation labels

N-gram model

“Today I am going to talk about speech recognition”

“Today I am going to talk about speech recognition”
```
How to achieve an ISR system that can:

1. reduce delay,
2. keep the system complexity, and
3. maintain a close performance of the standard neural ASR system?

Proposal

Neural ISR construction by employing sources (architecture, knowledge) from standard neural ASR.
Attention-Transfer Incremental Speech Recognition

Attention-Transfer Incremental Speech Recognition (AT-ISR)

[Novitasari et al., 2019]

- **Aim**
 - ISR (student) learns to mimic the attention-based alignment generated by a standard seq2seq ASR (teacher)
 - ISR architecture: Same as the teacher (seq2seq)
 - Incremental step: Learn through attention transfer from the teacher ASR

- **Attention transfer**: Attention knowledge transfer from teacher to student model
 - Prev. works → image recognition tasks
 - Teach another model [Zaguruyko and Komodakis, 2017]
 - Domain transfer (image to video) [Li et al., 2017]
 - Has not been utilized for ISR construction yet

Neural Incremental Speech Recognition
Attention-Transfer Incremental Speech Recognition
Overview

Seq2seq ASR: Encoder-Decoder with Attention

Output: Character (basic model)

Components

- **Encoder (recurrent network)**
 Encode input features sequence \((X) \) into hidden states \((h^e) \)

- **Decoder (recurrent network)**
 Predict token sequence \((Y) \) based on input context information \((c_t) \) and prev. text \((Y_{<t}) \) for each \(t \)-th token

- **Attention (linear network)**
 For each \(t \)-th token prediction, compute \(c_t \) based on alignment scores of \(h^e, h^d_t \)

\[
c_t = \sum_{s=1}^{S} a_t(s) \times h^e_s
\]

\[
a_t(s) = \frac{\exp(Score(h^e_s, h^d_t))}{\sum_{s=1}^{S} \exp(Score(h^e_s, h^d_t))}
\]

\(s = \text{Encoding timestep} \); \(t = \text{Decoding timestep} \)

Attention Matrix

Standard Seq2seq ASR
[Bahdanau et al, 2015], courtesy of [Tjandra et al., 2017]
AT-ISR Recognition Method

- Given: Full speech (X), length S
- Recognize the speech segment-by-segment sequentially based on a fix-sized input window
- For each incremental recognition step n:
 1. **Encode** X_n, a W speech frames from X ($W < S$)
 2. **Decode** for Y_n that aligns with X_n, until an end-of-block </m> token is predicted or max. length is reached
 - **Attend** the input X_n
 3. **Shift** the input window W frames by keeping the model’s state
 (Total step number: $N = \frac{S}{W}$)
- Incremental step:
 - Input boundary: last speech frame in the input window
 - Output boundary: </m> token in the output text
- **Alignment learning → Attention transfer**
Attention Transfer

Train ISR (student) to learn the attention-based alignment from a standard seq2seqASR (teacher)

1) Extract speech-text alignment from attention matrix generated by the teacher ASR during teacher-forcing text generation (alignment pair = high attention score):

Teacher ASR attention matrix

<table>
<thead>
<tr>
<th>Speech Frame Block ID</th>
<th>Char ID</th>
<th>Token ID</th>
<th>Alignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1 block = W frames)</td>
<td></td>
<td></td>
<td>Seg. ID</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(n)</td>
</tr>
<tr>
<td>1</td>
<td>x_1 - x_w</td>
<td>y_1 - y_3</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>x_{w+1} - x_{w+2}</td>
<td>y_4 - y_5</td>
<td></td>
</tr>
<tr>
<td>(etc.)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Alignment Transfer

2) Train the ISR by using \(Y_n + </m> \) as the target of \(X_n \)

ISR delay can be managed by changing \(X_n \) and \(Y_n \) size during training.

\[e.g. \] higher delay: combine several segments into one.
AT-ISR Performance
Experiment Dataset

- **Wall Street Journal (WSJ)** [Paul, 1992]
 - 284 speakers, English
 - Training set: *SI-284* set (81 hours of speech)
 - Test set: *eval92* set

- **TED-LIUM release 1** [Rosseau et al., 2012]
 - 118 hours of speech (English)
 - 600 speakers

- Speech features: 80 dim. log-Mel spectrogram (50 ms window, 12.5 ms shift)

- Text token unit
 - Character: Basic Latin alphabet (WSJ, TED-LIUM)
 - Subword: 16,000 subwords (TED-LIUM)
Neural Incremental Speech Recognition
AT-ISR Performance

Model Configuration

- AT-ISR/Teacher ASR structure: Seq2seq (identical)
- AT-ISR with input overlap:
 - Main frames: Aligns with output text seg.
 - Look-ahead frames: Next to the main input (contextual input)
Evaluation Setting

ISR performance evaluation was made by comparing various model:

- **Non-incremental ASR**: Topline
 - Standard seq2seq ASR (Our Att Enc-Dec; teacher)
 - Other existing neural ASR

- **Incremental ASR**:
 - Baseline neural ISR:
 - Seq2seq ISR without attention transfer
 - Incremental steps were taught by using alignments from forced-alignment by HMM ASR
 - Proposed ISR: AT-ISR (attention transfer; student)
 - Other existing neural ISR: Unidirectional LSTM + CTC [Hwang and Sung, 2016]

Evaluation metric:
- CER, WER
- Delay (speech input size)
Result

- Avg. utterance length: 7.88 sec
- Machine: Intel® Core™ i7-9700K CPU @ 3.60GHz (NVIDIA GeForce RTX 2080Ti GPU)
- ISR performance limitation: short-segment-based recognition (incomplete information)
- Contextual input (la) improves performance

Speech recognition performance of character-level models trained on WSJ dataset

<table>
<thead>
<tr>
<th>Model</th>
<th>Delay (sec)</th>
<th>CER (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Input</td>
<td>Computation</td>
</tr>
<tr>
<td>Non-incremental ASR (Topline)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Att Enc-Dec (ours)</td>
<td>7.88 (avg)</td>
<td>0.32 (avg)</td>
</tr>
<tr>
<td>BiLSTM-CTC [1]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Joint CTC+Att [1]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baseline neural ISR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input/step: $1m + 1la$</td>
<td>0.24</td>
<td>0.02</td>
</tr>
<tr>
<td>Input/step: $1m + 4la$</td>
<td>0.54</td>
<td>0.05</td>
</tr>
<tr>
<td>Proposed AT-ISR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input/step: $1m + 1la$</td>
<td>0.24</td>
<td>0.02</td>
</tr>
<tr>
<td>Input/step: $1m + 4la$</td>
<td>0.54</td>
<td>0.05</td>
</tr>
<tr>
<td>Other existing neural ISR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LSTM-CTC beam search [2]</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

*Note
- m = main input block
- la = look-ahead block (contextual input)
- 1 block = 8 frames = 0.14 sec

ISR Delay

How did the ISR delay affect the ISR performance?

- **Trade-off: Higher delay, lower WER**
- **Subword-level ISR**
 - Lower WER than character-level ISR
 - Keep word context longer than characters
- **Character-level ISR**
 - Maintains the teacher’s performance better than the subword-level ISR
 - ISR with delay 2.04 starts to have a close performance to the teacher ASR

WER (%) of AT-ISR trained on TED-LIUM dataset

- **Character-level model**
- **Subword-level model**

*\(S\) = average full-utterance length (7.58 sec)

<table>
<thead>
<tr>
<th>Delay (sec)</th>
<th>Character-level model</th>
<th>Subword-level model</th>
</tr>
</thead>
<tbody>
<tr>
<td>(25% (S))</td>
<td>46.14</td>
<td>45.39</td>
</tr>
<tr>
<td>(50% (S))</td>
<td>32.24</td>
<td>33.94</td>
</tr>
<tr>
<td>(100% (S); Topline)</td>
<td>28.26</td>
<td>28.76</td>
</tr>
</tbody>
</table>

Nov. 19. 2020 AIST 2020 ©Satoshi Nakamura, AHC Lab, NAIST, Japan
Input segment size/step: 0.84 sec. Machine: Intel® Core™ i7-5500U CPU @ 2.40GHz x 4
Neural Incremental Speech Synthesis
Text-to-speech and Incremental Text-to-speech

Text-To-Speech (TTS)
The speech is synthesized **Sentence-by-sentence**.
1. Input is text or phoneme sequence.
2. Acoustic features are predicted by acoustic model
3. Speech waveforms are reconstructed by vocoder.

Incremental Text-To-Speech (iTTS)
Speech is synthesized a speech in **shorter delay**.
It can synthesize a speech before finishing text input.
Suitable for real-time task
Real-time speech translation
Incremental Text-To-Speech (iTTS)

Speech is synthesized in shorter delay (e.g. word). It can synthesize a speech before finishing text input.

Challenges

How to improve speech quality?

Speech quality of Incremental TTS

How to estimate target prosody from an incomplete sentence?

target prosody is typically calculated from long-window features. (e.g. co-articulation)

-> predicts next information (e.g. word) at step of input-to-acoustic-features.

-> wait next word when synthesizing a current word.
Related Works of iTTS (1/2)

Statistical approach (pipeline)

No neural End-to-end iTTS approach
Related Works of iTTS(2/2)

Encoder-decoder with an attention mechanism
-> Output prediction starts after the input sequence.
The speech is also synthesized sentence-by-sentence.
-> It can generate high quality speech close to human.

Challenge of the neural iTTS system.
More natural synthesized speech

Neural iTTS [Yanagita et al., 2019]
no wait next word for synthesis.
Control output sequence with stop flag

Prefix-to-Prefix Framework [Ma et al., 2020]
wait next word for synthesis.
Control output sequence with attention weight and stop flag
One word look ahead at least for synthesis.
Neural iTTS [Yanagita et al., 2019]

End-to-End TTS

Encoder

- Bi-GRU
- Highway net.
- Conv. Bank: Kernel=1, Kernel=16
- FC* layer: fully connected
- Character Embedding: x_1, x_2, \ldots, x_N

Decoder with attention

We use Tacotron [Wang, et al., 2017.]. Stop flag prediction to control output seq. is also used.

- h_N: hidden representation of encoder
- c_s: context vector (S length)
- y_s: mel spectrogram
- L_s: Linear spectrogram
- S_s: Stop flag

\cdot x_N: Input sequence (N length)
End-to-End iTTS

Motivation: We use normal End-to-end TTS as incremental one.

Simple method: Tacotron is synthesized chunk-by-chunk as short sentence.

Ex. “we talk about TTS.”

<s>: sentence start, </s>: end of sentence
Proposed Dataset preprocess

Dataset is divided sentence into three parts.
- use **location symbol** to indicate locations
- use all data for training

Inference: Ex. “Today we talk about TTS.”

Text and acoustic features

- `<s>`: sentence start
- `</s>`: sentence end
- `<m>`: middle sentence start
- `</m>`: middle sentence end
Experimental Dataset

- JSUT [https://sites.google.com/site/shinnosuketakamichi/publication/jsut]
 single female speaker, Japanese, 10 hours
 Training set: 5k utterance
 Test and dev: 100k utterance

- LJ-speech [https://keithito.com/LJ-Speech-Dataset/]
 single female speaker, English, 24 hours
 Training set: 10k utterance
 Test and dev: 100k utterance

- Input sequence
 Phoneme and accentual information (Japanese)
 Word character (English)

- Preprocess dataset
 Ja. Dataset is divided sentence into three parts in the basis of phrase position.
 En. Dataset is divided sentence into three parts in the basis of word position.

- Acoustic features: 80 dim. mel-spectrum, 1024 dim. Linear-spectrogram
We concatenated all the synthesized waveforms into sentence-based waveforms.

- Synthesis various input length (e.g. word-by-word, 2words-by-2words)
- To compare to normal TTS waveforms

Evaluation methods

MOS test for naturalness

- Evaluator listens one waveform
 and score 5 scales (1: very bad, 2: bad, 3: normal, 4: good, 5: very good)
Result of English MOS

Still big gap between natural speech and synthesized speech.

Three words unit has the best En. score.
Still big gap between natural speech and synthesized speech.
Half sentence unit ÷ the full sentence units (Ja.).

<table>
<thead>
<tr>
<th>One accent phrase</th>
<th>Two accent phrases</th>
<th>Three accent phrases</th>
<th>Half sentence</th>
<th>Sentence</th>
<th>Natural</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.22</td>
<td>2.81</td>
<td>2.88</td>
<td>3.13</td>
<td>3.18</td>
<td>4.95</td>
</tr>
</tbody>
</table>

Outgrow your limits

Nov. 19. 2020
AIST 2020 ©Satoshi Nakamura, AHC Lab, NAIST, Japan
Summary – AT-ISR

Neural ISR system (AT-ISR) with a low recognition delay without increasing the complexity of the standard ASR system

1. AT-ISR with delay < 1 sec. achieved a close performance to standard ASR with delay > 7 sec.
2. AT-ISR as an ISR framework with an efficient development mechanism and reliable performance via attention transfer that applies an identical architecture as the standard ASR

Recent ISR Trend

- Streaming ASR with RNN-Transducer (RNN-T) [Saitnah et al., 2020; Li et al., 2020]
- Streaming transformer ASR [Miao et al., 2020; Moritz et al., 2020; Tsunoo et al., 2020]
iTTS Summary

Incremental End-to-end TTS
Previous work: HMM-based iTTS
We challenge neural iTTS system by extending conventional neural TTS
 -> add location symbols for input
 -> use initial input for decoder

Future work
The wide gap between natural speech and synthesized speech.
 -> wavenet vocoder
Improvement of stop flag prediction for English model
 -> very short sentence (e.g. “It”)
Calculation of delay