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Introduction

A Current stateof-the-art speech processing
technology (i.e. ASR and TTS)

I Rely on the availability of paired speech and transcription P —
A To improve: collect more data

A For some language, resources in such quantity are text —>
usually unavailable

A Some approaches to reduce data usage is needed
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ASR

TTS

—> text



Speech Chainf{andraet al., 2017)

A Enables the training of ASR and TTS to assist each =¥ —asr > =t
other in semisupervised learning A A
A Avoids the need of large amount of paired
speech and text data
v v
~— <«
A But still need a large amount of unpaired speech 2= AL TT5 fet- g =(text

and text data

A Speech and text is the source and target
modality of ASR and TTS

Can we improve ASR and TTS without speech or text data?
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How human perceive senses

A Human communication channels is not only auditory but also visual
A Multiple information sources are perceived together

A Able to learn even when no paired data are available (less supervision)

Learning byextual+visual Learning byauditory+visual
Image courtesy of https://www.irasutoya.com/ m Alp
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T =\ —> —> ) =(text) z = A\ —> —> = (text)—> — >3 =
5| ASR Y | ASR ) IR
A A A A 4‘
1 1 1 1 1
| - l Speech l Visual ;
: ; ! Chain : Chain :
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
\ 4 \ 4 \ 4 \ 4 \ 4
A < .) — (_) | (_/
T = J\/\r<—— TTS | — 4 =(text) T = 4\/\—4—— TTS | — 7 = (text) «<— IC le—2=

A Proposed to mimic overall human communication and accommodate visual modality
A Speech chain (ASR+TTS) and visual chain (IC+IR)

A Evaluated on singlepeaker synthesized speech

A IR model: difficulty to handle unseen images
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Our proposed model

Effendi et al. (2019) This study

TTS Singlespeaker Multi-speaker with oneshot speaker adaptation
(Tjandraet al., 2018)

Evaluated on Synthesized speech by Google T| Natural speech (Flickr8k Audio)

Image production Image retrieval Adversariabased image generation

#loop DuaHoop only Single and dudbop

A Image generation (IG) to handle unseen images

A Tested on multspeaker natural speech dataset

A Multi-speaker TTS with embedding frddeepSpeake(Li et al., 2017)
A Oneshot speaker adaptatiorT{andraet al., 2018)
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[Proposed] MMC1 and MMC?2

T = A —> —> = (text)—> —>2 = = —> -
AN “ 3 ASR [ 9 3 s [ B imgspar [ 9 = (20
: Speech ! Visual ! : |
! Chain ! Chain ! , 1
: : : v L Joov
v M v Z= < G e Yy = (text)
— | <« \. <« < j_
2= AL e = textye— © «—=z=F1 =" < TTS
Duatoop MMC1 Singleloop MMC2

A MMC1: dualloop architecture with text as the bridge
A MMC2: alternative for application example on midturce multimodal model

A Human brain process visual and auditory components of speech in a unified manner
(Calvert, 2001)

I Introduce sharing between ASR and3@mgSp2Txt ) A
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MMC1 unrolled process:

The loop inside the speech chain and visual chain

When the input is image or

speech only data When the input is text only data

Z=AN—> Lrrs(z, %) 2= Lic(z, 2) y=(text)—L ssr(y, §) Y=(text) qu(y,:&)
TTS IG ASR IC
3} =(text) :g =(text) f:‘\/\' Z=

ASR IC TS IG

=N 2= y=(text) y=(text)---
Speech Visual Speech Visual

chain chain chain chain
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MMC1 unrolled process:

Speech chain and visual chain collaboration

A Speech chain and visual chain collaborate| x= 4\ —»> ASR —>y = (caption) —> IG
through text modality A 41

A The loss calculated from intermediate text 2=

A Backpropagate the last element of the cha

y = (caption) «—— |IC «—

A Simple filtering in text hypothesis

—> ASR ——> ¥y = (caption)
This Is our main interest, to see if the image A
only data can help improve ASR

i

I
1
1
4
— TTS — ¥ =(caption) «— IC {(7
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[Proposed] MMC1 and MMC?2
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! Chain ! Chain ! , 1
: : : v L Joov
v M v Z= < G e Yy = (text)
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A MMC1: dualloop architecture with text as the bridge
A MMC2: alternative for application example on midturce multimodal model

A Human brain process visual and auditory components of speech in a unified manner
(Calvert, 2001)

i Introduce sharing between ASR and3@mgSp2Txt W) A
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MMC2 unrolled process

When the input is image and/or

speech only data When the input is text only data

F=A\ 2= ﬁ;&(xz)@ y=(text) — Limgsparat "(_.y,.@)
TTS|| 1G ImgSpZTxt
y=(text) £=~\/\— P .
ImgSp2Txt TS G
o | y=(text)
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Models used and its evaluation metrics

A ASR: Listen, Attend, and Spell (Chan+, 2016)
I LSTM encodedecoder ASR model
I CER
A TTSTacotron(Wang+, 2017)
I encoderdecoder speech synthesis model
I using speaker embedding frobeepSpeakefLi+, 2017) with size of 64
I L2norn?
A IC: Show, Attend, and TeXu+, 2015)
I modified to process 128x128
I BLEU
A |G AttnGAN(Xu+, 2017)
I multistep image generation using adversarial loss

I generate only until 128x128 image instead of 256x256

I Inception Score
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Multimodal Chain Components

. . Speech encoder: bi-LSTM Image encoder: ResNet
A ImgSp2Txt: average Of andr) output z e 2 = ;
layer probability LSTM[ Z{LSTM[ 2 . |LSTM™ ‘ ’ 5
. # * I_]-
A When only image or speech are . x

available, the decoder uses only the
corresponding output layer.

dy

A Trained in charactelevel granularity to
match the best practice of ASR
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Experiment Setp

A Flickr8k + audioRashtchiaret al, 2010Harwath

and Glass, 2015) ekl

I 8000 photos of everyday activities and events Paired
i 5 captions per image, 8920 words vocabulary e A A 1500

Unpaired
I Crowdsourced natural speech, 183 speakers, 64 hours  gpeechonly A x x 1850
A We used the predefined train, dev, test subset Image only X x A 1850
A But the target is to see how the proposed method | |
. : : o : available paired
perform in a single modality dataset A- available but unpaired

A So we make theseata partition X : unavailable
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Result- Comparing MMC1 and MMC2

Dete e WO (BEUA, | TS (ZNorm@ | LD 0 Ly O

Multimodal (P) 800 36.35 12.75 0.77 5.90

DI\SQ/L% olp + Multimodal (U) 1500 15.10 13.22 0.59 8.29

(Semisupervised)| *:epeny (U} 1850 12.37 13.28 0.56 9.12

+Imgonly (U) 1850 12.06 13.29 0.56 9.11

ng&'gsxi';";; Multimodal (P) 6000 5.76 19.91 0.50 9.66

VMG 2 Multimodal (P) 800 26.67 32.23 0.77 5.90

Singleloop + Multimodal (U) 1500 14.88 55.15 0.65 10.12

(Semisupervised) +Sponly (U) 1850 13.81 58.03 0.62 10.65

+Imgonly (U) 1850 12.32 59.66 0.61 9.95

ToplineMMC2 . iimodal (P) 6000 5.16 79.88 0.50 9.66
(Supervised)

ASR improvement even without speech and text data
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Discussior- Comparing MMC1 and MMC2

A ASR improvement even when using image dataset
A Sharing between ASR and IC in MMC?2 yields better ASR-ttatawscenario
A MMC2 ends up with 12.32 CER, on par with MMC1 12.06 CER

A Best score of MMC1 12.06 CER = 17.84 WER

A Comparable with Sun et al. (2016) = 13.81 WER
I Fully supervised
I Lattice rescoring algorithm
I ASR implemented using non etwtend method, with image to help decoding
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Conclusion and Future Works

A Improvements from previous multimodal machine chain:
I adversariabased image generation model
I one-shot speaker adaptation
I tested onmultispeakematural speech dataset

A Alternative singldoop multimodal chain

A Results shows that both multimodal chains:
I enables improvement of speech processing components using an iamygelataset
I by collaborating with image processing components
I within multimodal machine chain architecture

A Future work: investigate various approaches of component combination
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Thank you for your attention
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