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ÅCurrent state-of-the-art speech processing 
technology (i.e. ASR and TTS)

ïRely on the availability of paired speech and transcription

ÅTo improve: collect more data

ÅFor some language, resources in such quantity are 
usually unavailable

ÅSome approaches to reduce data usage is needed

Introduction

text

text
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ÅEnables the training of ASR and TTS to assist each 
other in semi-supervised learning

ÅAvoids the need of large amount of paired 
speech and text data

ÅBut still need a large amount of unpaired speech 
and text data

ÅSpeech and text is the source and target 
modality of ASR and TTS

Speech Chain (Tjandraet al., 2017)

Can we improve ASR and TTS without speech or text data?
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How human perceive senses

ÅHuman communication channels is not only auditory but also visual
ÅMultiple information sources are perceived together

ÅAble to learn even when no paired data are available (less supervision)

deer!

Learning by textual+visual Learning by auditory+visual

Image courtesy of https://www.irasutoya.com/

òthis is a deeró



6 / 18Augmenting Images for ASR and TTS through Single-loop and Dual-loop Multimodal Machine Chain Framework ðINTERSPEECH 2020

ÅProposed to mimic overall human communication and accommodate visual modality

ÅSpeech chain (ASR+TTS) and visual chain (IC+IR)

ÅEvaluated on single-speaker synthesized speech

Å IR model: difficulty to handle unseen images

Multimodal Machine Chain (Effendi et al., 2019)

Speech
Chain

Visual
Chain
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Components Effendi et al. (2019) This study

TTS Single-speaker Multi-speaker with one-shot speaker adaptation 
(Tjandraet al., 2018)

Evaluated on Synthesized speech by Google TTSNatural speech (Flickr8k Audio)

Image production Image retrieval Adversarial-based image generation

#loop Dual-loop only Single and dual-loop

Our proposed model

Å Image generation (IG) to handle unseen images

ÅTested on multi-speaker natural speech dataset

ÅMulti-speaker TTS with embedding from DeepSpeaker(Li et al., 2017)

ÅOne-shot speaker adaptation (Tjandraet al., 2018)
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ÅMMC1: dual-loop architecture with text as the bridge

ÅMMC2: alternative for application example on multi-source multimodal model 

ÅHuman brain process visual and auditory components of speech in a unified manner 
(Calvert, 2001)

ï Introduce sharing between ASR and IC -> ImgSp2Txt

[Proposed] MMC1 and MMC2

Dual-loop MMC1 Single-loop MMC2

Speech
Chain

Visual
Chain
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MMC1 unrolled process:
The loop inside the speech chain and visual chain

When the input is image or 
speech only data

When the input is text only data

Speech
chain

Speech
chain

Visual
chain

Visual
chain
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ÅSpeech chain and visual chain collaborates 
through text modality

ÅThe loss calculated from intermediate text

ÅBackpropagate the last element of the chain

ÅSimple filtering in text hypothesis

This is our main interest, to see if the image-
only data can help improve ASR

MMC1 unrolled process:
Speech chain and visual chain collaboration
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ÅMMC1: dual-loop architecture with text as the bridge

ÅMMC2: alternative for application example on multi-source multimodal model 

ÅHuman brain process visual and auditory components of speech in a unified manner 
(Calvert, 2001)

ï Introduce sharing between ASR and IC -> ImgSp2Txt

[Proposed] MMC1 and MMC2

Dual-loop MMC1 Single-loop MMC2

Speech
Chain

Visual
Chain
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MMC2 unrolled process

When the input is image and/or 
speech only data

When the input is text only data
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Å ASR: Listen, Attend, and Spell (Chan+, 2016)

ï LSTM encoder-decoder ASR model

ïCER

Å TTS: Tacotron(Wang+, 2017)

ï encoder-decoder speech synthesis model

ï using speaker embedding from DeepSpeaker(Li+, 2017) with size of 64

ï L2-norm2

Å IC: Show, Attend, and Tell (Xu+, 2015)

ïmodified to process 128x128

ïBLEU

Å IG: AttnGAN(Xu+, 2017)

ïmultistep image generation using adversarial loss

ï generate only until 128x128 image instead of 256x256

ï Inception Score

Models used and its evaluation metrics
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Å ImgSp2Txt: average of ὴand ὴ output 
layer probability

ÅWhen only image or speech are 
available, the decoder uses only the 
corresponding output layer.

ÅTrained in character-level granularity to 
match the best practice of ASR

Multimodal Chain Components
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ÅFlickr8k + audio (Rashtchianet al, 2010; Harwath
and Glass, 2015)

ï8000 photos of everyday activities and events

ï5 captions per image, 8920 words vocabulary

ïCrowdsourced natural speech, 183 speakers, 64 hours

ÅWe used the predefined train, dev, test subset

ÅBut the target is to see how the proposed method 
perform in a single modality dataset

ÅSo we make these data partition

Experiment Set-up

Type Speech Text Image # Image

Multimodal 
Paired

○ ○ ○ 800

Multimodal 
Unpaired

∆ ∆ ∆ 1500

Speech only ∆ x x 1850

Image only x x ∆ 1850

○: available paired
∆: available but unpaired
x : unavailable
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Training Data Type #Image !{w ό/9wύ ҨIC (BLEU4)ҧ TTS (L22 Norm)Ҩ LD όLƴŎŜǇǘƛƻƴύ ҧ

MMC 1
Dual-loop

(Semi-supervised)

Multimodal (P) 800 36.35 12.75 0.77 5.90

+ Multimodal (U) 1500 15.10 13.22 0.59 8.29

+ Sponly (U) 1850 12.37 13.28 0.56 9.12

+ Imgonly (U) 1850 12.06 13.29 0.56 9.11

ToplineMMC1
(Supervised)

Multimodal (P) 6000 5.76 19.91 0.50 9.66

MMC 2
Single-loop

(Semi-supervised)

Multimodal (P) 800 26.67 32.23 0.77 5.90

+ Multimodal (U) 1500 14.88 55.15 0.65 10.12

+ Sponly (U) 1850 13.81 58.03 0.62 10.65

+ Imgonly (U) 1850 12.32 59.66 0.61 9.95

ToplineMMC2
(Supervised)

Multimodal (P) 6000 5.16 79.88 0.50 9.66

Result - Comparing MMC1 and MMC2

ASR improvement even without speech and text data
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ÅASR improvement even when using image dataset

ÅSharing between ASR and IC in MMC2 yields better ASR in low-data scenario

ÅMMC2 ends up with 12.32 CER, on par with MMC1 12.06 CER

ÅBest score of MMC1 12.06 CER = 17.84 WER

ÅComparable with Sun et al. (2016) = 13.81 WER

ïFully supervised

ïLattice rescoring algorithm

ïASR implemented using non end-to-end method, with image to help decoding 

Discussion –Comparing MMC1 and MMC2
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Å Improvements from previous multimodal machine chain:

ïadversarial-based image generation model

ïone-shot speaker adaptation

ï tested on multispeakernatural speech dataset

ÅAlternative single-loop multimodal chain

ÅResults shows that both multimodal chains:

ïenables improvement of speech processing components using an image-only dataset

ïby collaborating with image processing components 

ïwithin multimodal machine chain architecture

ÅFuture work: investigate various approaches of component combination

Conclusion and Future Works
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Thank you for your attention


