

Combining Audio and Brain Activity for Predicting Speech Quality

Ivan Halim Parmonangan¹, Hiroki Tanaka^{1,2}, Sakriani Sakti^{1,2}, Satoshi Nakamura^{1,2}

¹Division of Information Science, Nara Institute of Science and Technology, Japan

²Center of Advanced Intelligence Project, RIKEN, Japan

Introduction

• Synthesized speech overview

- A system that produce audible speech from a text input.
- One of many factors that determines its success:
 - Overall impression audio quality

2020/11/2

Synthesized Speech Evaluation

- Subjective evaluation (e.g. naturalness, intelligibility, etc.)
 - Usually done by calculating mean opinion score (MOS) or preference test (e.g. ABX test)
 - No insight about subject or evaluator's cognitive state [Maki et al., 2018]

- Objective evaluation: Analyze audio features (e.g. mel-distortion etc.)
 - No human evaluator involved
 - Fast & efficient
 - Relationship to human perceived quality is still unclear [Mayo et al, 2011]

Physiological Signals for Synthesized Speech Evaluation

- Physiological approach (e.g. <u>brain activity</u>, heart rate, skin conductance, etc.)
 - Not easy to conceal
- Characterize evaluators' cognitive state (e.g. mental and emotional) [Gupta et al., 2016]
- Brain is where judgement process and quality formation takes place [Antons et al., 2014]
- Typical workflow of utilizing physiological signal:

Related Works

[Maki et al., 2018]

- Evaluated TTS with EEG (electroencephalograph)
- Regression method:
 - Partial Least Square (PLS) with linear vector [average RMSE: 1.098 ± 0.088]
 - High-order PLS (HOPLS) with tensor structure [average RMSE: 0.987 ± 0.104]
- Did not use audio features

Delta (δ)

<4Hz

Theta ($\boldsymbol{\theta}$)

4-8Hz

Alpha (α)

8-15 Hz

Beta (**β**)

15-32 Hz

Gamma (γ)

>32Hz

Related Works

[Gupta et al., 2016]

- Evaluated TTS using mixed audio with EEG
- Using <u>multiple linear regression</u>
 - Showed how audio features (MFCC & F0) and EEG features* are correlated to the perceived quality
- Modelled to fit each subjects' data

*(Asymmetric Index & Medial Prefrontal Beta Power)

Proposed Method

Neural network based MOS regression

- Robustness in processing noisy data such as EEG signal processing [Subasi and Ercelebi, 2005
- Previous work <u>used PLS to perform regression</u> [Maki et al., 2018]
- This work used Convolution Neural Network (CNN)
 - Ability to extract features with minimal feature engineering

Combining brain activity and audio features to perform regression

- Multi-source input improved prediction performance [Kwon et al., 2018; Oramas et al., 2018]
- Previous work combined the features using <u>multiple linear regression without performing</u> regression to unseen data [Gupta et al., 2016]
- This work combines the features using deep learning to perform regression.

CNN Pipeline for Brain Activity and Audio

- 2D Convolution Layer (2 layers)
 - Kernel design adapted from [Kwon et al., 2018]
- Input:
 - 64 channels EEG spectrogram
 - 1 channel audio mel-spectrogram

Example: 32 channels EEG topography

Combining Brain Activity & Audio

- Late integration approach
- Final regression pipeline: Two fully connected layers

Experiment Setup

- Dataset:
 - English TTS and EEG data: PhySyQX [Gupta et al., 2015]
- The baseline [Maki et al., 2018]:
 - Input: power spectrum density (PSD), channel paired phase and power spectrum density (PHD & PWD)
 - Used Partial Least Square regression (PLS)
 - Objective function: MOS (Mean Opinion Score) [very unnatural (1) ... very natural (5)]
- Metric:
 - Root Mean Squared Error (RMSE)
 - Significance test: Wilcoxon signed-rank test
 - $(\alpha = 0.01, N = 21, T = 42)$
- Compare:

10

- 1. (baseline) PLS_{EEG} vs. CNN_{EEG}
- 2. CNN_{EEG} vs. $CNN_{aud+EEG}$

PhySyQx - Audio Dataset

- Speech Audio (36 total samples)
 - Language: English
 - Natural & synthesized
 - Male & female
 - Synthesized using commercially available TTS systems

Types	Audio sample			
1				
2	M\$			
3	1 %			
4	4 &			
5				
6	ď ^v			
7	4 \$			
8				
9	M\$			

PhySyQx - Physiological Signal Dataset

- EEG & fNIRS
 - 21 evaluators
 - Each listened to 44 speech audio stimuli
 - This work used only the EEG

• Stimuli presentation

Cross Validation Setup

- Audio data
 - 36 samples available
 - Separated into 4 sets
 - Train-Validation-Test: 18-9-9 audio samples
- EEG data:

13

- 21 evaluators
- Subject dependent
 - Same person: 18-9-9 EEG records

2020/11/2

Result

- CNN_{EEG} has significantly lower RMSE than PLS_{EEG} (W = 27, W < T)
- CNN_{aud} has lower RMSE than CNN_{EEG}
- $CNN_{aud+EEG}$ has significantly lower RMSE than CNN_{EEG} (W = 0, W < T)
- Combining the audio and EEG improved the result significantly

Sbj.	PLS _{EEG}	CNN _{EEG}	CNN _{aud+EEG}	CNN _{aud}	
1	1.102	1.084	0.752	0.862	
2	0.990	0.974	0.767	-	
3	0.948	1.019	0.737	-	
4	0.997	1.010	0.719	-	
5	1.007	0.947	0.750	-	
18	1.075	1.010	0.742	-	
19	0.971	1.034	0.709	-	
20	0.937	0.927	0.714	-	
21	1.091	0.936	0.694	-	
Mean	1.122	0.984	0.732	0.862	
Stdev.	0.275	0.037	0.017	-	

Conclusion

- Physiological signals for Text-to-Speech audio quality evaluation
- Proposed methods:
 - Neural network based MOS regression
 - Combining EEG and audio features
- The proposed method results:
 - The proposed NN-based MOS regression has significantly lower RMSE than the PLS baseline
 - Combined method has significantly lower RMSE than single source input

Future Work

- Investigate the performance on subject-independent case
- Explore different fusion method such as early-fusion or tensor fusion [Zadeh, Amir et al, 2017]
- Investigate which EEG features could further improve the performance.
- Experiment with other audio features such as mel-cepstrum or LF0.
- Investigate different model to handle each brain activity and audio features such as combining CNN and BiLSTM [Lo, Chen-Chou et al., 2019].

2020/11/2

Thank You

References

- C. Mayo, R. A. Clark, and S. King, "Listeners weighting of acoustic cues to synthetic speech naturalness: A multidimensional scaling analysis," Speech Communication, 2011
- 2. J.-N. Voigt-Antons, S. Arndt, R. Schleicher, and S. Moller, Brain Activity Correlates of Quality of Experience, 2014.
- R. Gupta, K. Laghari, H. Banville, and T. H. Falk, "Using affective brain-computer interfaces to characterize human influential factors for speech quality-3. of-experience perception modelling, "Human-centric Computing and Information Sciences, 2016
- Y.-H. Kwon, S.-B. Shin, and S.-D. Kim, "Electroencephalography based fusion two-dimensional (2d)-convolution neural networks (cnn) model for 4. emotion recognition system," Sensors, 2018
- H. Maki, S. Sakti, H. Tanaka, and S. Nakamura, "Quality prediction of synthesized speech based on tensor structured eeg signals," 2018 5.
- R. Gupta, H. J. Banville, and T. H. Falk, "Physyqx: A database for physiological evaluation of synthesized speech quality-of-experience," in 2015 IEEE 6. Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA), 2015, pp. 1–5.
- Oramas S, Barbieri F, Nieto O, Serra X. Multimodal Deep Learning for Music Genre Classification. Transactions of the International Society for Music 7. Information Retrieval. 2018
- 8. Lo, Chen-Chou et al. "MOSNet: Deep Learning-Based Objective Assessment for Voice Conversion." Interspeech (2019).
- Abdulhamid Subasi and Ergun Ercelebi, "Classicfication of EEG Signals using Neural Network and Logistic Regression," Computer Methods and 9. Programs in Biomedicine, Vol.78, May 2005
- Amir Zadeh, Minghai Chen, Soujanya Poria, Erik Cambria, and Louis-Philippe Morency. Tensor fusion network for multimodal sentiment 10. analysis.CoRR, abs/1707.07250, 2017

