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Introduction
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• Synthesized speech overview

• A system that produce audible speech from a text input.

• One of many factors that determines its success:

◦ Overall impression audio quality



Synthesized Speech Evaluation
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• Subjective evaluation (e.g. naturalness, intelligibility, etc.) 

• Usually done by calculating mean opinion score (MOS) or preference test (e.g. ABX test)

• No insight about subject or evaluator’s cognitive state [Maki et al., 2018]

• Objective evaluation:  Analyze audio features (e.g. mel-distortion etc.)

• No human evaluator involved

• Fast & efficient

• Relationship to human perceived quality is still unclear [Mayo et al, 2011]

Very unnatural (1) … Very Natural (5)



Physiological Signals for Synthesized Speech Evaluation
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• Physiological approach (e.g. brain activity, heart rate, skin conductance, etc.)

• Not easy to conceal

• Characterize evaluators’ cognitive state (e.g. mental and emotional) [Gupta et al., 2016]

• Brain is where judgement process and quality formation takes place [Antons et al., 2014]

• Typical workflow of utilizing physiological signal:

Perceived 
Quality

Stimuli 
presented

Evaluator’s 
EEG recorded

Evaluator’s 
EEG analyzed

Analysis result



Related Works
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[Maki et al., 2018] 

• Evaluated TTS with EEG (electroencephalograph)

• Regression method: 
• Partial Least Square (PLS) with linear vector [average RMSE: 1.098 ± 0.088]

• High-order PLS (HOPLS) with tensor structure [average RMSE: 0.987 ± 0.104]

• Did not use audio features 

EEG frequency band range:
• Delta (𝞭) <4Hz
• Theta (𝜽) 4-8Hz
• Alpha (𝞪) 8-15 Hz
• Beta (𝞫) 15-32 Hz
• Gamma (𝜸) >32Hz



Related Works
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[Gupta et al., 2016]

• Evaluated TTS using mixed audio with EEG

• Using multiple linear regression
• Showed how audio features (MFCC & F0) and EEG features* are correlated to the perceived quality

• Modelled to fit each subjects’ data

𝑦𝑖 = 𝜖𝑖 + 𝛽1𝑥𝑖1 + 𝛽2𝑥𝑖2 +⋯+ 𝛽𝑁𝑥𝑖𝑁

Opinion Score

Error

Coefficient

EEG/audio Features

Audio 
features

EEG 
features

*(Asymmetric Index & Medial Prefrontal Beta Power)



Proposed Method
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1. Neural network based MOS regression

• Robustness in processing noisy data such as EEG signal processing [Subasi and Ercelebi, 

2005]

• Previous work used PLS to perform regression [Maki et al., 2018] 

• This work used Convolution Neural Network (CNN)

• Ability to extract features with minimal feature engineering

2. Combining brain activity and audio features to perform regression

• Multi-source input improved prediction performance [Kwon et al., 2018; Oramas et al., 2018]

• Previous work combined the features using multiple linear regression without performing 
regression to unseen data [Gupta et al., 2016]

• This work combines the features using deep learning to perform regression.



CNN Pipeline for Brain Activity and Audio
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• 2D Convolution Layer (2 layers)

• Kernel design adapted from [Kwon et al., 2018]

• Input:

• 64 channels EEG spectrogram

• 1 channel audio mel-spectrogram

Example: 32 channels EEG topography



Combining Brain Activity & Audio
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• Late integration approach

• Final regression pipeline: Two fully connected layers 



Experiment Setup
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• Dataset:

• English TTS and EEG data: PhySyQX [Gupta et al., 2015]

• The baseline [Maki et al., 2018]:

• Input: power spectrum density (PSD), channel paired phase and power spectrum density (PHD & PWD ) 

• Used Partial Least Square regression (PLS)

• Objective function: MOS (Mean Opinion Score) [very unnatural (1) … very natural (5)]

• Metric:

• Root Mean Squared Error (RMSE)

• Significance test: Wilcoxon signed-rank test

• (α = 0.01, N = 21, T = 42)

• Compare:

1. (baseline) PLSEEG vs. CNNEEG 

2. CNNEEG vs. CNNaud+EEG



PhySyQx - Audio Dataset
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• Speech Audio (36 total samples)

• Language: English 

• Natural & synthesized

• Male & female

• Synthesized using commercially available TTS 
systems

Types Audio sample

1

2

3

4

5

6

7

8

9



PhySyQx - Physiological Signal Dataset
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• EEG & fNIRS

• 21 evaluators

• Each listened to 44 speech audio stimuli

• This work used only the EEG

• Stimuli presentation



Cross Validation Setup
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• Audio data

• 36 samples available

• Separated into 4 sets

• Train-Validation-Test : 18-9-9 audio samples

• EEG data:

• 21 evaluators

• Subject dependent

• Same person : 18-9-9 EEG records



Result
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• CNNEEG has significantly lower 

RMSE than PLSEEG (W = 27, W < T)

• CNNaud has lower RMSE than 

CNNEEG

• CNNaud+EEG has significantly lower 

RMSE than CNNEEG (W = 0, W < T)

• Combining the audio and EEG 

improved the result significantly



Conclusion
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• Physiological signals for Text-to-Speech audio quality evaluation

• Proposed methods:
• Neural network based MOS regression

• Combining EEG and audio features

• The proposed method results: 

• The proposed NN-based MOS regression has significantly lower RMSE than the PLS 
baseline

• Combined method has significantly lower RMSE than single source input



Future Work
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• Investigate the performance on subject-independent case

• Explore different fusion method such as early-fusion or tensor fusion [Zadeh, Amir et al, 

2017]

• Investigate which EEG features could further improve the performance.

• Experiment with other audio features such as mel-cepstrum or LF0.

• Investigate different model to handle each brain activity and audio features such as 
combining CNN and BiLSTM [Lo, Chen-Chou et al., 2019].



Thank You
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