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Abstract
Since the perceived audio quality of the synthesized speech
may determine a system’s market success, quality evaluations
are critical. Audio quality evaluations are usually done in ei-
ther subjectively or objectively. Due to their costly and time-
consuming nature, the subjective approaches have generally
been replaced by the faster, more cost-efficient objective ap-
proaches. The primary downside of the objective approaches
primarily is that they lack the human influence factors which are
crucial for deriving the subjective perception of quality. How-
ever, it cannot be observed directly and manifested in individ-
ual brain activity. Thus, we combined predictions from single-
subject electroencephalograph (EEG) information and audio
features to improve the predictions of the overall quality of syn-
thesized speech. Our result shows that by combining the results
from both audio and EEG models, a very simple neural network
can surpass the performance of the single-modal approach.
Index Terms: EEG, text-to-speech, quality prediction, late-
integration

1. Introduction
One factor that may determine a TTS system’s success is its
perceived audio quality which could refer to overall impres-
sion, naturalness, intelligibility, and others. Synthesized audio
quality is mainly evaluated by either subjective or objective ap-
proaches. The International Telecommunication Union recom-
mends multidimensional subjective tests for quality evaluation,
that involve user interviews, ratings, and surveys to identify the
the ground truth from the end user’s opinions of the audio [1].
However, it is impossible to calculate the mean opinion score of
a general population using the opinion scores from only a single
participant. Such subjective tests are time consuming and ex-
pensive, fueling the development of objective approaches such
as [2, 3, 4] are being developed for estimating the quality of
synthesized speech.

An objective approach replaces the human listener with a
computer algorithm, which learns the mapping between several
acoustic features to the previously recorded subjective ratings.
Consequently, it lacks the critical human influence factors that
motivate our perception of quality [5]. Moreover, the exact re-
lationship between acoustic features and perceived quality re-
mains unclear [6]. Therefore, even though the predicted quality
is high, the actual quality might not meet human expectations.
For this reason, human influence factors must be considered as
well as acoustic features.

Human influence factors are manifested in our brains where
the process of forming judgements and creating quality forma-
tion occurs [7]. Thus, probing neural activity might provide
insight into the human quality judgement process [8]. However,
just using EEG features for predictions remains difficult due to
their low signal-to-noise ratio (SNR) [9, 10]. The target brain

activity is often buried under multiple source of the ‘artifacts’
of environmental, physiological, and activity-specific noise of
similar or greater amplitude.

Brain signals are not only have high variance across and
within subjects [11], but they are also non-stationary. Their
statistics may vary across time [12, 13, 14], resulting in poor
generalization for machine learning models which trained on
temporally-limited data. Nevertheless, it was claimed that EEG
performed better for emotion detection than the other physio-
logical signals [15].

In audio quality prediction tasks, a previous work [16] pre-
dicted individual overall impression, valence, and arousal by
using partial least squares (PLS) on subject EEGs. Since this
approach still used individual opinion scores instead of the av-
erage of the opinion scores or the mean opinion scores (MOS),
it still requires a number of participants to calculate the gen-
eral scores. To minimize the need for human subjects, another
study [17] predicted the overall impression MOS of synthesized
Japanese speech using only single-subject EEGs instead of in-
dividual opinion scores by support vector regression (SVR).

A fusion method between EEG and peripheral signals was
proposed because it was more robust than single input type ap-
proaches [15]. Another study [18] proposed a fusion EEG and
a galvanic skin response (GSR) for emotion recognition with a
convolution neural network (CNN). The proposed model out-
performed similar studies with a single input type on the same
dataset. A similar study also reported that the emotion recog-
nition performance was improved with EEG and eye-tracking
data [19].

A study using multiple input sources has also been pro-
posed [20]. They made a linear regression model using au-
dio features, audio features with subjective rating variables, and
audio features with neurophysiological features. This study
argued that with linear regression, combined features outper-
formed audio only features. However, their study did not per-
form any prediction.

In contrast to the previous works and ideas, we performed
the following:

1. individually trained both EEG and audio models using
CNN-based architecture from previous work using PLS;

2. used both audio and EEG features to do overall impres-
sion MOS prediction from previous study that only mod-
eled using linear regression.

2. Dataset
This study used the PhySyQX dataset [21], which includes au-
dio samples and brain activity records of 21 subjects and each
subject’s audio ratings. The dataset also contains a record of in-
dividual opinion scores of subjective dimension ratings for each
presented audio stimulus. In this study, we used the audio, the
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EEG data, and the overall impression opinion score. The base-
line input used only EEG features, while the proposed method
used both EEG and audio features.

2.1. Participants

Twenty-one healthy English speakers (eight females and 13
males) whose average age was 23.8 (±4.35) were recruited.
The audio stimuli were presented by earphones at their indi-
vidual volume preferences. The protocol was approved by the
INRS Research Ethics Office after obtaining written, informed
consent from every participant.

2.2. EEG Records

The EEG recording was done using Biosemi ActiveTwo sys-
tem with 512 Hz sampling rate without online filtering and then
down-sampled to 256 Hz. All channels of the raw EEG signals
were referenced to ‘Cz’ followed by 0.5-50 Hz bandpass filter-
ing using FIR filter in the EEGLAB [22]. Independent compo-
nent analysis (ICA) was applied to remove eye blink artifacts
and semi-automatic rejection of the noisy components was car-
ried out using the ADJUST toolbox [23].

2.3. Speech Stimuli

The 44 speech stimuli, which were presented to each subject
in the dataset, consisted of collected speech from four human
speakers and seven commercially available TTS systems. From
each human and the TTS system, four English sentences were
recorded in durations that ranged from 13 to 22 seconds. These
recordings were presented randomly to each subject. Eight
copyrighted audio stimuli used in the EEG recording were ex-
cluded in the published dataset leaving only 36 audio stimuli
available for our study. In summary, the published dataset has
eight sample sentences. Four sentences are human spoken and
synthesized totalling 32 audio samples. Another four sentences
are generated by one TTS system.

2.4. Experiment Procedure

The experiment procedure followed the ITU-T P.85 [1] recom-
mendations. The brain activity were recorded simultaneously as
the participants listened to the audio stimuli. Each subject lis-
tened to 44 audio samples, however, the dataset only provides
36 out of the 44 used audio recordings because some files are
copyrighted. We omitted the EEG records without audio pairs.

Figure 1: Stimuli presentation to each subject. Each block con-
sists of rest-stimuli-rating sequences. Baseline stimuli were pre-
sented at the beginning followed by 44 blocks of rest-stimulus-
rating sequences.

The experiment scenario in Figure 1 describes how the au-
dio was presented to each subject during the subjective evalu-
ation recording session. Prior to the data collection, subjects
were presented with a sample speech that was followed by a se-
ries of rating questions to accustom them to the actual task. A

15-seconds rest period was provided before each presentation
to allow the subject’s brain activity and blood flow to return to
the baseline levels. Following each audio stimuli, a random-
ized series of rating questions was asked to be answered in a
continuous scale by the subjects. The rating questions consists
of overall impression, naturalness, and others totalling twelve
questions collected in continuous scale.

2.5. Mean Opinion Score

The overall impression opinion scores ranged from one-(bad)
to five-(excellent) in continuous scale. This scale evaluates the
overall quality of the synthesized signal [1]. To calculate the
MOS, we averaged all participants’ overall impression opinion
scores of each audio sample. After collecting all audio MOS,
they were normalized to have zero mean and unit variance.

Figure 2: Overall impression opinion scores of four audio sam-
ples. Individual opinion scores have high variance, whereas
the mean opinion scores generalizes the opinion scores from
the whole population.

Since the study aimed to predict the generalized rather than
the personalized opinion of the overall impression, we used
MOS to reduce the individuality in this study. Thus, the EEG
models trained in this study are supposed to learn the pattern be-
tween the individual EEG data with the MOS. Figure 2 shows
how individual opinion scores of some audio samples are dis-
tributed among participants.

3. Predicting Mean Opinion Scores
We used partial least square (PLS) regression as the baseline us-
ing only the EEG features and tested the proposed CNN-based
EEG and audio combined model to predict the overall impres-
sion MOS. The tests were done in subject-dependent manner
and evaluated using root-mean-square error (RMSE).

3.1. Baseline Partial Least Square Model

The baseline of our study follows a previous work by [16] with
the same individual number of components and feature extrac-
tion method. In addition to predicting the individual opinion
scores, our baseline also predicted the MOS. The baseline in
our study used the same train-validation-test method used in
our proposed model unlike the leave-one-out cross validation
method used in previous work [16].

The features for the baseline input were the channel-based
power spectrum density, channel-pair based phase spectrum
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Figure 3: Simplified illustration of the model architecture: EEG pipeline and audio pipelines were trained independently. Final
regression pipeline used the paired outputs from the above pipelines to predict the final MOS.

density, and channel-pair-based power spectrum density as used
in the previous work [16]. Our study also preserved the vec-
tor structure used in the previous study. However, the baseline
in our study excluded some EEG samples without audio pairs
whilst the previous work used all the available EEG samples.

3.2. EEG Feature Extraction

This study only used pre-processed EEGs from the dataset.
Since each participant only had 36 samples with the available
audio set, each raw signal was augmented 30 times with Gaus-
sian noise. The EEGs were not augmented just for the baseline
method.

Data augmentation increases the accuracy and the stability
by offering better generalization on new data [24]. Some stud-
ies even augmented the signal with artifacts such as eye blinks,
muscle activity, and white Gaussian noise to improve the ro-
bustness [25, 26, 27].

For each sample, the spectrogram of each channel was ex-
tracted using fast Fourier-transform (FFT) with a 1-second win-
dow and an 0.5 second overlap followed by normalization. To
match the feature used in the previous research [16], we also
limited the highest frequency used to 45 Hz.

The pre-processed EEGs were inputted into the EEG
pipeline as shown in Figure 3. The input dimension of the EEG
pipeline was 45 frequency points, 60 time points, and 64 chan-
nels.

3.3. Audio Feature Extraction

The mel-spectrograms were extracted from each audio samples
using the librosa package [28] on python. Before the feature ex-
traction, each audio signal was zero-padded at the end to match
the maximum length of the recording (around 25 seconds) with-
out any augmentation. Normalization was also applied after the
mel-spectrogram extraction.

The pre-processed audio were inputted into the audio
pipeline which pictured in Figure 3. The input dimension of
the audio pipeline was 80 mel-bands, 1092 time points, and one
channel.

3.4. Combined Results from Audio and EEG Features

The EEG model and audio models were basically constructed
under the same simple architecture as shown in EEG and audio
pipeline in Figure 3. Our convolution layer had 32 filters. The
kernel design of the convolution layer was adopted from a pre-
vious work [18] that used a 3*2 sized kernel with a 2*1 stride.
Each convolution layer was followed by batch normalization,
and this study used rectified linear unit (ReLU) as the activation
function. After a 2*2 average pooling layer, we applied a 256-
unit dense layer followed with batch normalization and the final
linear output.

Following the EEG and audio pipelines, a simple, two-
hidden-layer neural network with one linear output was imple-
mented for the final regression pipeline. We used the outputs
from audio and EEG pipelines as the input of the final regres-
sion pipeline, which was constructed with two simple dense lay-
ers, each of which consisted of four units. Each dense layer was
followed by batch normalization, ReLU activation function, and
a 0.2 rate dropout to prevent overfitting. Finally, a linear func-
tion was applied to calculate the final output.

3.5. Model Evaluation

The audio and EEG models of each subject were trained inde-
pendently using nested cross-validation with validation and test
sets. We trained both the EEG and audio models with all the
possible training, validation, and test combinations.

The cross validation method was done as follows. First,
from the four available sets, we selected the combination of two
sets without repetition to be used as the train set for six training
set combinations. Second, for each generated combination, the
remaining two sets were used as validation and test sets. Since
two sets remained and only one was used for testing, the train-
ing was done twice with the same training set. But the valida-
tion and test sets were switched in the next iteration, resulting
in 12 models per subject. During the training, the best model
of each cross-validation combination was saved based on the
lowest validation RMSE.

Twelve result sets, each containing the predicted training,
validation, and test scores from both the audio and EEG best
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models, were fed into the final neural network predictor. No
cross validation was done in the final regression since the data
came from each cross validation model combination. Finally,
we averaged RMSE of each model.

4. Results
The variance in individual labelling might hinder the general-
ization process in machine learning even if it is trained using
individual EEG signals with their own opinion scores. Al-
though the Wilcoxon signed-rank test result showed no sig-
nificant difference (α = 0.01, T = 42, N = 21, W =
104, W > T ), Figure 4 shows that training with opinion
scores yielded a higher error among participants in average
(X̄PLS MOS = 1.156 ± 0.312) than using the mean opinion
scores (X̄PLS OS = 1.122± 0.275).

Figure 4: Error distribution per subject of both mean opinion
scores and opinion scores based baselines. Two outliers whose
values exceeded the maximum RMSE from each category were
excluded from the plot.

4.1. Independently Trained EEG and Audio Model

The prediction results of audio only features were not compara-
ble to the results of using EEG features because the EEG pre-
diction was done per subject while there was no subject in audio
only MOS prediction. Nevertheless, the average RMSE of the
CNN-based MOS predictions using audio features was lower
(X̄audio = 0.862) than using EEG spectrogram (X̄EEG =
0.984 ± 0.037). However, the proposed model achieved lower
average RMSE (X̄audio+EEG = 0.732 ± 0.017) than using
only audio features.

4.2. Combining The EEG and Audio Prediction Results

The EEG results are shown in Table 1. Each table row shows the
test set RMSE of each subject. Using the Wilcoxon signed-rank
test (α = 0.01, T = 42, N = 21), the CNN-based EEG model
results were significantly better than the baseline EEG model
results (W = 27, W < T ). Our proposed late-fusion model
results were also significantly better than the CNN-based EEG
model (W = 0, W < T ).

5. Discussion
Our proposed model was trained and tested using individual
EEG records following [29] that reports emotion regulation is

Table 1: MOS prediction RMSE per subject. The proposed
method produced significantly lower RMSE than the baseline.

Sbj. PLSeeg CNNeeg CNNaud.+eeg CNNaud.

1 1.102 1.084 0.752 0.862
2 0.990 0.974 0.767 -
3 0.948 1.019 0.737 -
4 0.997 1.010 0.719 -
5 1.007 0.947 0.750 -
6 1.143 0.962 0.745 -
7 0.965 0.927 0.751 -
8 1.147 0.962 0.717 -
9 1.104 0.998 0.751 -

10 2.088 0.942 0.733 -
11 0.978 0.976 0.742 -
12 1.036 0.983 0.732 -
13 1.018 0.994 0.722 -
14 1.032 0.994 0.731 -
15 1.086 1.003 0.710 -
16 1.785 1.005 0.735 -
17 1.068 0.981 0.729 -
18 1.075 1.010 0.742 -
19 0.971 1.034 0.709 -
20 0.937 0.927 0.714 -
21 1.091 0.936 0.694 -

avg. 1.122 0.984 0.732 0.862
std. 0.275 0.037 0.017 -

subject-dependent. The proposed model predicted MOS rather
than individual opinion scores.

The baseline PLS results showed that using MOS rather
than opinion scores as the label also minimized the error al-
though it was not significant. Training and testing with just one
subject might yield better models since they have less data vari-
ance to generalize. However, the number of samples was greatly
reduced. Therefore, creating a subject-independent model is an
interesting future work.

Audio-only features performed better than individual EEGs
under the same model architecture. This finding agrees with
another study [20] that concluded that audio features are more
informative than EEG features to predict subjective quality rat-
ings.

By combining the predicted MOS from the independently
trained EEG and audio model using a late-fusion approach,
our prediction performance surpassed both the EEG-only and
audio-only models. Investigating what part or features of the
EEG signals enables the improvement of the prediction might
be productive in the future.

6. Conclusion
This study predicted the mean opinion score of the audio’s over-
all quality by combining single subject EEG with the audio sam-
ple. The experimental result showed that by combining results
from both independently trained audio and EEG models, the er-
ror could be reduced significantly.

7. Acknowledgements
This work was supported by JST CREST Grant Number JP-
MJCR19A5 and JSPS KAKENHI Grant Number JP17H06101
and JP17K00237, Japan.

4



8. References
[1] ITU-T, “P.85. a method for subjective performance assessment

of the quality of speech voice output devices,” International
Telecommunication Union, CH-Genf, 1994.

[2] D. Kim and A. Tarraf, “Anique+: A new american national stan-
dard for non-intrusive estimation of narrowband speech quality,”
Bell Labs Technical Journal, vol. 12, no. 1, pp. 221–236, 2007.

[3] ITU-T, “P.563: Single-ended method for objective speech quality
assessment in narrow-band telephony applications,” ITU-T. Rec.,
Tech. Rep., 2004.

[4] T. H. Falk and S. Moller, “Towards signal-based instrumental
quality diagnosis for text-to-speech systems,” IEEE Signal Pro-
cessing Letters, vol. 15, pp. 781–784, 2008.

[5] S. M. Patrick Le Callet and A. Perkis, “Qualinet white paper on
definitions of quality of experience,” European Network on Qual-
ity of Experience in Multimedia Systems and Services (COST Ac-
tion IC 1003), Lausanne, Switzerland, Version 1.2, 03 2013.

[6] C. Mayo, R. A. Clark, and S. King, “Listeners’ weighting of
acoustic cues to synthetic speech naturalness: A multidimensional
scaling analysis,” Speech Communication, vol. 53, no. 3, pp. 311
– 326, 2011.

[7] J.-N. Voigt-Antons, S. Arndt, R. Schleicher, and S. Möller, Brain
Activity Correlates of Quality of Experience, 03 2014, pp. 109–
119.

[8] J.-N. Voigt-Antons, EEG Frequency Band Power Changes Evoked
by Listening to Audiobooks with Varying Quality Profiles, 02
2015, pp. 73–80.

[9] N. Bigdely-Shamlo, T. Mullen, C. Kothe, K.-M. Su, and K. A.
Robbins, “The prep pipeline: standardized preprocessing for
large-scale eeg analysis,” Frontiers in Neuroinformatics, vol. 9,
p. 16, 2015.

[10] M. Jas, D. A. Engemann, Y. Bekhti, F. Raimondo, and A. Gram-
fort, “Autoreject: Automated artifact rejection for meg and eeg
data,” NeuroImage, vol. 159, pp. 417 – 429, 2017.

[11] S. Saha and M. Baumert, “Intra- and inter-subject variability
in eeg-based sensorimotor brain computer interface: A review,”
Frontiers in Computational Neuroscience, vol. 13, 12 2019.

[12] S. Cole and B. Voytek, “Cycle-by-cycle analysis of neural
oscillations,” Journal of Neurophysiology, vol. 122, no. 2,
pp. 849–861, 2019, pMID: 31268801. [Online]. Available:
https://doi.org/10.1152/jn.00273.2019

[13] A. Gramfort, D. Strohmeier, J. Haueisen, M. Hämäläinen, and
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