

INTERSPEECH 2020

Incremental Machine Speech Chain Towards Enabling Listening while Speaking in Real-time

Sashi Novitasari¹, Andros Tjandra¹, Tomoya Yanagita¹, Sakriani Sakti^{1,2}, Satoshi Nakamura^{1,2}

1NAIST, Japan ²RIKEN-AIP, Japan

Outline

- I. Introduction
- II. Incremental Machine Speech Chain
- III. Experiments
- IV. Conclusion

- I. Introduction
- II. Incremental Machine Speech Chain
- III. Experiments
- IV. Conclusion

I. Introduction

Background ASR and TTS

- Spoken language technologies:
 - Automatic speech recognition (ASR)
 - Text-to-speech synthesis (TTS)
- Crucial for human-machine interaction
- Remarkable performance
 - > requires a lot of speech-text paired data

ASR and TTS systems

Background Machine Speech Chain

[Tjandra et al., 2017]

- Semi-supervised ASR and TTS training via closed feedback loop
- ASR/TTS: standard attention-based seq2seq network
- 2 training phases:
 - 1) ASR/TTS supervised independent training
 - 2) ASR/TTS unsupervised joint training with feedback loop
- <u>Full-utterance-based ASR and TTS → High delay</u>

Background Human Speech Chain

Human speech chain [Denes, 1993]

- Feedback loop between speech production and hearing systems
- **Real-time** process → immediate adaptation
- Feedback delay causes a disturbance during speaking

Challenge in mimicking human speech chain for machine

Speech generation or recognition and feedback generation based on incomplete sequence information with <u>minimum delay</u>

Propose: Incremental Machine Speech Chain

- I. Introduction
- II. Incremental Machine
 Speech Chain
- **III.** Experiments
- IV. Conclusion

II. Incremental Machine Speech Chain

Propose

Incremental Machine Speech Chain

Closed short-term feedback loop between incremental ASR (ISR) and incremental TTS (ITTS)

- Reduce feedback delay within machine speech chain training
- Improve ISR and ITTS learning quality
- Enable immediate feedback generation during inference

Move a step closer for ASR and TTS that can adapt to real-time environment unsupervisedly

→ Similar to human

Incremental Machine Speech Chain

Components

Incremental ASR (ISR): Low delay ASR

- Hidden Markov model ASR
- End-to-end ISR with attention-based seq2seq model
 - Neural transducer [Jaitly et al, 2016]
 - Attention-transfer ISR [Novitasari et al., 2019]

Incremental (ITTS): Low delay TTS

- Hidden Markov model TTS
- End-to-end ITTS with attention-based seq2seq model
 - o Neural ITTS [Yanagita et al., 2019]
 - ITTS based on prefix-to-prefix framework [Ma et al., 2019]
- Performance limitation due to short-input-based processing
- Previous: independent development

Incremental Machine Speech Chain Training Mechanism

2 training phases:

- 1. ISR and ITTS supervised-independent training
- 2. ISR and ITTS joint training via short-term feedback loop

ISR

(Yn)

Output Text

Incremental Machine Speech Chain Training

1. ISR and ITTS Independent Training

- Incremental: Predict a complete output sequence in N steps.
 - For each step *n*:
 - 1. Encode a segment of input from input window
 - 2. Decode and predict a segment of output
 - 3. Shift the input windows
- ISR and ITTS training by attention transfer from standard nonincremental ASR [Novitasari et al., 2019] → same alignment for ISR and ITTS

ISR

Step n = 2

d e </m>

Dec

Enc

Att

(Xn)

Input Text

Full text

(Y)

(Yn)

Step n = 1

abc < /m >

Dec

ISR

Incremental Machine Speech Chain Training

2. ISR and ITTS Joint Training

- Short-term feedback loop between the components
- Segment-based output passing
- Unrolled processes
 - a. <u>ISR-to-ITTS</u> For each step n, ISR predicts \hat{Y}_n from X_n , and then ITTS predicts \hat{X}_n from ISR output \hat{Y}_n
 - b. ITTS-to-ISR

Incremental Machine Speech Chain Training

2. ISR and ITTS Joint Training

- Short-term feedback loop between the components
- Segment-based output passing
- Unrolled processes
 - a. ISR-to-ITTS For each step n, ISR predicts \hat{Y}_n from X_n , and then ITTS predicts \hat{X}_n from ISR output \hat{Y}_n
 - b. ITTS-to-ISR

For each step n, ITTS predicts \hat{X}_n from Y_n , and then ISR predicts \hat{Y}_n from ITTS output \hat{X}_n

Incremental Machine Speech Chain Learning Approach

Exploration on 2 learning approaches:

A) Semi-supervised incremental machine speech chain

- 1) ISR/ITTS independent training: supervised
- 2) ISR/ITTS joint training: unsupervised (unlabeled data)

B) Supervised incremental machine speech chain

- 1) ISR/ITTS independent training: supervised
- 2) ISR/ITTS joint training: supervised (labeled data)

Unrolled process examples in joint training (ITTS-to-ISR follows similar mechanism)

- I. Introduction
- II. Incremental Machine Speech Chain
- III. Experiments
- IV. Conclusion

III. Experiments

Experiments Dataset

Wall Street Journal CSR Corpus [Paul and Baker, 1992]

Language : English

Training sets:

o SI-84 : 16 hours of speech, 83 speakers

o SI-200 : 66 hours of speech, 200 speakers

o SI-284 : si84 + si200

❖ Dev. set : dev93

❖ Eval. set : eval92

Character-level

Speech features: 80-dims log Mel spectrogram (window: 50 msec, shift: 12.5 msec)

Experiments

Model Configuration

* Same architecture for standard (non-incremental) and incremental models

Result

ASR (CER%) and TTS (log Mel-spectrogram L2 loss) performances

Data	ASR (CER%)				TTS (L2-norm) ²			
	Standard (delay: 7.88 sec)		Incremental (delay: 0.84 sec)		Standard (delay: 103 chars)		Incremental (delay: 30 chars)	
	nat-sp	syn-sp	nat-sp	syn-sp	nat-txt	rec-txt	nat-txt	rec-txt
Independent Training								
Indep-trn SI-84	17.33	27.03	17.81	44.54	0.99	1.02	1.04	3.62
Indep-trn SI-284	7.16	9.60	7.97	19.99	0.75	0.77	0.84	1.31
Machine Speech Chain								
Indep-trn (<i>SI-84</i>) + chain-trn-greedy (<i>SI-200</i>)	11.21	11.52	14.23	32.43	0.80	0.82	0.86	1.35
Indep-trn (<i>SI-84</i>) + chain-trn-teachforce(<i>SI-200</i>)	7.27	6.30	9.43	12.78	0.77	0.80	0.79	1.26

- Incremental machine speech chain
 - Improved ISR and ITTS
 - Shorter delay with a close performance to the standard system

- Baseline
 - ☐ ISR and ITTS *indep-trn SI-84*
- Topline
 - ☐ Standard systems *indep-trn SI-284*
- Proposed
 - Incremental machine speech chain
- Input type:

- I. Introduction
- II. Incremental Machine Speech Chain
- III. Experiments
- IV. Conclusion

IV. Conclusion

Conclusion

Incremental machine speech chain

Short-term feedback loop for ISR/ITTS development by mimicking human speech chain

- Reduced the delay with a close performance to the basic framework
- Improve ISR and ITTS (natural/synthetic input)
- Synthetic input processing: demonstration of real-time feedback generation

Thank you