INTERSPEECH 2020

Neural Speech Completion

Kazuki Tsunematsu¹, Johanes Effendi^{1,2}, Sakriani Sakti^{1,2}, Satoshi Nakamura^{1,2}

¹Nara Institute of Science and Technology (NAIST), Japan ²RIKEN Center for Advanced Intelligence Project (AIP), Japan

Outline

- Motivation Background
- Related Works
- Proposed Framework
 - → Text-to-text Completion System
 - → Speech-to-text Completion System
 - → Speech-to-speech Completion System
- Experiments
- Conclusions

Motivation Background and Related Works

Human-Human Communication

Speech Communication

- Transformation:
 - ✓ Intention in the speaker's mind → Understanding in the listener's mind
 - ✓ Auditory system and brain play a decisively proactive role
- Anticipation:

Often predict the end of a sentence even when the other person has not finished it

Human-Machine Communication

- Anticipation in Human-Machine Communication
 - Text Autocomplete

Predicts the next word a user intends to enter after only a few characters have been typed

Remains limited to text-based human-machine interaction

Widely used in many application

Search engines, text editors, and command-line interpreters [Hollingsworth, 2018]

Related Works

- Speech-based Interaction
 - Automatic Speech Recognition

Passively recognizes what is being said

Related Works

- Speech-based Interaction
 - Limited studies address the speech completion task

[Goto et al., 2002] proposed a speech recognizer that was extended with a vocabulary tree to provide candidates with the complete text

Figure source: https://staff.aist.go.jp/m.goto/PAPER/ICSLP2002POSTERgoto.pdf [Goto et al., 2002]

Related Works

- Speech-based Interaction
 - Simultaneous Speech Translation

- → [Niehues et al., 2018] discussed the challenge of MT system:

 Translate partial sentences of the source language

 into complete sentences of the target language
- → The ability to predict is a prerequisite for being a successful simultaneous interpreter
- → Incorporating the prediction within incremental ASR may help the performance of partial recognition

Voice search, speech translation, dialog system may require a system:

- Not only recognizes what has been said
- ✓ But also predicts what will be said.

Proposed Framework

Proposed: Neural Speech Completion

Overview

Investigate neural text-to-text, speech-to-text and speech-to-speech completion framework

Proposed: Neural Speech Completion

Sequence-to-Sequence Attention-based Neural Networks

Standard ASR system

Input: $\mathbf{x} = [x_1, ..., x_N]$ with length NOutput: $\widehat{\mathbf{y}} = [\widehat{y_1}, ..., \widehat{y_M}]$ with length M

Input: $\mathbf{x} = [x_1, ..., x_P]$ with length P < N**Output:** $\widehat{\mathbf{y}} = [\widehat{y_1}, ..., \widehat{y_Q}]$ with length Q < M

Text-to-text completion system

Input: $\mathbf{y} = \begin{bmatrix} y_1, \dots, y_Q \end{bmatrix}$ with length Q < MOutput: $\widehat{\mathbf{y}} = [\widehat{y_1}, \dots, \widehat{y_M}]$ with length M

Speech-to-text completion system

Input: $x = [x_1, ..., x_P]$ with length P < NOutput: $\widehat{y} = [\widehat{y_1}, ..., \widehat{y_M}]$ with length M

Speech-to-speech completion system

Input: $\mathbf{x} = [x_1, ..., x_P]$ with length P < NOutput: $\widehat{\mathbf{x}} = [\widehat{x_1}, ..., \widehat{x_N}]$ with length N

Proposed Framework

- Speech-to-speech Completion System
 - Utilized the pretrained speech-to-text encoder and text-to-speech decoder

Fine-tuned in an end-to-end speech-to-speech framework

Pretrained text-to-speech system

Similar to [Tacotron: Wang et al., 2017]

Experiments

Experimental Set-Up

Data

- Domain-specific sentences with synthesized speech utterances
- English Basic Travel Expression Corpus (BTEC) [Kikui et al., 2006]
 - ✓ Text Data

Corpus	Number of Sentences		
	Train	Val	Test
BTEC	157448	4870	510

- ✓ Speech was generated with Google TTS
- ✓ Incomplete data: 25%, 50%, and 75% partial lengths

Features

- ✓ Text: Character-based (26 letters (a-z) and three special tags [<s>, </s>, <spc>])
- ✓ Speech: 80-dim log Mel Spectrogram (speech reconstruction with Griffin-Lim)

Baseline Systems and Completion Task

Baseline Systems

- RNN-LM [Kombrink et al., 2011]
 - ✓ Language model Predictive model for the next token, given the previous one
 - ✓ Performed repeatedly on the incomplete part until [EOS]
- BERT [Devlin et al., 2014]
 - ✓ Language understanding Bidirectional Encoder Representations from Transformer (BERT)
 - ✓ Replaced the incomplete part with [MASK] for prediction

Completion Task

Input	I ate a hamb
Word Completion	I ate hamb <u>urger</u>
Sentence Completion	I ate hamburger at a restaurant

- Word Completion Task
 - Comparison:
 - ✓ Human (15 subjects; TOEIC score > 730)
 - ✓ Proposed Text-to-text Completion System
 - Results: Character Error Rate (CER)

	CER (%)
Proposed System	2.70
Human	7.21
Human (best)	5.50

Proposed text-to-text completion system outperformed human completion

- Sentence Completion Task
 - Objective Evaluation:
 - ✓ Word error rate
 - Comparison:
 - ✓ RNN-LM
 - **✓** BERT
 - ✓ Proposed Text-to-text Completion System
 - ✓ Proposed Speech-to-text Completion System

Proposed text-to-text and speech-to-text completion system outperformed the baseline RNN-LM and BERT

Results: Word Error Rate (WER)

- Sentence Completion Task
 - Subjective Evaluation:
 - ✓ Naturalness
 - ✓ 12 subjects (TOEIC score > 730)
 - Comparison:
 - **✓** BERT
 - ✓ Proposed Speech-to-text Completion System
 - ✓ References

Proposed speech-to-text completion system provided more natural suggestions than BERT

Results: Naturalness (MOS)

Speech-to-speech Completion System

Input:

Output:

Proposed speech-to-speech completion system

- Resynthesized the speech input
- Completed the remaining part
- While retaining the characteristic of speech style

Reference:

Conclusions

Conclusions

- Utilizing seq2seq deep learning framework for new task:
 Word- and sentence-based speech completion
- Our proposed system provided
 - ✓ Complete full-length results closer to the reference transcriptions
 - ✓ A lower error rate & more natural suggestions than the baseline
- The speech-to-speech completion system
 - ✓ Resynthesized the speech input and completed the remaining part
 - ✓ While retaining the characteristics of the speaker's speech style
- A simple yet efficient approach enables people to easily reproduce the works
- Future works
 - ✓ Refine our framework and incorporate it within an incremental ASR
 - ✓ Investigate the capability using multi-speaker natural speech data

Citations

- [Hollingsworth, 2018] S. Hollingsworth, "Google autocomplete: A complete SEO guide," Search Engine Journal, 2018.
- [Goto et al., 2002] M. Goto, K. Itou, and S. Hayamizu, "c," in Proc. ICSLP, 2002
- [Niehues et al., 2018] J. Niehues, N. Pham, T. Ha, M. Sperber, and A. Waibel, "Low-latency neural speech translation," arXiv preprint arXiv:1808.00491, 2018.
- [Chan et al., 2016] W. Chan, N. Jaitly, Q. Le, and O. Vinyals, et al., "Listen, attend and spell: A neural network for large vocabulary conversational speech recognition," in Proc. ICASSP, 2016
- [Wang et al., 2017] -- Y. Wang, R. Skerry-Ryan, D. Stanton, Y. Wu, R. J. Weiss, N. Jaitly, Z. Yang, Y. Xiao, Z. Chen, S. Bengio et al., "Tacotron: A fully end-to-end text-to-speech synthesis model," arXiv preprint, arXiv:1703.10135, 2017
- [Kikui et al., 2006] G. Kikui, S. Yamamoto, T. Takezawa, and E. Sumita, "Comparative study on corpora for speech translation," IEEE Transactions on Audio, Speech, and Language Processing, vol. 14, no. 5, pp.1674–1682, 2006
- [Kombrink et al., 2011] S. Kombrink, T. Mikolov, M. Karafi at, and L. Burget, "Recurrent neural network based language modeling in meeting recognition," in Proc. INTESPEECH, 2011
- [Devlin et al., 2014] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, "BERT: Pretraining of deep bidirectional transformers for language understanding," arXiv preprint arXiv:1810.04805, 2014

Speech Samples

https://sites.google.com/ahclab.naist.jp/neuralspeechcompletion/home

Thank you

