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Brief Overview

Challenge track: Conversational Speech Translation

Translation task from disfluent Spanish to fluent English

• Includes speech-to-text and text-to-text translation subtask

Motivation: Tackle two problems on text-to-text NMT

1. Low-resource translation

2. Noisy input sentences

• fillers, hesitations, self-corrections, ASR errors, …

Proposal: Domain adaptation using style transfer

• transfer the styles of out-of-domain data to be like in-

domain data, and them performed domain adaptation
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Motivation
The “style” of task data (in-domain):

→ Ideally, augment data by using large corpus same style

Large corpus available (out-of-domain):

→ Effects of training with them are limited
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Motivation
Style transfer model: fluent to disfluent

• increase the the similarity between out-of-domain and 
in-domain data

→ Enables effective domain adaptive training
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Overview
Generate pseudo in-domain data and adapt it for NMT
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(1) Style Transfer model
Transfer fluent input sentences of out-of-domain parallel 
data into disfluent styles

Style Transfer model:
• based on Unsupervised NMT (Artetxe et al., 2018; Lample et al., 2018) 

with out-of-domain fluent data and in-domain disfluent data
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Ya, ya, so, duerme casi once horas

He estado durmiendo casi once horas

Style Transfer model
Fluent-to-Disfluent

He’s been sleeping 
for almost 11 hours

He’s been sleeping 
for almost 11 hours



(2) NMT model
Apply fine-tuning
• conventional domain adaptation methods of MT
• greatly improves the accuracy of low-resource domain-

specific translation (Dakwale and Monz, 2017)

Learning steps for fine-tuning: 
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Datasets
• LDC Fisher Spanish speech with English translations (Fisher)

• parallel in-domain data
• disfluent Spanish to (fluent/disfluent) English

• United Nations Parallel Corpus (UNCorpus)
• parallel out-of-domain data
• fluent Spanish to fluent English
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Data statistics
# sentences

Fisher (in-domain)/Train 138,720
Dev 3,977
Test 3,641
UNCorpus (out-of-domain)/Train 1,000,000
Dev 4,000
Test 4,000



(1) Spanish Style Transfer
Data: Fisher (disfluent) and UNCorpus (fluent) Spanish data

Model: Unsupervised NMT (UNMT) based on Transformer

Evaluation:
• Estimate the similarity between domains by measuring 

the perplexity of 3-gram language model

12

Out-of-
domain

monolingual

Out-of-
domain
parallel

Pseudo
in-domain

parallel
In-domain

parallel

Train

In-domain
monolingual

Train

In-domain
source

In-domain
target

(1) Style Transfer model
Fluent-to-Disfluent

(2) NMT model
Spanish-to-English



(1) Spanish Style Transfer

Results
• reduced perplexity and number of unknown words by style transfer

Examples of pseudo in-domain data (Fisher-like UNCorpus)

• Delete paragraph symbol 

• Insert “Disfluency” (filler, repetition, missing words, ASR error, ..)
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Training data perplexity unknow words 

Fisher 72.46 0

UNCorpus 589.81 5,173,539

Fisher-like UNCorpus 474.47 4,217,819

UNCorpus Fisher-like UNCorpus

d conducta y disciplina eh conducta y disciplina

c lista amplia de verificación para la 

autoevaluación

mhm lista amplia de verificación para 

la la tele



(2) NMT with Domain Adaptation
Data

• in-domain: 130K bilingual pairs of Fisher
• out-of-domain: 1M of UNCorpus or Fisher-like UNCorpus

Model: Transformer (almost follow the transformer_base settings)

Evaluation: calculated the BLEU scores with sacreBLEU
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(2) NMT with Domain Adaptation
Results (1/2) – Effect of Style Transfer

• Domain adaptation training outperformed the baseline
• slightly improved by using the pseudo in-domain data
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BLEU scores of trained NMT models 
for Disfluent Spanish to Fluent English

System Fisher/test

Single Training
Fisher 14.8
UNCorpus 7.8
Fisher-like UNCorpus 6.7

Fine-tuning
UNCorpus + Fisher 18.3
Fisher-like UNCorpus + Fisher 18.5



(2) NMT with Domain Adaptation
Results (1/2) – Effect of Style Transfer

• Domain adaptation training outperformed the baseline
• slightly improved by using the pseudo in-domain data
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BLEU scores of trained NMT models 
for Disfluent Spanish to Fluent English

System Fisher/test

Single Training
Fisher 14.8
UNCorpus 7.8
Fisher-like UNCorpus 6.7

Fine-tuning
UNCorpus + Fisher 18.3
Fisher-like UNCorpus + Fisher 18.5

+3.5



(2) NMT with Domain Adaptation
Results (1/2) – Effect of Style Transfer

• Domain adaptation training outperformed the baseline
• slightly improved by using the pseudo in-domain data
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BLEU scores of trained NMT models 
for Disfluent Spanish to Fluent English

System Fisher/test

Single Training
Fisher 14.8
UNCorpus 7.8
Fisher-like UNCorpus 6.7

Fine-tuning
UNCorpus + Fisher 18.3
Fisher-like UNCorpus + Fisher 18.5 +0.2



(2) NMT with Domain Adaptation
Results (1/2) – Effect of Style Transfer

• Domain adaptation training outperformed the baseline
• slightly improved by using the pseudo in-domain data
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BLEU scores of trained NMT models 
for Disfluent Spanish to Fluent English

System Fisher/test

Single Training
Fisher 14.8
UNCorpus 7.8
Fisher-like UNCorpus 6.7

Fine-tuning
UNCorpus + Fisher 18.3
Fisher-like UNCorpus + Fisher 18.5

-1.1



(2) NMT with Domain Adaptation
Results (2/2) – Fluent vs Disfluent references

• models trained with Fisher’s original disfluent references had 
about 3 points lower BLEU
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“Fisher (disfluent)“ did not use Fisher’s fluent 
references but instead used disfluent references

System Fisher/test
Fisher (fluent) 14.8
UNCorpus + Fisher  (fluent) 18.3
Fisher-like UNCorpus + Fisher  (fluent) 18.5
Fisher (disfluent) 11.6
UNCorpus + Fisher (disfluent) 15.2
Fisher-like UNCorpus + Fisher (disfluent) 15.6

-3.2
-3.1

-2.9
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Effect of Style Transfer
The use of pseudo in-domain data improved accuracy, but
• there was no significant improvement
• was worse in the pre-training phase

An example of style transferred sentence:
nueva york 1 a 12 de junio de 2015 (original) 

nueva york oh a mi eh de de de de (generated) 
• some sentences lost the meaning of the sentence
• style transfer constrains may be too strong

→ This problem may be mitigated by a model that can control the 
trade-off between style transfer and content preservation
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Fluent vs Disfluent References
The model trained using Fisher’s original disfluent data had a 
BLEU score of about 3 points lower than the model trained 
using fluent data.
→ by removing the disfluency of reference sentences 

improves the BLEU by about three points for all the 
learning strategies we tried
• the use of large out-of-domain data with fluent 

reference sentences did not mitigate this problem

22

Style of the sentence has an impact on the translation accuracy



Summary
Translation accuracy was improved 
• by domain adaptation (+3.7)
• by style transfer of out-of-domain (+0.4)
• effect was limited due to parallel data quality degradation

Future work
pursue a style transfer that does not reduce 
the quality of the parallel data
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