Deep Learning-based Automatic Pronunciation Assessment for Second Language Learners

Kohichi Takai^{1,2}, Panikos Heracleous², Keiji Yasuda^{1,2}, Akio Yoneyama²

¹Nara Institute of Science and Technology, Japan ²KDDI Research, Inc., Japan

Introduction

- Computer-aided language learning (CALL) is of high importance for English learning as a second language (ESL).
- CALL is also useful for shadowing-based pronunciation and automatically providing pronunciation assessment.
- The proposed text-independent method for pronunciation assessment is based on deep neural networks (DNNs).
- The proposed method aims at providing CALL without shadowing reference speech or acoustic models of native speakers.

Method

The current study is based on DNNs and seeks to improve acoustic feature extraction. The following outlines the proposed method.

- Extract mel-frequency cepstral coefficients (MFCCs) and shifted delta cepstral (SDC) coefficients from speech samples every 10ms with a time window size of 20ms.
- Construct i-vectors from the whole utterance of MFCC and SDC features.
- Following i-vector extraction, apply linear discriminant analysis (LDA) to reduce dimension size and improve evaluation performation.
- The DNN has four hidden layers with 64 units and ReLu activation function.
- On the last layer, a fully-connected Softmax layer is added.

Data Collections

924 speakers produced speech samples from a section of the shadowing materials. This resulted in 96,993 total speech samples.

Rank in overall criterion	Rank 1 (Beginner)	Rank 2	Rank 3 (Intermediate)	Rank 4	Rank 5 (Near native)		
# of speech samples	3,433	6,698	11,165	11,737	63,960		
				Rank2: 1~3 Rank4: 3~5			

Experiments

3-level re-scale

Below average (rank1,rank2), average (rank3), and above average (rank4, rank5)

Features (i-vector extraction)	dimension	Below average	Average	Above average	UAR	Pearson CC
MFCC	400	56.24	23.98	25.18	35.13	0.0236
MFCC+SDC	400	42.45	31.53	35.01	36.33	0.0568
MFCC+LDA	2	50.96	62.95	60.67	58.19	0.3928
MFCC+SDC+LDA	2	63.14	57.3	72.75	64.4	0.4803

Conclusion

- Unweighted average recall (UAR) was 64.4%, and the correlation was 0.48 when using MFCC and SDC for i-vector extraction and LDA,
- The improvement of audio feature extraction was useful for CALL.
- As future work, the current study will be compared with previous studies, and its effectiveness will be investigated.

Contact

KDDI Research, Inc., Japan

Kohichi Takai(ko-takai@kddi-research.jp)

Panikos Hracleous(pa-heracleous@kddi-research.jp)