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Abstract— We propose a method with attention-based re-
current neural networks (ARNN) for detecting the seman-
tic incongruities in spoken sentences using single-trial elec-
troencephalogram (EEG) signals. 19 participants listened to
sentences, some of which included semantically anomalous
words. We recorded their EEG signals while they listened.
Although previous detection approaches used a word’s explicit
onset, we used the EEG signals of the whole regions of each
sentence, which made it possible to classify the correctness of
the sentences without the onset information of the anomalous
words. ARNN achieved 63.5% classification accuracy with a
statistical significance above the chance level and also above
the performances which includes onset information (50.9%).
Our results also demonstrated that the attention weights of
the model showed that the predictions depended on the feature
vectors that are temporally close to the onsets of the anomalous
words. Clinical relevance— This technique also can be
applied to measuring people’s traits of amnestic mild cognitive
impairment such as Alzheimer’s disease in terms of semantic
impairment. Keywords- Single-trial EEG, human sentence
processing, N400, attention-based recurrent neural networks

I. INTRODUCTION

Human beings recognize semantic incongruities or am-
biguities in sequences, e.g. in essays, utterances by a lan-
guage learner, or system-generated sentences. To evaluate
these incongruities, subjective evaluations are usually used.
However, they can be affected by biases caused by subjective
factors because of the difficulty of defining clear criteria
for the evaluations or the interpretations of the meanings
of words; there is also no assurance that answers are cor-
rect [1]. In this paper, we propose the method to detect
semantic incongruities in spoken sentences for automatic
real-time evaluations with EEG signals, which include the
spontaneous signals of the neurons of brains from which we
can acquire the high time-resolution information specific to
a certain stimulus [2]. It also can be applied to measuring
people’s traits of amnestic mild cognitive impairment such
as Alzheimer’s disease in terms of semantic impairment [3].

N400, which is a component of event-related potentials
(ERPs), can be observed in signals for sentences, including
semantic anomalies [4]. Therefore, its size is correlated with
a word’s expectancy to a preceding context, i.e. cloze proba-
bility [4]. For the observation of ERP components, we must
average the signals of multiple trials’. This step basically
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requires that at least 50 trials be averaged to observe signif-
icant ERP components [2]. For real-time online evaluation,
we must consider single-trial level detection, which is very
challenging due to the low signal-to-noise ratio of EEGs. Few
works have studied the classification problems of single-trial
EEG signals [5] and achieved 61.3% accuracy. One study
attempted to detect semantic anomalies in spoken sentences
[6] using sentences, some of which included semantically
anomalous words placed in the third-word positions of
sentences and extracted the EEG signals that correspond to
the specific words for classification. Models using multi-
layer perceptrons showed 59.5% accuracy. However, since
we showed that semantic incongruities are related to a word’s
expectancy to a preceding context, they must be tested for
the classification methods using EEG signals, which uses
the whole parts of sentences. We hypothesized that the
EEG signals when participants recognized other words in
the sentences might provide classification information and
also we cannot know the onset (and its timing may be
ambiguous, specifically the speech stimulus) where in the
sentence semantic anomalies occur in real situations.

Methods have recently been proposed with deep neural
network models to classify single-trial EEG signals [7] and
some studies reported that recurrent neural networks (RNNs)
handle sequential features well for EEG classifications [8].
Sequential attention mechanisms [9], which decide the im-
portance at specific time areas of the signals for predictions
can be powerful tools for such problems as the classification
of sequential EEG signals [9], [10]. We can also analyze the
parts of the sentences the attention mechanism focused on
and the weights in the EEG signals of each sentence.

To the best of our knowledge, no attempts have studied
how well sequential attention models perform EEG classi-
fication related to semantic comprehension. We propose a
method with attention-based RNN models using the features
of the EEG signals of the whole parts of each sentence
for detecting semantic anomalies in speeches. The following
are the three contributions of this paper: (1) We detected
semantic anomalies with the EEG signals of the whole parts
of individual sentence; (2) we evaluated the performances
of attention-based RNNs for language-related EEG signals;
(3) we analyzed the parts of the sentences the attention
mechanism focused on and the weights in the EEG signals
of each sentence.

II. METHOD

In this section, we describe our classification model and
the experimental data collection for the single-trial detection



of the semantic incongruities in EEG signals.

A. Detection Model

We used bidirectional gated recurrent units (GRUs) as an
RNN classifier and introduced a sequential attention mecha-
nism for predicting incongruities from sequential inputs.

1) Gated Recurrent Units: A gated recurrent unit (GRU)
[11], which is a kind of RNN with reset gates, update
gates and hidden states at each time step, is one version of
long short-term memory. In this paper, we used bidirectional
GRUs for our classifications.

2) Attention-based Recurrent Neural Networks (ARNN):
Since the signals at all the time points in the sentences
are not equally useful for classifications, we used RNNs
with an attention mechanism that can assign the importance
scores at each time point and construct feature vectors with
representations of the whole time regions [12]. We can
calculate the attention weights at each time point as follows:

αt =
exp(hTt w)

∑
t

exp(hTt w)
(1)

v = ∑
t

αtht (2)

where ht is the RNN output at time t and w is a trainable
attention vector. Thus, hTt w represents the importance at time
t by measuring the similarity between ht and w. The attention
weight of each time point αt is obtained by normalizing hTt w
with a softmax function and sequential vector v is a weighted
summation over the whole time points with attention weights.
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Fig. 1. Attention-based RNN for predicting labels, where xi is an input
vector

B. EEG Data Acquisition

We evaluated the methods using EEG while compre-
hending sentences with sequential attention models. We
conducted experiments in which participants listened to
sentences, some of which included semantic anomalies, and
recorded the EEG signals from the participants.

1) Materials: We used previously constructed experimen-
tal materials [6] and prepared two types of language anoma-
lies in Japanese: one is anomalies of selectional restrictions
as semantic anomalies to explicitly induce incongruities and
the other is syntactic violations. In this paper, we focused
on analyzing the semantic conditions for classifications. The
sentences were manually created [13] so that the numbers of

the semantically correct sentences and incorrect sentences are
identical. Table I shows an example of such paired sentences:

TABLE I
EXAMPLE OF PAIRED SEMANTICALLY CORRECT AND INCORRECT

SENTENCES

a. Taro-ga ryoko-ni dekake-ta
Taro-NOM ryoko-DAT dekake-PAST
(Taro set out on a journey.)

b. #Taro-ga jisho-ni dekake-ta
Taro-NOM jisho-DAT dekake-PAST
(#Taro set out on a dictionary.)

NOM: nominative case marker;
DAT: dative case marker;
PAST: past tense morpheme.

The sentence b. that begins with # is semantically in-
correct. In the experiment, each participant listened to 200
sentences: 40 semantically correct, 40 semantically incorrect,
40 syntactically correct, 40 syntactically incorrect, and 40
filler sentences.

2) Participants and Experimental Procedure: We carried
out the experiment in accordance with the recommendations
of ethics committee of the Nara Institute of Science and
Technology. All participants wrote informed consents in
accordance with the informed consents. Nineteen native
Japanese speaking graduate students (16 males and 3 fe-
males) between 22 and 41 years of age (mean: 24.2) partic-
ipated in this experiment. The EEG recording experiments
were carried out in a soundproof room. The participants were
instructed to gaze at a fixation cross displayed at the center
of the monitor and avoid blinking and moving during the
stimulus. The following was the experimental procedure: (1)
the participants looked at the fixation cross for 1 s; (2) they
listened through earphones to a randomly selected sentence
for 4 s (they did not move to respond); (3) they answered
whether the sentence was correct by pressing a button within
2 s. Fig.2 illustrates this procedure. All the steps for each
participant were completed within 25 minutes.

normal or anomalous

(1) Look at '+' mark (2) Listen to the sentence

correct
or

incorrect

(3) Press the button
1s 4s 2s

Fig. 2. Experimental design of EEG recording

3) EEG Signal Processing: We used Acticap from Brain
Products with 32-ch active electrodes as an EEG cap and
BrainAmp DC from the same company as an amplifier. The
recorded EEG signals were processed with EEGLAB [14] to
obtain relatively clean signals in the following manner. (1)
Since we applied re-reference at the averaged amplitude of
the TP9 and TP10 electrodes, the number of channels for
the following analysis was 31. (2) The signals were passed
through FIR high-pass filtering at 1 Hz. (3) We cut EEG



signals into epochs in following two conditions; i ) Whole-
sentence: the time regions playing whole parts of each sen-
tence, ii ) Terminal-phrase: the time regions playing only the
terminal phrase of each sentence. At the same time, baseline
removal was performed with the averaged amplitudes over
from -500 ms to the starting point of each sentence. (4)
The signals were downsampled to 250 Hz. (6) We applied
ADJUST [15] to remove the components contaminated by
blinking or eye movements with an independent component
analysis. During the above procedure, we rejected the data
of two participants’ data due to a large number of rejected
epochs and data defects; 1.8% of remaining data of the 17
participants was rejected.

C. Feature Extractions

We used the amplitudes at 31 channels low-pass filtered
at 20 Hz for removal of noisy high frequency signals as
feature vectors of the EEG signals. Therefore, the size of the
vectors at each time point was 31 dimensions. Recent studies
showed that neural network models have the capacity to
utilize raw EEG signals as inputs by skipping some specific
feature extractions [16]. We used one epoch as one datum;
the temporal length of the input feature vectors corresponded
to i ) each spoken sentence (Whole-sentence) or ii ) each
terminal phrase (Terminal-phrase).

D. Training and Testing

The training data were comprised of the concatenation
of 13 participants’ data in which the data of two par-
ticipants were used as development data for determining
the optimal points for training models. The data of four
different participants were testing data that validated the
performances of the models with respect to the generalization
of the unseen participant data. The testing data were thought
to be a sufficient number of test participants to validate
the usefulness based on previous works [6], [17] in which
amount of about a quarter to one-third of the training sets
were used for testing sets for classifications. There were
1012, 156, and 310 epochs in the training, development,
and testing datasets, respectively, where the numbers of the
correct and incorrect sentences were the same; therefore, the
chance level of the classification was 50%. We standardized
the input vectors in all the data with the mean and standard
deviation (SD) of the training dataset. Each feature vector in
the training dataset has a mean of 0 and an SD of 1 due to the
standardization. Feature vector xt at time t was standardized
with mean µtrain and SD θtrain in the training data. The
EEG data in the training dataset were augmented for the
neural network models to avoid overfitting because of the
small samples of experimental data. In the same manner as a
previous work [18] showed in Eq.3, we added Gaussian noise
to each feature of the training data to generate augmented
data as follows:

xt aug = xt +0.1 ·N (0,1) (3)

As an ARNN in this paper, we trained a one layered
bidirectional GRU with an attention mechanism (GRU w/

att.). For the optimization of the model’s hyper-parameters,
we did 10-hold cross validations and found the best hyper-
parameters to evaluate the model on the testing data. We
empirically determined the following hyper-parameters in
this order: hidden layer dimensions (5, 10, 20), augmented
multiples (5, 10, 20), and the L2 regularizer weights (0, 0.1,
0.001, 0.0001). To validate the effectiveness of the attention
mechanism, we compared a GRU’s performance without an
attention mechanism (GRU w/o att.), which had the same
architecture of the model, with the best hyper-parameters
except for the attention layer.

III. RESULTS

A. Classification
Table II shows the accuracy, recall, and precision values

for detecting the semantic anomalies for a bidirectional
GRU with an attention mechanism (GRU w/ att.) and a
bidirectional GRU (GRU w/o att.) using EEG data of region
of whole sentences and region of terminal phrases. A GRU
with an attention mechanism achieved 63.5% classification
accuracy which was statistically and significantly higher than
the chance level (two-tailed binomial test: p < 0.01). Fig.3
represents the accuracies of each model for each participant.
This model also outperformed both of a model without
attention mechanism and models with EEG of terminal
phrases.

TABLE II
ACCURACY, RECALL AND PRECISION PER MODEL AND EEG DATA

Model EEG region Accuracy Recall Precision
GRU w/ att. Whole-sentence 0.635 0.716 0.616
GRU w/o att. Whole-sentence 0.554 0.470 0.565
GRU w/ att. Terminal-phrase 0.509 0.677 0.479
GRU w/o att. Terminal-phrase 0.467 0.516 0.470
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Fig. 3. Classification accuracies of each test participant

B. Visualization of Attention Weights
Visualizing the model’s attention weights clarified where

in the speech it depended on for the predictions. Fig.4
shows examples of the attention weights in the successful
case of classifications, which demonstrate that the attention
weights for predicting semantically correct sentences differed
from ones for predicting semantically incorrect sentences.
For predicting semantic incorrectness, the attention weights
focused on the time regions close but not restricted to the
onset of anomalous words (the red broken line in the left
figure).



Fig. 4. Attention weights plotted on spoken sentences (left: predicting
incorrectness, right: predicting correctness)

IV. DISCUSSIONS

We evaluated the methods using the EEG signals of the
whole areas of each sentence for detecting semantically
anomalous spoken sentences and showed that the sequen-
tially attention-based model performed well with a statistical
significance level above chance and also better than the
model of the previous study [6] for the same purpose.
Perhaps the model predicted by identifying the relationships
between the signals before and after an anomalous word with
signals of the whole length of each sentence. This result
demonstrated that we used more information for predictions
with the signals of a sentence’s whole length than of a word
at a specific position. The comparison between the model
with an attention mechanism and without it implied that
the sequential attention weights for the EEG signals of the
whole length of the sentences were feasible to classify the
sequential EEG signals.

Visualizing the attention weights showed that the predic-
tions of the models depended on the patterns of the attention
weights. Therefore, the probabilities of the predictions of
the semantic anomalies increased when the attention weights
focused on the features temporally close to the onset of the
last words in the sentences, which implied that the model
learned that the signals of these time regions were important.

We investigated relationships between predicted accuracies
and features of sentences. As a result, it turned out that
the predicted accuracy by the attention-based model has no
significant correlations to cloze probability obtained from
clowdsourcing workers in [5] and length of the utterance.

V. CONCLUSIONS

We proposed a method using the EEG signals of the
whole length of sentences with attention models for detecting
semantically anomalous spoken sentences. Using the EEG
signal data of 17 participants, the attention-based model
achieved 63.5% classification accuracy with the features of
the raw EEG signals that skip specific feature extractions.
This result shows that the features of the whole length of
the sentences were feasible for the classifications of the
EEG signals and the attention mechanism worked for the
sequential feature extractions for the predictions.

Future works will investigate our system’s performances
on sentences, including various word lengths. We will also
compare performances with other feature extraction methods
such as time-frequency features. In addition, experiments
in other languages will show its efficiency more clearly

regardless of languages. Predicting cloze probabilities, which
reflect the restriction of subsequent words [4] of sentences,
is another subsequent step of our work.
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