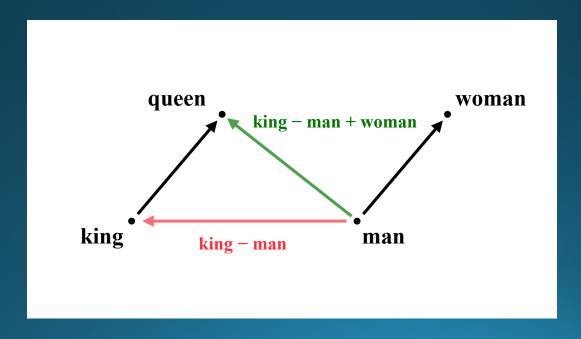
Reflection-based Word Attribute Transfer

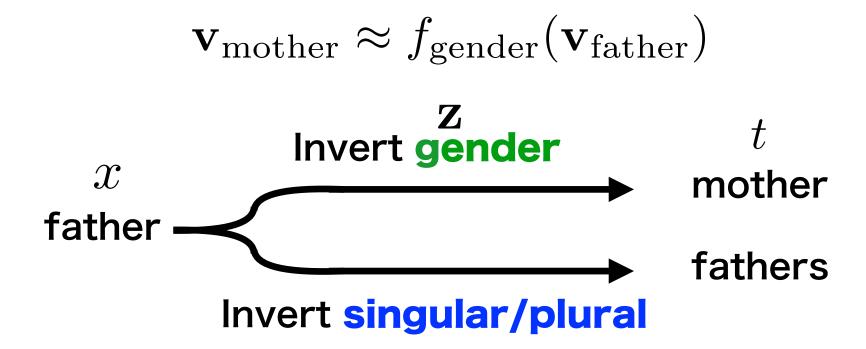
Yoichi Ishibashi, Katsuhito Sudoh, Koichiro Yoshino, Satoshi Nakamura


Nara Institute of Science and Technology (NAIST), Japan

Background: Analogy

Analogy in the embedding space

- is a operation that transfer word attributes
- Change word attributes (e.g. gender)


$$\overrightarrow{king} - \overrightarrow{man} + \overrightarrow{woman} \approx \overrightarrow{queen}$$

Background: Task overview

Word attribute transfer task

Get a word vector that inverted attribute of an input word vector

Background: Application

What can word attribute transfer be used for?

· E.g. Data Augmentation

Target attribute	Input words	Output words		
Gender	I am <mark>his mother</mark> .	I am her father.		
Antonym	Nobody has a suit. Someone has a su			
Capital- Country	I live in Japan .	I live in <mark>Tokyo</mark> .		

 $f_{\mathbf{z}}$ transfer words if they have a target attribute \mathbf{z}

E.g. man → woman (attribute: gender)

$$\mathbf{v}_{\mathrm{woman}} \approx f_{\mathrm{gender}}(\mathbf{v}_{\mathrm{man}})$$

 $f_{\mathbf{Z}}$ does not transfer words if it does not has a target attribute \mathbf{Z}

E.g. person → person (attribute: gender)

$$\mathbf{v}_{\mathrm{person}} \approx f_{\mathrm{gender}}(\mathbf{v}_{\mathrm{person}})$$

Analogy-based word attribute transfer

```
king - (man - woman) = queen
queen + (man - woman) = king
```

Add or subtract a difference vector

Problem

 Need explicit knowledge whether input word has the target attribute or not

Goal

 Transform word attributes without the explicit knowledge

Proposed method

What is an ideal transfer function?

- No explicit knowledge
 - = Transfer any words with the same function

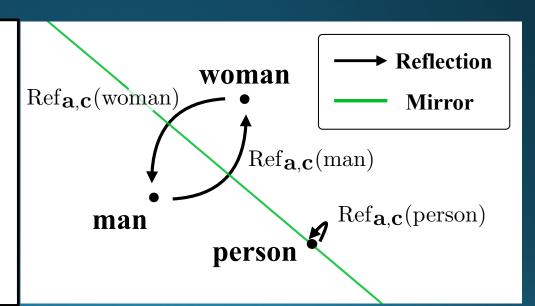
$$\mathbf{v_{man}} = f(\mathbf{v_{woman}})$$
 $\mathbf{v_{woman}} = f(\mathbf{v_{man}})$
 $\mathbf{v_{person}} = f(\mathbf{v_{person}})$

Combine above formulas

$$\mathbf{v}_x = f(f(\mathbf{v}_x)) \qquad \overset{\leftarrow}{\text{Nature of the}}$$
 ideal function

Reflection is an ideal function

Transfer any words with the same function


$$\mathbf{v} = Ref_{\mathbf{a},\mathbf{c}}(Ref_{\mathbf{a},\mathbf{c}}(\mathbf{v}))$$
 $Ref_{\mathbf{a},\mathbf{c}}(\mathbf{v}) = \mathbf{v} - 2\frac{(\mathbf{v} - \mathbf{c}) \cdot \mathbf{a}}{\mathbf{a} \cdot \mathbf{a}}\mathbf{a}$

Move two vectors through a hyperplane (mirror)

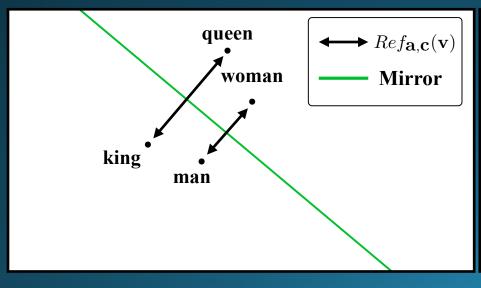
$$man = Ref_{\mathbf{a}, \mathbf{c}}(woman)$$

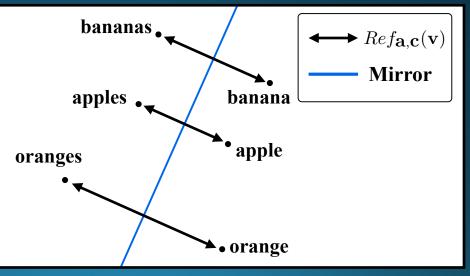
$$woman = Ref_{\mathbf{a}, \mathbf{c}}(man)$$

$$person = Ref_{\mathbf{a},\mathbf{c}}(person)$$

Reflection-based Word Attribute Transfer 10

How to apply to word attribute transfer?

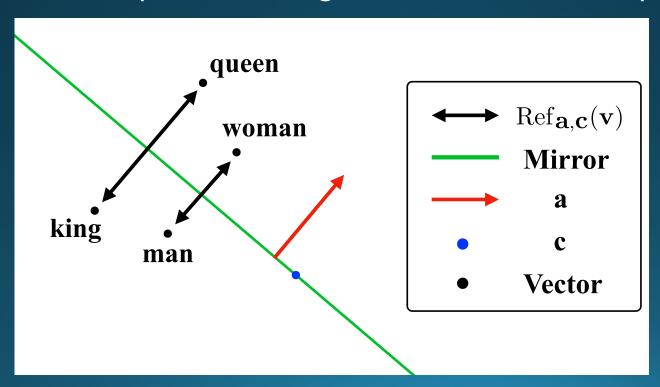

· Transfer an input word vector \mathbf{V}_x to a target word vector \mathbf{V}_t


$$\mathbf{v}_t \approx \mathbf{v}_y = \mathrm{Ref}_{\mathbf{a},\mathbf{c}}(\mathbf{v}_x)$$

Learn a mirror for each attributes

Male⇔Female

Singular⇔Plural



How to learn the mirror?

Idea: Estimate a and c by MLP

- a ... A vector orthogonal to the mirror
- c ... A point through which the mirror passes

Two types of mirror estimation

① Single mirror

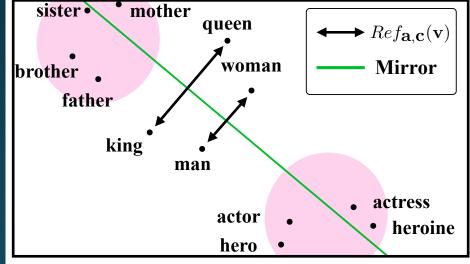
Estimate from an attribute **z**

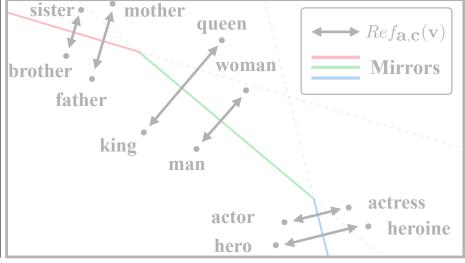
⇒ Some pairs are non-transferable

$$\mathbf{a} = \mathrm{MLP}_{\theta_1}(\mathbf{z})$$

$$\mathbf{c} = \mathrm{MLP}_{\theta_2}(\mathbf{z})$$

2 Parameterized mirrors


Estimate from **z**


and an input word vector \mathbf{v}_x

⇒ Work more flexibly

$$\mathbf{a} = \mathrm{MLP}_{\theta_1}([\mathbf{z}; \mathbf{v}_x])$$

$$\mathbf{c} = \mathrm{MLP}_{\theta_2}([\mathbf{z}; \mathbf{v}_x])$$

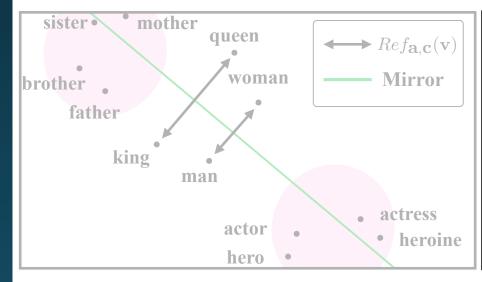
Two types of mirror estimation

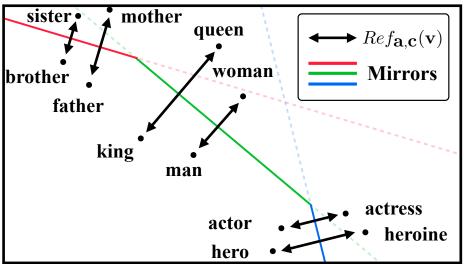
① Single mirror

Estimate from an attribute **z**

⇒ Some pairs are non-transferable

$$\mathbf{a} = \mathrm{MLP}_{\theta_1}(\mathbf{z})$$


$$\mathbf{c} = \mathrm{MLP}_{\theta_2}(\mathbf{z})$$


2 Parameterized mirrors

Estimate from \mathbf{z} and an input word vector \mathbf{v}_x \Rightarrow Work more flexibly

$$\mathbf{a} = \mathrm{MLP}_{\theta_1}([\mathbf{z}; \mathbf{v}_x])$$

$$\mathbf{c} = \mathrm{MLP}_{\theta_2}([\mathbf{z}; \mathbf{v}_x])$$

Experiments

Compare reflection and baselines

- Four different attributes
 - Male-Female, Singular-Plural Capital-Country, Antonyms
- Two pre-trained word embeddings
 - word2vec (SGNS), GloVe
- Two evaluation metrics
 - Accuracy, Stability

Attribute words … Four different binary attributes

Attribute (z)	Train	Val	Test	Example (x, t)
Male-Female (MF)	29	12	12	(king, queen)
Singular-Plural (SP)	90	25	25	(king, kings)
Capital-Country (CC)	59	25	25	(Japan, Tokyo)
Antonym (AN)	1354	290	290	(good, bad)

- Non-attribute words
 - Train $0 \leq |\mathcal{N}_{train}| \leq 50$

Test $|\mathcal{N}_{test}| = 1000$

Evaluation metrics

① Accuracy: Ratio of attribute words transferred

② Stability: Ratio of non-attribute words not transferred

Results (Accuracy)

Best method: Reflection with parameterized mirrors

→ High performance in both accuracy and stability

Worst method: MLP

	GloVe							
Method	Accuracy (%)				Stability (%)			
	MF	SP	СС	AN	MF	SP	CC	AN
Ref	12.5	2.0	26.0	0.0	100.0	100.0	100.0	100.0
Ref+PM	45.8	50.0	76.0	33.5	99.7	99.1	99.2	100.0
MLP	4.2	10.0	18.0	36.7	5.1	7.0	5.2	1.2
Diff+	25.0	2.0	26.0	-	99.3	94.2	99.3	-
Diff-	25.0	2.0	24.0	-	100.0	99.9	99.5	-

MF: Male-Female, SP: Singular-Plural, CC: Country-Capital, AN: Antonym

Results (Stability)

Best method: Reflection with parameterized mirrors

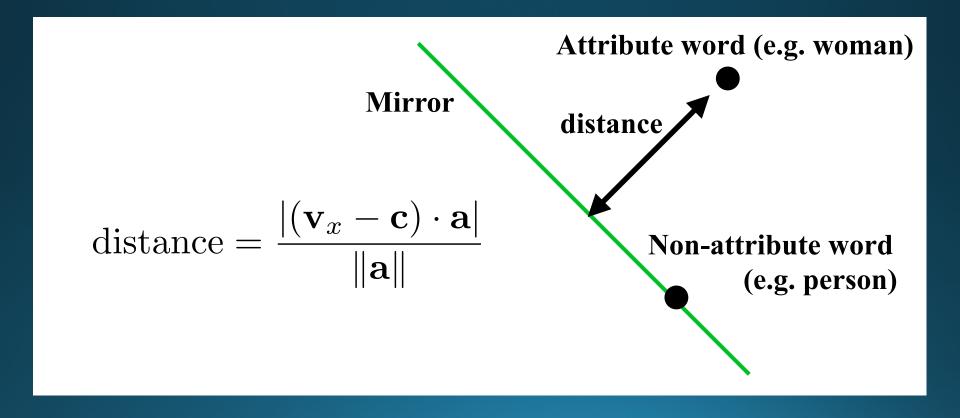
→ High performance in both accuracy and stability

Worst method: MLP

	GloVe							
Method	Accuracy (%)				Stability (%)			
	MF	SP	СС	AN	MF	SP	СС	AN
Ref	12.5	2.0	26.0	0.0	100.0	100.0	100.0	100.0
Ref+PM	45.8	50.0	76.0	33.5	99.7	99.1	99.2	100.0
MLP	4.2	10.0	18.0	36.7	5.1	7.0	5.2	1.2
Diff+	25.0	2.0	26.0	-	99.3	94.2	99.3	-
Diff-	25.0	2.0	24.0	-	100.0	99.9	99.5	-

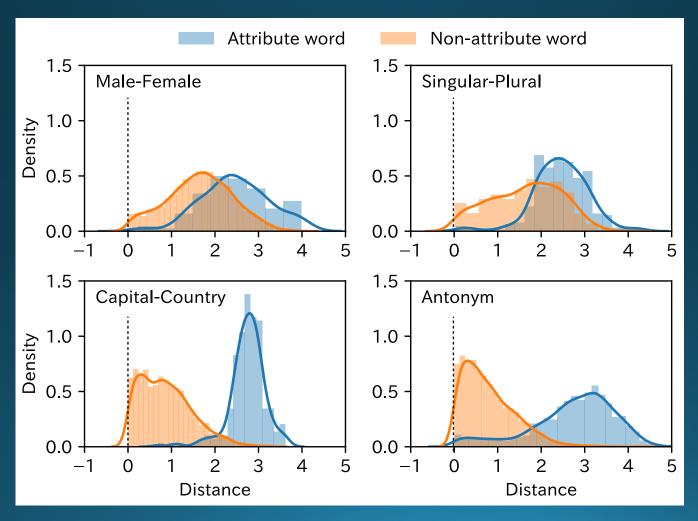
MF: Male-Female, SP: Singular-Plural, CC: Country-Capital, AN: Antonym

Transfer examples


Reflection with parameterized mirrors (Ref+PM) can selectively transfer words without the knowledge

Input	the woman got married when you were a boy .			
Ref	the woman got married when you were a boy.			
Ref+PM	the man got married when you were a girl.			
MLP	By_Katie_Klingsporn girlfriend Valerie_Glodowski fiancee Doughty_Evening_Chronicle ma'am Bob_Grossweiner_& a mother .			
Diff+	the man got married when you were a boy.			
Diff-	the woman got married when you were a girl.			

Why is the reflection very stabile?


Hypothesis: Non-attribute word distributes on its mirror

→ Visualize the distance between a word vector and its mirror

Distance between the word and its mirror 22

- Attribute words distributed apart from the mirror
- Non-attribute words distributed near the mirror

Summary

Background

- Word attribute transfer task
- Analogy can be used for the transfer
- Analogy-based transfer requires the explicit knowledge

Proposed method

- Reflection-based word attribute transfer
- Reflection is an ideal mapping for word attribute transfer

Experimental results

- Reflection-based transfer achieved best performance
- Reflection transfers attribute words e.g. man → woman
- Reflection does not transfer non-attribute words e.g. person → person